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Abstract 
 

Recent crises have seen very large spikes in asset price risk without dramatic shifts in fundamentals. 

We propose an explanation for these risk panics based on self-fulfilling shifts in risk made possible by a 

negative link between the current asset price and risk about the future asset price. This link implies that 

risk about tomorrow's asset price depends on uncertainty about risk tomorrow. This dynamic mapping 

of risk into itself gives rise to the possibility of multiple equilibria and self-fulfilling shifts in risk. We show 

that this can generate risk panics. The impact of the panic is larger when the shift from a low to a high 

risk equilibrium takes place in an environment of weak fundamentals. The sharp increase in risk leads 

to a large drop in the asset price, decreased leverage and reduced market liquidity. We show that the 

model can account well for the developments during the recent financial crisis. 
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1. Introduction 
 

Sharp surges in risk are a prominent feature of financial panics, such as the turmoil in the Fall of 2008 or 

the 2010 Eurozone debt crisis. Volatility, as measured by the VIX index, more than quadrupled in the 

wake of the Lehman Brothers failure, and tripled during the debt crisis. While crises entail adverse 

fundamental news, these are hard-pressed to account for such large surges in risk. The precarious fiscal 

situation of Greece was long known. Similarly, while the 2008 panic was linked to large scale mortgage 

market losses, these were not suddenly discovered in the Fall of 2008 and had instead gradually built for 

at least a year prior to the panic. We offer a theory for such events, which we refer to as "risk panics", that 

focuses on sudden large self-fulfilling shifts in risk, as well as the volatility of risk.1 

 

Our main contribution is to develop a theoretical foundation for such risk panics. Self-fulfilling shifts in risk 

can occur when the current equilibrium asset price depends on risk associated with the future asset 

price.2 Intuitively, higher risk reduces asset demand, which reduces the price. There is then a dynamic 

degree of freedom in the model. Risk is defined in terms of uncertainty about the asset price tomorrow. 

But the asset price tomorrow in turn depends on risk perceptions tomorrow. Therefore risk today depends 

on uncertainty about risk tomorrow. As risk does not just depend on uncertainty about future asset payoffs 

but also on future risk itself, self-fulfilling shifts in both risk and the volatility of risk are possible. 

 

The possibility of self-fulfilling shifts in risk arises only when the current asset price depends on risk about 

the future asset price. This link is absent in the standard frictionless expected utility framework used in 

macroeconomics, where only risk associated with future asset payoffs matters. The asset price then 

depends on the covariance between the stochastic discount factor and these payoffs. However, when 

introducing constraints on risk exposure, such as value-at-risk or margin constraints, the asset demand 

again depends on risk associated with future asset prices. Such constraints are natural in a world where 

highly leveraged financial institutions are subject to the possibility of default. A substantial literature 

introducing such constraints has developed in recent years.3 

 

A simple way to model the impact of future risk and to illustrate the possibility of self-fulfilling risk shifts is 

to consider a mean-variance portfolio model. This can capture the impact of risk-based portfolio 

                                                 
1  We do not wish to rule out the importance of fundamental shocks during the recent crises, but we are not aware of any model 

that would generate such a huge spike in risk in response to observed fundamental shocks. An alternative approach to ours is 
that of Caballero and Krishnamurthy (2008), who consider a model with Knightian uncertainty (i.e. inmeasurable risks). In that 
setup "new shocks" (e.g. the decision to let Lehman Brothers fail) can generate increased uncertainty as there is no history of 
events to measure probabilities. Another approach is found in Fostel and Geanakoplos (2008), where the economy can 
suddenly switch to a bad state with increased asset payoff risk. In our setup the increase in risk is entirely self-fulfilling and 
does not involve an exogenous increase in payoff risk. 

 
2  When we talk about " the asset price" , we refer to a market portfolio of risky assets or stocks rather than the equity of a 

particular firm. 
 
3  Examples are Brunnermeier and Pedersen (2009), Danielsson, Shin and Zigrand (2009) and Gromb and Vayanos (2002). 

Danielsson et al. (2009) find multiplicity in equilibrium risk through a feedback between asset prices and wealth. This 
mechanism is absent in our main analysis. 
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constraints, while avoiding their inherent complexity.4 Moreover, the mean-variance portfolio model has a 

long history in academics and is widely used in the financial industry. It has the important advantage of 

generating a simple relationship between future asset price risk and portfolio demand, which leads to a 

linear relationship between the asset price and future asset price risk in equilibrium. 

 

We find that beyond a regular fundamental equilibrium there are equilibria in which risk and the volatility 

of risk fluctuate in an entirely self-fulfilling way. There is always a variable that is a coordination device for 

the self-fulfilling shifts in beliefs about risk. This can either be a variable extrinsic to the model or a macro 

fundamental that is part of the model. We refer to these as respectively sunspot and sunspot-like 

equilibria.5 In a sunspot-like equilibrium the fundamental variable plays a dual role. It affects the asset 

price both through its regular role as fundamental (e.g. through asset payoffs or wealth) and as a sunspot-

like variable around which beliefs about risk are coordinated.6 Sunspot-like equilibria are conceptually 

distinct from accelerator mechanisms where frictions in markets amplify the impact of a change in the 

fundamental variable. Those are pure fundamental equilibria. 

 

Risk panics are closely related to the presence of sunspot-like equilibria. Apart from a pure fundamental 

equilibrium and sunspot-like equilibrium, the model also exhibits switching equilibria where there are 

exogenous shifts between a low-risk state and a high-risk state based on a Markov process. A panic is a 

switch from the low- to the high-risk state. During a panic, a macro variable suddenly becomes a focal 

point for self-fulfilling shifts in beliefs about risk. The panic is therefore not triggered by a change in the 

variable, but by the sudden self-fulfilling shift in beliefs about risk that is coordinated around this variable. 

The panic is larger when this variable is weak at the time of the shift (e.g. the net worth of leveraged 

institutions is low or the Greek debt is high). 

 

Our theory is consistent with the two-stage pattern of the 2007-2008 crisis: while it started in mid-2007, a 

full scale financial panic did not hit until the Fall of 2008. We illustrate the self-fulfilling risk shift in a 

version of the model where investors (financial institutions) are hit by a negative wealth shock. We stress 

the dual role of the deteriorating net worth of financial institutions. First, it has a fundamental effect that 

can account for the initial stage of the crisis. It reduces liquidity in the market for risky assets, which raises 

the volatility of asset prices and lowers their levels.7 These effects are however relatively small. Second, it 

sets the stage for a large financial panic. This occurs when the low net worth suddenly becomes the focal 

                                                 
4  Campbell et al. (2001) show that under some conditions the mean-variance and value-at-risk portfolio selections are the same. 
 
5  In the limiting case where fundamental uncertainty goes to zero, sunspot-like equilibria converge to pure sunspot equilibria. 
 
6  The term "sunspot-like" equilibria was first coined by Manuelli and Peck (1992). They write: " There are two ways that random 

fundamentals can influence economic outcomes. First, randomness affects resources which intrinsically affects prices and 
allocation. Second, the randomness can endogenously affect expectations or market psychology, thereby leading to 
excessive volatility." 

 
7  The links between market liquidity, risk and financial leverage have received a lot of attention in recent contributions such as 

Adrian and Shin (2008), Brunnermeier and Pedersen (2009), Brunnermeier and Sannikov (2009), Gromb and Vayanos (2008), 
He and Krishnamurthy (2008a, b), Kyle and Xiong (2001) and Xiong (2001). 
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point for a self-fulfilling increase in beliefs about risk. The lower the net worth is, the larger is the impact of 

the panic on asset prices, volatility, liquidity and leverage.8 

 

The remainder of the paper is organized as follows. Section 2 shows how self-fulfilling shifts in risk 

naturally occur when the equilibrium price of an asset depends on the variance of the future asset price, 

regardless of the specifics of the model. In Section 3 we develop the possibility of sunspot and sunspot-

like equilibria in a simple mean-variance portfolio model with stochastic asset payoffs (dividends). We 

consider both a simple model with a closed form solution and a more general one. In Section 4 we show 

that the model can also generate risk panics. Section 5 introduces wealth shocks, leading to an 

application to the 2007-2008 crisis in Section 6. Section 7 concludes. 

 

2. Self-Fulfilling Risk 
 

The key point of the paper is general and can be illustrated without relying on the specifics of a particular 

model. Consider a market where demand or supply depends not only on the current price but also on risk 

associated with the future price. The equilibrium price then depends on this risk. We write this in simple 

linear form as: 

 

 ttttt yQERiskQ 31210= λλλλ +++ +  (1) 

 

where )(= 1+ttt QvarRisk . Apart from risk, the price can depend on the expected price tomorrow and on 

a fundamental variable ty  that exogenously shifts demand or supply. The expected future price naturally 

emerges in dynamic asset pricing models, but is not critical to the main point here (i.e. 2λ  could be zero). 

The key parameter for our point is 1λ , which relates the price to risk about the future price. 

 

2.1 Fundamental and Sunspot Equilibria 
 

Consider first a case where the price is not directly affected by the fundamental ty , i.e. 0=3λ  in (1). It is 

immediate that there is an equilibrium, which we refer to as the fundamental equilibrium, where the price 

is constant: 

 

                                                 
8  It bears emphasizing that our focus in this paper is on the possibility of self-fulfilling risk shifts or risk panics. Every crisis has 

its own idiosyncratic aspects and the recent crisis obviously has many important features that go beyond the scope of this 
paper. For example, we abstract from aspects such as bank runs (through the repo market) and security complexity issues. 
We also make no attempt to account for the large losses in the securitized subprime mortgage market, which we simply model 
as a negative wealth shock to leveraged investors. 
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2

0

1
=

λ
λ
−tQ  (2) 

 

This is not the only equilibrium however. Consider equilibria where the asset price depends on a sunspot 

variable tS  that does not enter (1):  

 

 2~= tt VSQQ −  (3) 

 

where Q~  and V  are parameters. Assume that tS  is persistent through an AR process:  

 

 11 = ++ + ttt SS ερ  (4) 

 

where 0,1∈ρ  and the innovation 1+tε  has a symmetric distribution with mean zero and variance 2σ . 

We denote the variance of 2
1+tε  by 2ω . 

 

Equations (3) and (4) imply that:  

 

 222
1

~= σρ VSVQQE ttt −−+                                                                     (5) 

 222222
1 4=)(= ωσρ VSVQvarRisk tttt ++                                              (6) 

 

Note that risk is time-varying in a sunspot equilibrium where 0≠V . Substituting (3), (5) and (6) into (1), 

solve for the parameters Q~  and V  by equating respectively the constant terms and terms proportional in 

2
tS  on the left and right hand side. The resulting system has two solutions. One is the fundamental 

equilibrium, with 0=V  and Q~  equal to (2), and the other is:  

 

 22
1

2
2

4
1=

σρλ
ρλ−

−V                                                                                 (7) 

 ( )2
2

22
10

21
1=~ σλωλλ
λ

VVQ −+
−

                                                   (8) 
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The key parameter is clearly the coefficient on tRisk  in (1). When risk does not affect the asset price 

( 0=1λ ), there is only the fundamental equilibrium. Otherwise the sunspot equilibrium also arises. The 

underlying intuition is most easily discussed when the expected future price does not enter (1), so that 

0=2λ . In that case:  

 

 tt RiskQ 10= λλ +  (9) 

 

The same equation one period later tells us that the future asset price depends on future risk:  

 

1101 = ++ + tt RiskQ λλ  

 

Taking the variance on both sides shows that current risk is linked to uncertainty about future risk:  

 

 )(= 1
2
1 +ttt RiskvarRisk λ  (10) 

 

Risk does not depend on uncertainty about future fundamental shocks, but instead on uncertainty about 

future risk itself. This dynamic mapping of risk into itself opens up the possibility for multiple equilibria. 

Clearly, zero risk is an equilibrium. But any process for tRisk , unrelated to fundamentals, is an 

equilibrium as long as it satisfies (10). This process must clearly lead to joint shifts in risk and uncertainty 

about risk as they are proportional in (10). One process that satisfies (10) is described in (6), where 

tRisk  is linear in 2
tS  and the sunspot follows an AR process. Uncertainty about future risk will then 

depend on 2
tS  as well because 22222

1 4=)( ωσρ ++ ttt SSvar .9 

 

2.2 Sunspot-Like Equilibrium 
 

We have shown that when the fundamental ty  does not enter (1), the model exhibits a fundamental and 

a pure sunspot equilibrium. The sunspot variable tS  on which expectations of risk coordinate can be any 

variable. In particular, it can be the variable ty . This corresponds to a situation where changes in a  

                                                 
9  In fact, an alternative way to solve (9) is to simply conjecture 2= tt SRisk βα +  with tS  an AR process. In that case (1) 

gives tQ  and one can solve for α  and β  by equating the conjectured process for tRisk  with that implied by the solution 

for the price. 
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variable, such as the fiscal prospects of a country, affect the price in a market that is not linked to the 

country in any fundamental way. 

 

Consider now the situation where ty  has a fundamental impact, i.e. 03 ≠λ  in (1). In addition to the 

fundamental equilibrium, there is a sunspot-like equilibrium where ty  plays a dual role. It first has a 

fundamental role through its direct impact on the asset price in (1). It also has a sunspot role as the 

variable on which agents coordinate beliefs about risk. 

 

To solve for the sunspot-like equilibrium, assume that ty  follows the same autoregressive process as (4), 

and conjecture the following form of the asset price: 

 
2~= ttt VyvyQQ −+  

 

The parameters Q~ , v  and V  are solved analogously to that for the sunspot equilibrium. There are again 

two equilibria. The first is the fundamental equilibrium where 0=V , ( )ρλλ 23 1/= −v  and 

))/(1(=~
2

22
10 λσλλ −− vQ . In the fundamental equilibrium the asset price depends linearly on ty  (i.e. 

0=V ), and risk is constant: 22= σvRiskt . 

 

The other equilibrium is the sunspot-like equilibrium, where:  

 

22
1

2
2

4
1=

σρλ
ρλ−

−V                                                                                       (11) 

ρ
ρλ

−
−

1
= 3v                                                                                               (12) 

( )2
2

22
1

222
10

21
1=~ σλωλσλλ
λ

VVvQ +++
−

                                         (13) 

 

This equilibrium converges to the pure sunspot equilibrium of the previous section in the limit where 

03 →λ . In that pure sunspot equilibrium ty  only plays a sunspot role ( 0=v  and 0≠V ). As we raise 

3λ  above 0 , ty  takes on a dual role as a fundamental and a sunspot. But even as 3λ  becomes big, the 

sunspot role remains large. The coefficient V  in (11) is not a function of 3λ  at all and is identical to the 
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pure sunspot case (7). The term 2
tVy  in the equilibrium price therefore captures self-fulfilling shifts in risk 

coordinated around the variable ty . 

 

Although in a very different context, not involving self-fulfilling risk shifts, Manuelli and Peck (1992) and 

Spears, Srivastava and Woodford (1990) present models with sunspot-like equilibria. Spears, Srivastava 

and Woodford (1990) point out that " ...a sharp distinction between " sunspot equilibria" and " non-sunspot 

equilibria" is of little interest in the case of economies subject to stochastic shocks to fundamentals." 

Indeed, as we raise 3λ  slightly above 0 , the sunspot-like equilibrium is technically no longer a pure 

sunspot equilibrium, but it is effectively indistinguishable. 

 

3. A Simple Mean-Variance Portfolio Choice Model 
 

We now show how the linkage between risk on the future asset price and the current price emerges in a 

simple mean-variance portfolio choice model. The model centers on the allocation of portfolios between 

risky equity and a risk-free bond. We first consider the case where the return on the bond is exogenous 

as this allows us to derive a closed-form solution for the fundamental and sunspot-like equilibria. We then 

endogeneize the interest rate in a full general equilibrium setup. 

 

3.1 Model Description 

 

The model complexity is kept to a strict minimum. We consider an overlapping generation setup where 

investors are born with wealth IW . They invest in equity and bonds and consume the return on their 

investment when old. 

 

The bond pays an exogenous constant gross return R . This assumption, which is often made in the 

finance literature, allows us to derive a closed form solution. It implicitly assumes that there is a risk-free 

technology with a constant real return R  that is in infinite supply. This assumption is not crucial to our 

results and is relaxed in Section 3.5 below. 

 

Equity consists of a claim on a tree with stochastic payoff. There are K  trees, each producing an 

exogenous stochastic output (dividend) tA . Denoting the equity price by tQ , the equity return from t  to 

1+t  is:  

 

 
t

tt
tK Q

QAR 11
1, = ++
+

+
 (14) 
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Agents face uncertainty both about the dividend and the future equity price. The dividend is equal to 

)(1 tmSA + , where tS  follows the process (4). tS  is the only state variable in the model. When 0=m  

the dividend is a constant and tS  becomes a pure sunspot. When 0>m , tS  has a fundamental impact 

on the equity payoff. 

 

Investors born at time t  maximize a mean-variance utility over their portfolio return:  

 

 )(0.5 11
p

tt
p

tt RvarRE ++ − γ  (15) 

 

where γ  measures risk aversion and the portfolio return is:  

 

 RRR ttKt
p

t )(1= 1,1 αα −+++  

 

tα  denotes the portfolio share invested in equity. The gross return on equity and bonds are 1, +tKR  and 

R  respectively. The equity market clearing condition is  

 

 KQW tIt =α  (16) 

 

The OLG assumption is not critical to the results but simplifies the analysis in two ways. First, it avoids the 

well-known dynamic hedge term in the optimal portfolio that arises in multi-period portfolio problems. 

Second, the wealth level would be an additional state variable (in addition to tS ) if agents had infinite 

lives. We would then be unable to solve the model analytically or even represent the equilibria graphically. 

While we cannot get a closed form solution when the bond interest rate is endogenous, we can still 

represent the equilibria graphically as there is only one state variable. A shortcoming of the OLG 

assumption is that it prevents movements in asset prices from feeding back into the wealth of investors, a 

channel that can be important in a crisis. We introduce such a feedback effect in the Technical Appendix 

through a simple extension of the OLG setting, with a brief discussion in Section 6.3. 

 

3.2 Equilibrium Condition for Equity Price 
 

The maximization of (15) with respect to tα  gives the optimal portfolio share, which reflects the expected 

excess return on equity scaled by the variance of the equity return: 

 

 
)(

=
1,

1,

+

+ −

tKt

tKt
t Rvar

RRE
γ

α  (17) 
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Equation (17) does not restrict the portfolio share of equity to be lower than 100 percent. This share can 

exceed 100 percent when the equity return is not very risky, or when investors put little weight on risk. In 

that case the investors are  leveraged, with long positions in equity and short positions in bonds. 

 

Using (17), the market clearing condition (16) becomes: 

 

 )(=)( 1111 ++++ +−+ ttt
I

tttt AQvar
W
KRQQAE γ

 (18) 

 

Equation (18) equates the equilibrium expected excess payoff on equity to a risk premium that depends 

on the variance of the payoff 11 ++ + tt AQ . We use it to solve for the equilibrium asset price tQ  as a 

function of the single state variable tS . 

 

3.3 Sunspot Equilibria 
 

First consider the case where 0=m , so that tS  is a pure sunspot. In that case (18) can be written in the 

same form as (1) with RA /=0λ , )/(=1 IRWKγλ −  and R1/=2λ . We again get two equilibria. The first 

is the fundamental equilibrium where the asset price is constant: 

 

 
1

=
−R
AQt  (19) 

 

The second is the sunspot equilibrium 2~= tt VSQQ −  where:10  

 

 22

2

4
=

σρ
ρ

γ
−R

K
WV I  (20) 

 

The intuition for the sunspot equilibrium is exactly the same as in Section 2. 

 

An interesting point is that the impact of the sunspot on the equity price is larger when investors have a 

low risk aversion γ  or a large wealth IW . As can be seen from (18), low risk aversion or large wealth 

                                                 
10  An additional restriction to make sure that the asset price is always positive is that the distribution of tε  is bounded. In that 

case tS  is bounded as well. Since 
222 )/(=~1)( ωγσ VWKVAQR I−−− , a sufficient condition for the asset price 

to always be positive is that A  is sufficiently large. 
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reduce the risk premium and makes it less sensitive to changes in risk. It is precisely because agents 

respond less to risk (i.e. are less risk averse) that large self-fulfilling shifts in risk can more easily flourish. 

Paradoxically this implies that the asset price is more affected by such self-fulfilling shifts in risk. 

 

3.4 Sunspot-Like Equilibria 
 

Next consider the case where 0>m , so that shocks to tS  are also fundamental shocks to the asset 

payoff. We conjecture that the asset price is linear-quadratic in tS :  

 

 2~= ttt VSvSQQ −+  (21) 

 

The only slight difference with the fundamental shocks to ty  in Section 2 is that the risk is now given by 

)( 11 ++ + tt AQvar  instead of )( 1+tt Qvar . There are again two equilibria: a fundamental one and a 

sunspot-like one. 

 

In the fundamental equilibrium we have 0=V  and )/(= ρρ −Rmv , and the asset price is:  

 

 tt S
R

AmQQ
ρ
ρ

−
+

~=  (22) 

 

Shocks have a bigger impact on the asset price when they are persistent. Asset price risk is constant. 

 

In the sunspot equilibrium we have:  

 

 22

2

4
=

σρ
ρ

γ
−R

K
WV I                                                                (23) 

 
ρ−

−
1

= Amv                                                                        (24) 

 

As in Section 2, this sunspot-like equilibrium converges to the pure sunspot equilibrium as the 

fundamental shock vanishes to zero ( 0→m ). In addition, the coefficient on 2
tS  is again the same in the 

pure sunspot equilibrium (20) as in the sunspot-like equilibrium (23). tS  therefore plays a double role of a 

macro fundamental that affects asset payoffs and as a sunspot that leads to self-fulfilling risk shifts. 
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3.5  Full General Equilibrium 
 

Our analysis so far is not a full general equilibrium approach as we assume that there is an infinite supply 

of the risk-free bond at the rate of return R . In the remainder of the paper we relax this assumption and 

explicitly model the bond market equilibrium. 

 

The bond market clearing condition equates the investors' demand for bonds to the supply. It is important 

that the supply of bonds be interest rate elastic. Otherwise, investors could not reallocate between stocks 

and bonds in equilibrium. The equity price would then be entirely pinned down by investors' wealth and 

there could be no sunspot or sunspot-like equilibria. There are many ways to introduce an interest rate 

elastic supply or demand schedule of bonds, for example by introducing interest elastic 

consumption/savings or investment decisions. We do so by introducing another set of agents, which we 

call households, who invest in bonds and a household technology detailed below. 

 

There are overlapping generations of households born with wealth HW . Households invest their 

endowment in bonds and a household technology, and consume the proceeds when old. Investing 

1, +tHK  in the household technology at time t  yields a certain household production of )( 1, +tHKf  at 1+t . 

The technology exhibits decreasing returns to scale, 0>(.)'f  and 0<(.)''f . Households therefore 

face no uncertainty. Households born at time t  maximize consumption at time 1+t , which is equal to 

)()( 1,11, +++ −+ tHHttH KWRKf , where 1+tR  is the interest rate on the bond. Consumption is maximized 

by equalizing the marginal return on the technology to the bond yield: 11, =)( ++ ttH
' RKf . 

 

For convenience we assume a simple quadratic form for household technology. The capital demand is 

then linear in the interest rate11: 11, = ++ − ttH RK ην , and the demand for bonds by households is:  

 

 11, = ++ +−− tHtHH RWKW ην  (25) 

 

Equation (25) can be positive, in which case households lend bonds to investors, or negative, in which 

case they borrow from investors. 

 

The bond market clearing condition is:  

 

 0=)(1 1++−+− tHIt RWW ηνα  

                                                 
11  Specifically, we assume that [ ] ην /0.5=)( 2

1,1,1, +++ − tHtHtH KKKf . 
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Using the equity market clearing condition (16), we rewrite this as  

 

WRKQ tt =1+−+ ην                                                             (26) 

 

where HI WWW +=  is the aggregate initial wealth. (26) gives a linear positive relationship between the 

equity price and the interest rate. A higher equity price raises the supply of equity. Clearing the equity 

market then requires investors to shift their portfolio towards equity and reduce their purchase of bonds 

(or borrow more from households). Bond market clearing then requires households to lower their 

borrowing (or increase their bond purchase), which they are induced to do through a higher interest rate.12 

 

Using (26), the equity market clearing condition (18) becomes: 

 

)(= 11
2

11 ++++ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−+ ttt

I
ttttt AQvar

W
KQKQWQAE γ

ηη
ν

                             (27) 

 

The equilibrium condition (27) only involves the equity price, which we again solve with the method of 

undetermined coefficients. We now no longer have an analytical solution because the time-varying 

interest rate leads to a non-linearity through the term 2
tQ  on the left hand side. We therefore adopt a 

numerical approximation method along the following lines (details are given in Appendix 1). As is 

standard in the literature, we consider an approximation of the equilibrium asset price in logs:  

 

 2~= ttt VSvSqq −+  (28) 

 

We then take a quadratic approximation of tQ  and 1+tQ  around 0== 1+tt SS , and use the result to 

compute the expectation and variance of 11 ++ + tt AQ . We substitute the resulting expressions into (27). 

We finally take a quadratic approximation around 0=tS , which gives a linear-quadratic expression in tS :  

 

 0=2
210 tt SZSZZ ++  (29) 

 

                                                 
12  There is a third market clearing condition, for goods, but we can drop it thanks to Walras' Law. 
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where 0Z , 1Z , and 2Z  are functions of ,=~ ~qeQ  ,v  and V . We solve for the value of these parameters 

by setting 0=0Z , 0=1Z , and 0=2Z . 

 

While we are solving for three parameters, Q~ , v  and V , we can represent the equilibria graphically in a 

(Q~ , v ) space. Define VQV ~=~
. In Appendix 1 we show that 0=0Z  implies  

 

 2
21=~ vV αα +  (30) 

 

where 1α  and 2α  are functions of Q~ . Substituting this into the expressions associated with 0=1Z  and 

0=2Z  we obtain  

 

0=3
4

2
321 vhvhvhh +++                                                                (31) 

0=4
5

3
4

2
321 vgvgvgvgg ++++                                                   (32) 

 

where ih  and ig  are functions of Q~ . 

 

We solve numerically for the roots of the third and fourth order polynomials (31) and (32). The 

polynomials represent two schedules that map a given Q~  into v , with possibly multiple solutions. We 

plot these two schedules in a ( Q~ , v ) space with each intersection representing an equilibrium 

combination of Q~  and v . V~ , and therefore V , then follow from (30). 

 

For a given process for tS  a typical parameterization gives 4 equilibria. This is illustrated in Figures 1 and 

2 for respectively 0=m  and 1=m . Schedule (31) is represented by the solid line and (32) by the 

broken line. When 0=m  the variable tS  is a pure sunspot. Figure 1 shows that there is one 

fundamental equilibrium where 0== Vv . The other three equilibria are all sunspot equilibria. The fact 

that for a given process for tS  there are now three sunspot equilibria rather than the single sunspot 

equilibrium we found before is a result of the non-linearity generated by the time-varying interest rate. 

 

In Figure 2, where 1=m , tS  is a fundamental that drives the asset payoffs. There are again 4 equilibria. 

Equilibrium 1 is a pure fundamental equilibrium. As we let 0→m , it converges to Equilibrium 1 in Figure 

1 where 0== Vv . The other three equilibria are all sunspot-like equilibria. As we let 0→m , they 
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converge to the corresponding sunspot equilibria in Figure 1. Figure 3 illustrates the convergence of the 

sunspot-like Equilibrium 2 of Figure 2 to the sunspot Equilibrium 2 of Figure 1 when m  goes to zero. It is 

remarkable that even when we get far away from 0=m , Q~ , v  and V  change very little, especially in 

comparison to the near-zero levels of v  and V  in the fundamental equilibrium. This suggests that even 

when the fundamental role of tS  is important, the impact of tS  on the asset price is dominated by self-

fulfilling shifts in risk. 

 

4. Risk Panics 
 

4.1 Switching across States 
 

Risk panics can happen in equilibria that allow for a switch between low and high risk states. In the 

previous section the economy was either in a fundamental or sunspot-like equilibrium. We now consider 

an equilibrium that allows for switches between a low risk state (indexed by 1, akin to the fundamental 

equilibrium) and a high risk state (indexed by 2 , akin to the sunspot equilibrium). Switching occurs 

through an exogenous Markov process. The probability that we remain in a low risk state next period 

when we are in a low risk state today is 0.5>1p . Similarly, the probability that we remain in a high risk 

state next period when we are in a high risk state today is 0.5>2p . 

 

Equilibria 1 and 2 in Figure 2 are the points to which the low and high risk states converge, respectively, 

in the limit where switching is not possible ( 1= 21 →pp ). When switching is possible, the low risk state 

becomes riskier than the pure fundamental equilibrium 1 in Figure 2. This is because there is now a 

possibility of switching to the high risk state, a switch that implies a significant drop in the equity price. 

Even when the probability of switching is low, the main source of uncertainty in the low risk state becomes 

the possibility of a jump to the high risk state rather than the pure fundamental uncertainty in Equilibrium 1 

of Figure 2.13 Agents take the possibility of switching into account when forming their expectations. 

 

We conjecture that the log equity price in state i  is  

 

 2
,

~= titiiti SVSvqq −+  (33) 

 

As there are two such equations we solve for 6 unknown parameters (3 for each state). This is done by 

imposing equity market equilibrium as before, but separately for both states. We compute the expectation 

                                                 
13  This is similar to what is found in the " rare disaster" literature (e.g., Barro, 2006, Gabaix, 2009) where a small probability of a 

large disaster affects what happens in the no disaster periods. 
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and variance of 1+tQ  taking into account that a switch to a different state is possible. The algebra is 

presented in Appendix 2. 

 

As an illustration, Figure 4 shows the values of iQ~ , iv  and iV  in the low and high risk states for the case 

where 21 = pp . As pointed out above, the two states correspond exactly to Equilibria 1 and 2 of Figure 2 

when 1== 21 pp . Switching equilibria only exist when the probability of remaining in the same state is 

high enough. But when 21 = pp  is higher than this cutoff (sufficiently low probability of switching), the 

difference between the two states quickly becomes very big. A lower probability of switching particularly 

reduces risk in the low risk state (lower values of v  and V ). 

 

A risk panic is a switch from the low to the high risk state. Apart from the spike in risk, the panic also 

entails an increase in the volatility of risk, a sharp drop in the equity price and a shift out of equity (i.e. 

deleveraging when investors initially hold leveraged portfolios). We graphically illustrate these effects in 

Section 6 in an application to the 2008 financial crisis. 

 

4.2 Panics and Fundamentals 
 

It is important to be clear both about the role that fundamentals do and do not play in a panic. First, a 

panic is not caused by a change in fundamentals. It happens for a given level of tS . Second, the 

magnitude of the panic is larger the weaker the fundamental (the more negative tS ). Finally, once a panic 

occurs the asset price becomes much more sensitive to subsequent fluctuations in the fundamental. The 

market becomes on edge regarding any news about tS . 

 

Consider the first point: a panic does not result from a change in the fundamental. As can be seen from 

Figure 4, during the switch to the high risk state the coefficients v  and V  increase, generally by a large 

magnitude. This affects risk and the asset price for a given level of tS . What changes is not tS  itself but 

rather the role that it plays. As we switch to the high risk state, tS  suddenly becomes a key variable 

around which agents coordinate their perceptions of risk. There is a sudden self-fulfilling increase in risk 

with the variable tS  being the focal point for the change in risk perceptions.14 

 

Notice that a risk panic is therefore conceptually distinct from financial accelerator models where the 

impact of shocks is magnified through financial constraints. While small shocks have a large effect in such 

                                                 
14  Even in the low risk state tS  plays to some extent a sunspot role if 1<1p . But this role is generally much stronger in the 

high risk state. In the low-risk state this role only reflects the possibility of switching to the high risk state. 
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models, the mechanism at work is a purely fundamental mechanism. Our framework instead puts the 

coordination of expectations center stage. During the panic asset prices and risk move sharply even 

though the state variable does not change. 

 

Next consider the second point: the magnitude of the panic is larger the weaker the fundamental. To 

illustrate this point, consider the change in the equity price from the low to the high risk state. From (33) it 

follows that the change in the log equity price is  

 

0<)()(~~= 2
1212121,2, tttt SVVSvvqqqq −−−+−−  

 

Since 12 vv −  and 12 VV −  are both positive (see Figure 4), the drop in the equity price is larger the more 

negative is tS  (i.e. the weaker the fundamental). Consider for instance that 0.65== 21 pp . In that case 

a panic lowers the equity price by only 13% when 0=tS , but by 65% when tS  is two standard 

deviations below its unconditional mean of 0 . 

 

In this light a large risk panic can also be viewed as a delayed amplification effect. Consider a 

deterioration of the fundamental (a drop in tS ) when the economy is in the low risk state. The shock 

lowers the equity price through the standard fundamental mechanism, but this impact is relatively small. 

The delayed amplification effect occurs if at some later date there is a switch to the high risk equilibrium. 

At that point, the sunspot role of tS  suddenly surges. The impact of the panic on the asset price is much 

larger than the fundamental impact of tS  in the first stage. We will further illustrate this point in Section 6 

in the context of the recent financial crisis. 

 

Finally consider the last role of the fundamental in a panic: once a panic occurs the asset price becomes 

much more sensitive to subsequent fluctuations in the fundamental. Once we switch to the high risk state, 

the fundamental tS  becomes the focal point around which investors coordinate their beliefs about risk. 

This causes them to react strongly to any change in the variable. A further deterioration can lead to a 

significant further drop in the equity price. Conversely, an improvement in the fundamental becomes a 

significant stabilizing force. In the example above with 0.65== 21 pp , the equity price drops from 100 

to 35 during a panic when the fundamental is two standard deviations below its mean. But when the 

fundamental reverts to it mean, the equity price goes all the way back to 87, even though we are still in 

the high risk state. 
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5. Financial Shocks 
 

We now slightly modify our framework to show that the mechanism of self-fulfilling risk that we stress in 

this paper could explain various aspects of the recent financial crisis. We focus on financial shocks that 

redistribute wealth between households and investors. These shocks fit more closely the storyline of the 

2007-2008 financial crisis where financial institutions experienced large negative shocks to their wealth 

(net worth) connected to mortgage market losses. For convenience, we abstract from aggregate shocks 

in our benchmark analysis, but we show that our results are robust to allowing for aggregate losses. 

Financial shocks that only affect the distribution of wealth impact the relative demand for bonds and 

equity as only investors are present in the equity market. 

 

In addition to their closer link to the financial crisis, financial shocks are interesting as they give rise to 

another type of multiplicity through a circular relationship between risk and market liquidity. This type of 

multiplicity, that we call static multiplicity, has already been identified in the literature, although perhaps 

not in the context of a simple portfolio choice model. It is however distinct from the dynamic multiplicity 

that we identified in previous sections. 

 

We make two changes relative to the model in Section 3.5. First, we assume that asset payoff shocks 

have no persistence ( 0=ρ ). This simplifies the analysis as the wealth of investors is then the only state 

variable. Second, we introduce shocks to the wealth of investors as follows:  

 

 I
tmtm

tI WeW
220.5

, = θθ −−
 (34) 

 

where  

 

 θ
θ εθρθ 11 = ++ + ttt  (35) 

 

and θε 1+t  is a shock with mean zero and variance 2
θσ . Financial shocks only redistribute wealth and leave 

aggregate wealth unchanged: WWW tHtI =,, + . We assume that financial shocks θε 1+t  and asset payoffs 

1+tA  are uncorrelated. Equation (34) ensures that investors' wealth is linear in tθ  up to a quadratic 

approximation: )(1=, tItI mWW θ− . A rise in tθ  implies a drop in the relative wealth of investors. The 

parameter m  allows us to vary the fundamental impact of wealth shocks. If 0=m , tθ  does not affect 

wealth and becomes a pure sunspot. 
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The equity market clearing condition remains the same as (18), but now with time-varying wealth of 

investors:  

 

 )(=)( 11
,

11 ++++ +−+ ttt
tI

tttt AQvar
W

KRQQAE γ
 (36) 

 

The model is solved the same way as in Section 3.5, with a quadratic approximation of the market 

clearing condition around 0=tθ . The details can be found in the Technical Appendix. The asset price is 

again a linear-quadratic function of the state variable:  

 
2~= ttt Vvqq θθ −−  

 

We now examine more closely the two types of multiplicity that arise with financial shocks. 

 

5.1 Static Multiplicity: Interaction between Risk and Liquidity 
 

The static multiplicity generated by financial shocks is linked to the concept of market liquidity. It is most 

clearly illustrated by assuming that the state variable tθ  shows no persistence ( 0=θρ ) so the model 

essentially becomes a static setting. Risk is then constant as the current state variable has no effect on 

the future asset price. 

 

Market liquidity is related to the price impact of asset demand shocks. Liquidity is low when shocks have 

a large impact on either the price or the expected excess payoff of the asset. The two are related as a 

larger change in the equilibrium expected excess payoff requires a larger adjustment of the current price. 

For our purposes it is convenient to define liquidity as the impact of wealth shifts on the expected excess 

payoff:15  

 

 
tI

ttttt

W
QRQAE

,

111 )(
∂

−+∂ +++  (37) 

 

A reduction in the wealth of investors (a higher tθ ) lowers the demand for equity. The expected excess 

payoff on equity then needs to increase to bring investors back into the market. The more it increases, the 

more negative (37) is and the lower liquidity. Differentiating the equity market clearing condition (36), 

liquidity is equal to:  

 

                                                 
15  See Amihud et al. (2005) and Vayanos and Wang (2009) for surveys of various liquidity measures. 
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 2
,

11 )(

tI

ttt

W
AQKvar ++ +

−
γ

 (38) 

 

Liquidity is low ((38) is more negative) when risk is high or wealth is low. High risk implies that equity is 

unattractive and investors take a small position in the equity market. With a limited exposure to the equity 

market, investors respond less to changes in the expected excess payoff on equity. Larger changes in the 

expected excess payoff are then necessary to clear the equity market, so liquidity is low. Similarly, lower 

wealth means that less money is on the line in the equity market. Larger changes in the expected excess 

payoff are then needed to clear the market.16 

 

The model implies a circular relationship between risk and liquidity. High risk implies that investors hold a 

small portfolio share in equity. The equity market is then thin and liquidity low. Low liquidity in turn implies 

a large price impact of asset demand shocks, so that risk is indeed high. This circular relationship leads to 

two equilibria for 0=θρ . This is illustrated in Figure 5, which represents schedules (31) and (32). Apart 

from wealth shock parameters, the parameterization is the same as used in Figures 1 and 2. Equilibrium 

1 is the low risk equilibrium, where v  and V  are close to zero, while Equilibrium 2 is the high risk 

equilibrium. 

 

The static multiplicity is closely related to multiple equilibria in limited participation models such as 

Pagano (1989), Allen and Gale (1994) and Jeanne and Rose (2002). 17  In these models there are 

relatively few agents in the market in the high risk equilibrium. Liquidity is then low and risk high. The 

opposite is the case in the low risk equilibrium. Even though we do not allow agents to enter or exit the 

market, investors' exposure to equity is lower when risk is high. 

 

While the static multiplicity has been recognized in the literature, its appeal is limited for two reasons. First, 

risk is constant within each equilibrium (low- and high risk), which is empirically not satisfactory. Second, 

the static multiplicity arises only for financial shocks, but not for shocks on asset payoffs for instance. With 

transitory asset payoff shocks, the only equilibrium is the fundamental one where the asset price and risk 

are constant. 

 

                                                 
16  When 0>θρ  there will be an extra term in (38) associated with time-varying risk. It is equal to 

])/(][/[ ,11, tIttttI WAQvarWK ∂+∂ ++γ . When a drop in wealth raises risk, it requires an even larger increase in the 

expected excess payoff to clear the market. 
 
17  There are other examples of static multiplicity with different levels of risk in other contexts. See for example McCafferty and 

Driskill (1980) or Bacchetta and van Wincoop (2006). 
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5.2 Dynamic Multiplicity: Sunspot and Sunspot-Like Equilibria 
 

The dynamic multiplicity that arises when 0>θρ  is the focus of the paper. It is illustrated in Figure 6, 

which uses the same parameterization as Figure 5 except that we set 0.4=θρ . Panel A shows results 

for 2=m  and Panel B for 0=m . In both panels Equilibrium 1 is the fundamental equilibrium. The other 

equilibria in Panel A are all sunspot-like equilibria, which converge to the corresponding pure sunspot 

equilibria in Panel B when 0→m . These equilibria again exhibit self-fulfilling shifts in risk, which are now 

coordinated around the variable tθ . The dynamic multiplicity can thus generate time-varying risk. 

 

Even though the fundamental shock is now different from earlier sections, the sunspot-like equilibria in 

Panel A are quite similar to those in Figure 2 for the asset payoff shocks. The reason for this similarity is 

the dominance of the sunspot aspect of the variable. Any macro variable can play this role, irrespective of 

the particular role that is plays as a fundamental within the model. 

 

6. Application to 2007-2008 Financial Crisis 
 

This section uses our setting to shed light on the 2007-2008 financial crisis. After presenting some basic 

financial data, we simulate the model and show that it generates an outcome qualitatively similar to what 

happened during the crisis. It should be emphasized that there are many important aspects of the recent 

crisis that are well beyond the scope of this paper. To the extent that our model is applicable in shedding 

light on the crisis, it is primarily in the context of the self-fulfilling shifts in risk perceptions that are the 

focus of this paper. We take the accumulating financial losses of leveraged investors as given (reflected 

in the financial shocks) and focus on the implications for the dynamics of risk, leverage, liquidity and asset 

prices. 

 

6.1 Dynamics of Risk, Leverage, Liquidity, and Asset Prices 
 

The crisis came in the form of a one-two punch. The first part is the relatively calm period from the 

beginning of 2007 until September 2008. The second part is the financial panic that started in September 

2008. The panic peaked by the end of 2008 and it took several quarters for the situation to return to a 

more normal state. Using data for the United States, we focus on the following variables: (1) stock prices, 

(2) T-bill rate, (3) equity price risk, (4) volatility of risk, (5) net worth of leveraged institutions, (6) leverage, 

and (7) market liquidity. Stock prices are measured by the DJ U.S. total stock market index. Risk is 

measured as the CBOE SPX volatility VIX index. Volatility of risk is the standard deviation of the VIX 

index over the past 30 days. Net worth and leverage are based on U.S. brokers and dealers as reported 

by the Federal Reserve Flow of Funds. Market liquidity is difficult to measure in the data as it is a 

theoretical concept that does not have a straightforward empirical counterpart. We construct a measure 
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similar to Amihud (2002) which, of different market liquidity measures, correlates the most with estimates 

of price impact computed using very high-frequency data (see Goyenko et al., 2009). Starting with 

individual stocks, we compute the average absolute daily stock price change over a month per dollar of 

daily trading volume. This is then averaged over 100 stocks from the S&P index.18 A high value of our 

measure indicates low market liquidity. It is therefore a measure of illiquidity. 

 

The dynamics of the variables during the crisis are illustrated in Figure 7. The vertical line represents the 

collapse of Lehman Brothers on September 15, 2008, which we consider to be the start of the financial 

panic. After a modest decline in stock prices and a small increase in risk during the tranquil period of the 

crisis, stock prices suddenly crashed and risk spiked in September 2008. The volatility of risk also shot up, 

while it showed no trend in the first stage. A flight to quality lowered the T-bill rate to near zero. Net worth 

gradually declined after mid 2007 until the third quarter of 2008, to quickly recover after the crisis. 

Financial leverage first rose significantly during the tranquil period, and then fell sharply during the panic 

stage. Finally, liquidity fell modestly during the tranquil part of the crisis, followed by a sharp drop in 

liquidity during the panic and then a return back to normal by mid-2009. 

 

6.2 Model Simulation 
 

We illustrate the dynamics of the variables in the model, and relate them to the recent crisis, using the 

two-state switching equilibrium as described in Section 4. The parameters are shown at the bottom of 

Figure 8. The main results are robust to the precise parameter values chosen, as discussed below. We 

set 0.95=1p  and 0.7=2p . This ensures that the high risk state occurs much less frequently than the 

low risk state, as the economy spends only 14% of the time in the high risk state. Panics of a large 

magnitude are even less frequent because they require not only a switch to the high risk state but also a 

very weak fundamental. 

 

The parameterization is chosen to make sure that investors are substantially leveraged. Investors' initial 

equity holdings are four times their net worth (wealth), and are financed by borrowing from households 

through bonds. High leverage is characteristic of most financial institutions. We therefore also refer to the 

investors as leveraged financial institutions.19 

                                                 
18  We are grateful to Giorgio Valente for providing us with the updated measure. Holding period returns and volumes are from 

Reuters Datastream. To deal with stationarity, in the spirit of Acharya and Pedersen (2005) the illiquidity measure is multiplied 
by the ratio of the aggregate volume for all stocks in the sample at the end of a month to the same aggregate volume at the 
beginning of the sample. 

 
19  While leverage is less than seen in the data for brokers and dealers, our investors should be seen as an aggregate of all 

investors. A possible refinement is to consider two sets of investors with different degrees risk aversion. A first group of " long" 
investors with a relatively high risk aversion would not be leveraged, while the second group with low risk aversion would be 
the " leveraged" investors. This would connect somewhat closer to reality, but would not fundamentally change any of the 
results. The basic market clearing equation (18) would be similar with two groups of investors. The only difference is that the 

ratio γ/,tIW  would be replaced by a risk-aversion weighted wealth )//( ,, NLtNLLtL WW γγ + , where the subscripts L  

and NL  stand for respectively leveraged and non-leveraged investors. 
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We simulate the model over 16 periods, which we interpret as quarters. We do no make any attempt to 

match the process of financial losses in the data, but instead illustrate the drivers of the model through a 

simple step function for tθ , along with a simple switching between low and high risk states. The dynamics 

of tθ are illustrated through the wealth of investors, which follows the same path, in the first chart of 

Figure 8. The economy is initially in a low risk state with tθ  at its unconditional mean of zero. tθ  rises 

from 0 to 0.3 in period 2, which we can think of as Q1 2007 when the losses of leveraged institutions on 

mortgage securities became apparent, leading to a reduction of their the wealth. This situation lasts until 

period 8, which we can think of as Q3 2008, where the economy switches to the high risk state. It stays in 

that situation until period 11 (Q2 2009) when tθ  falls back to zero thanks, for example, to a 

recapitalization of leveraged institutions. The economy reverts back to the low risk state in period 14 (Q1 

2010). 

 

These dates are not meant to match the exact length of the panic or the period of financial weakness of 

leveraged financial institutions. Our focus is instead to highlight the separate roles of the financial health 

of leveraged institutions and the specific risk state. This is done by considering all possible combinations 

of financial health (normal versus bad) and the state (low risk, high risk) in order to evaluate the specific 

contribution of both elements. 

 

The simulation is presented in Figure 8. Periods during which tθ  changes are marked by vertical dotted 

lines, while the shaded area denotes the time spent in the high risk state. The wealth of investors follows 

the overall pattern seen in the data for brokers and dealers in Figure 7, although the deterioration of the 

net worth of financial institutions was obviously more gradual in the data. The other panels show the 

paths of the equity price, risk, the volatility of risk, interest rate, leverage and illiquidity. The stock price 

(normalized at 100 initially) and gross interest rate are tQ  and 1+tR . Risk is measured as the standard 

deviation of tt QQ /1+ , taking into account the possibility of switching to another state. The volatility of risk 

is the standard deviation at time t  of our risk measure at 1+t .20 Leverage is equal to the share of equity 

in investors' portfolio, tα . Finally, illiquidity is measured as the absolute value of the derivative of the log 

equity price with respect to tθ . This connects well to the Amihud measure used in the data, which is also 

meant to capture the price impact of shocks. Results are very similar when illiquidity is defined as the 

impact of tθ  on the expected excess payoff, as in Section 5.1. 

 

                                                 
20  In computing the volatility of risk, we assume that we remain in the same state the next period. This makes it more consistent 

with the data, where it is measured as the volatility of risk over the past 30 days, which usually captures volatility within the 
same state. 
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During the tranquil part of the crisis the shift in wealth away from leveraged financial institutions reduces 

demand for equity and therefore its price. It also leads to a decline in liquidity (see Section 5.1), which 

increases risk and reduces the equity price further. Nonetheless Figure 8 shows that these effects are all 

quite modest. The only large change is leverage, which almost doubles. While the small increase in risk 

reduces leverage, this is more than offset by an increase in the expected excess return due to the lower 

equity price.21 

 

The second stage of the crisis, when the economy shifts into the high-risk stage, is characterized by a 

surge in risk and its volatility. This prompts a sharp reduction in the equity price and leverage. The drop in 

leverage in turn dries up liquidity in the equity market. The switch to bonds leads to a sharp drop in the 

interest rate. 

 

An important message from Figure 8 is that a large surge in risk requires two ingredients, either one of 

which alone is not sufficient. First, there needs to be a self-fulfilling risk panic (switch to the high risk state). 

Second, the fundamental around which the market perceptions of risk coalesce (net worth of leveraged 

institutions) must be weak. A deterioration of the macro fundamental alone is not enough to generate a 

surge in risk. Even though the net worth of leveraged institutions drops by more than 50% during the first 

stage of the crisis, risk remains relatively modest. A switch to the high risk state by itself is not enough 

either. Risk is restored slightly below its pre-panic level in period 11, when we are still in the high risk 

state but the leveraged institutions are recapitalized. 

 

While the simple exercise we have conducted here is not meant to match precise data, the overall pattern 

in these variables is broadly in line with the data in Figure 7. During the pre-panic state of the crisis the 

impact on the equity price, risk and liquidity is quite modest in both the data and the model. The 

substantial increase in financial leverage during this period is also consistent with that in the model. Then, 

during the switch to the panic state the model accounts for the sharp drop in the equity price, financial 

leverage, and market liquidity and the sharp increase in risk. 

 

The volatility of risk also behaves similarly to that in the data. It surges together with risk during the panic 

and later on declines with the fall in risk itself. This joint behavior of risk and the volatility of risk is a critical 

element of the model, as discussed in Section 2.1. Risk spikes in the model only because future risk 

becomes more uncertain. 

 

6.3 Sensitivity Analysis 
 

Self-fulfilling shifts in risk occur as long as the asset price is negatively affected by risk about the future 

asset price. One might therefore expect the findings in the simulation above to apply much more broadly 

                                                 
21  The model does not account for the drop in the interest rate prior to the panic as that is largely related to monetary policy. 
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than for the particular model assumptions and parameterization underlying Figure 8. We confirm this 

through a variety of sensitivity analysis that we summarize here, with the details given in the Technical 

Appendix. 

 

We first check that the results in the simulation exercise presented in Figure 8 are robust to alternative 

parameter values. This is done by halving and doubling most parameters. The results remain qualitatively 

intact for all alternative parametrizations. In particular, a risk panic leads to a sharp increase in risk and 

the volatility of risk, and a large decrease in the equity price, market liquidity and leverage. The precise 

magnitudes are certainly sensitive to parameterization. In particular, the size of the risk panic is larger the 

smaller η , ρ , γ , and m  and the larger W−ν . 

 

Second, we assess how the specifics of the model affect the results. We have already seen that the 

nature of the fundamental around which risk panics are coordinated is not critical to the results, as shocks 

to asset payoffs also lead to multiple equilibria and risk panics. Another modeling aspect is the 

assumption that financial shocks redistribute wealth between investors and households, with no 

aggregate loss. We consider an alternative where the wealth loss for investors is not offset by a gain for 

households and find that the results remain very similar. Lastly, we abstracted from any feedback of the 

asset price to wealth. We include this aspect in our OLG setting by assuming that some of the 

endowment when born consists of trees. This amplifies the risk panic. For example, when 29% of the 

wealth is subject to asset price shocks (in the low risk state at 0=tθ ), we find that the feedback effect 

from the asset price to wealth increases the magnitude of risk panics, with risk spiking from 26% during 

the tranquil part of the crisis all the way to 129% at the height of the panic. 

 

Finally, we check the robustness with respect to the approximation in the solution method. This is done by 

considering a cubic approximation of the market clearing condition instead of a quadratic one. The 

simulation results are not substantially affected, providing confidence that the precision of the 

approximation method is not critical to the results. 

 

7. Conclusion 
 

Motivated by several recent crises that have shown very large spikes in risk without correspondingly large 

shifts in fundamentals, we develop a theory for self-fulfilling shifts in risk. These shifts can occur when the 

asset price depends negatively on the perceived risk of the future asset price. Risk associated with 

tomorrow's asset price then depends on uncertainty about risk tomorrow. This dynamic mapping of risk 

into itself gives rise to the possibility of self-fulfilling shifts in risk. 

 

Although a risk panic occurs without any change in fundamentals, it has a larger impact the weaker the 

macro fundamental on which agents coordinate their perceptions of risk at the time of the panic. The 
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sharp increase in risk and accompanying volatility of risk in turn give rise to a large drop in the asset price, 

decreased leverage and reduced market liquidity. The model can generate a two-stage crisis, where a 

deteriorating fundamental at first generates a modest impact on risk, asset prices and market liquidity, 

followed later on by a panic stage with much larger movements as the weak macro fundamental suddenly 

becomes the focal point for a self-fulfilling spike in risk. This matches the developments during the 2007-

2008 financial crisis. 

 

Our findings open up several directions for future research. First, the equilibria that we have identified can 

be found in any model where the actions of agents depend on the risk of an endogenous variable. While 

we have focused on asset markets, the same may be the case for example in goods and labor markets. 

The issue is also not limited to prices. We could replace Q  with any other variable that depends on risk 

associated with its future level. This could for example be output. It is well-known that reduced uncertainty 

about the future economic environment is good for business today (e.g. see Bloom, 2009). 

 

Another direction for future research is to consider multiple assets. In our entire analysis there is only one 

risky asset. This should therefore be interpreted as the market portfolio of risky assets, which could be a 

country-wide or even a global equity index. A natural question is what the implications are for stocks of 

individual firms. Closely related, in an open economy context one would like to know whether all countries 

will be affected by a risk panic or whether it could be contained to a limited number of countries. This 

question relates to the widely discussed issue of financial contagion and is analyzed in Bacchetta and van 

Wincoop (2010). 

 

A final direction for further research pertains to financial crises. We have kept the model as simple as 

possible to focus on the role of self-fulfilling risk shifts. A natural question is how this interacts with other 

elements that we have ignored for convenience. A non-exhaustive list includes financial constraints on 

leveraged institutions (borrowing constraints, value at risk constraints), the possibility of default and 

associated bank runs, and the interaction between the financial crisis and real economic activity. 

Moreover, a crucial issue is the policy recommendation that arises from our analysis. In Bacchetta et al. 

(2010) we examine the role of leveraged institutions in the context of our model. We find that, despite 

their stabilizing role in normal times, less risk averse leveraged institutions increase the magnitude of risk 

panics. We conclude that a policy making financial institutions more risk averse, or more prudent, could 

substantially reduce volatility. 
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Figure 1. Sunspot Equilibria* 
 

 
* 1;0;2;4;4.0;4.0;1;1.0;3.0 ========−= KmWWA Iγρσηυ  

 
Figure 2. Sunspot-Like Equilibria* 
 

 
* Parameters are as in Figure 1 except that m = 1. 
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Figure 3. Solution as Function of m (Equilibrium 2)* 
 

 
* Parameters are identical to those in Figure 1. 

 
Figure 4. Switching Equilibria* 
 
solid=low risk state; broken=high risk state 

 
* This is based on the parameters of Figure 2. When p1=p2=1, the high and low risk states correspond exactly to equilibria 1 and 2 

in Figure 2. 
 



 

 31

Hong Kong Institute for Monetary Research       Working Paper No.28/2010 

Figure 5. Equilibria with Financial Shocks: No Persistence*  
 

 
* 1;2;2;4;0;4.0;4.0;1;1.0;3.0 =========−= KmWWA Iγρσσηυ θθ

 

 

 

Figure 6. Sunspot and Sunspot-Like Equilibria with Financial Shocks*  
 

 
* Panel A assumes ρθ=0.4, m=2. Panel B assumes ρθ=0.4, m=0 ; otherwise the parameters are the same as in Figure 5. 
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Figure 7a. Stock Prices, Interest Rate, and Risk 
 
vertical lines = Lehman Brothers bankruptcy (Sept. 15, 2008) 

 
Source: Datastream, daily data. Stock prices are the DJ U.S. total market price index (January 1, 2007 = 100). The interest rate is 

the U.S. 3 month Treasury bill. The risk measure is the CBOE SPX volatility VIX index. The volatility of risk is the 30 days 
standard deviation of the VIX index.  
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Figure 7b. Net Worth, Leverage and Illiquidity 
 

 
Source: Data on brokers and dealers from the Fed＇s Flow of Funds (L.129); net worth is assets minus liabilities, billion US $; 

leverage is net worth divided by assets. The illiquidity measure is an updated measure of Amihud (2002). The vertical lines 
represent Q3 2008 for the quarterly net worth and leverage series and September 2008 for the monthly illiquidity series.  
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Figure 8. Model Simulation* 
 
shaded area = high risk equilibrium; vertical lines = endowment shock 

 
* The economy starts in the low risk equilibrium. At time 2 the endowment of investors falls from 6 to 2.8. The economy stays in the 

low risk equilibrium until time 8, at which point is shifts to the high risk equilibrium. At time 11 endowments shift back towards the 
initial allocation. The economy remains in the high risk equilibrium until time 14, at which points it shifts back to the low risk 
equilibrium. 

 
7.0;95.0;20;2;6;1;7.0;1.0;1.0;200;190;15.0 21 ===========−= ppKmWWA Ia γρσσηυ θθ
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Appendix 1. Numerical Solution of Model in Section 3.5 
 

In this Appendix we describe the solution of the equilibria in the version of the model in Section 3.5. We 

take a quadratic approximation of the market clearing condition around 0=tS . Before doing so, we first 

need to compute the expectation and variance of 11 ++ + tt AQ . From the conjecture (28) we have 

 

 
2~= tVStvS

t eQQ −
 (39) 

 

where qeQ
~

=~
. A quadratic approximation around 0=tS  gives  

 

 ))0.5((1~= 22
ttt SvVvSQQ +−++  (40) 

 

For consistency we now also model the asset payoff in logs: 220.5)(=)( ttt SmmSAlnAln −+ . This 

specification implies that a quadratic approximation of tA  around 0=tS  is )(1= tt mSAA + . Using 

these quadratic approximations of tQ  and tA  at 1+t  and then substituting 11 = ++ + ttt SS ερ  gives  

 

( )+++−+++ ++ ))(0.5(1~=)( 2222
11 σρρ ttttt SvVSvQAQE  

 tSAmA ρ+                                                                               (41) 

 ( ) ++−++ ++
2222

11 )20.5(~=)( σρ ttt SvVvQAQvar  

 ( ) mSvVvAQAm t
22222 )20.5(~2 σρσ +−++                        (42) 

 

Here we have simplified slightly by adopting approximation 22
1 =σε +t  or 0=)( 2

1+tvar ε . This holds 

exactly in a simple distribution where tε  can only take on the values σ−  and σ+ . More generally, it is 

frequently adopted as a continuous time approximation. Under a normal distribution the variance of 2
1+tε  

is 42σ , which is a small fourth-order term. Dropping this small term makes it easier to represent the 

equilibria graphically. 

 

Substituting these results into the market clearing condition (27) and taking a quadratic approximation 

around 0=tS  gives an equation of the form (29). Setting the coefficients 0Z , 1Z  and 2Z  equal to zero, 

we obtain respectively  
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 =~1~)(1)0.5(~~ 222
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+−++ QKQWvVQQAW
η

ν
η

σ  

mvAQKKvQAKm 2222222 ~2~ σσσ ++  (43) 

++−+−−− 222 )0.5(~4=)~21)(1(~ ρσρ
η

ν
η

ρ vVvQKAWmQKWvQW  

mvVAQK 22 )0.5(~4 ρσ+−  (44) 

=)(~21)0.5)((1)0.5( 2222
⎥
⎦

⎤
⎢
⎣

⎡
+−−+−−−+− vVQKvVWvVW

η
ν

η
ρ  

2222 )0.5(~4 σρvVQK +−  (45) 

 

Here we define γ/= IWW . 

 

The strategy is as follows. For a given value of Q~  we first solve VQ~  from (43) as a quadratic function of 

v . We substitute the result in (44) and (45). This gives respectively a third and fourth order polynomial in 

v  that needs to be solved numerically. This leads to two schedules that map Q~  into v  (possibly multiple 

values of v ) that can be graphed. Equilibria are the points where these schedules intersect. 

 

From (43) we can solve  

 

 2
321=~ vvVQ ααα ++  (46) 

 

where  

 

W
mAKQKQWQA

22
2

21
~1~)(1~1= −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−+
η

ν
ησ

α                                   (47) 

W
mAQK ~2=2 −α  (48) 

W
KQQ

2

3

~~0.5= −α  (49) 

 

From (44) we have  

 

 0=]~[]~[ 65
3

4
2

321 vVQVQvvv ββββββ +++++  (50) 
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where  

 

 mAW ρβ =1  (51) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− KQWQW ~21)(1~=2 η

ν
η

ρβ                                                 (52) 

 mAQK 2
3

~2= ρσβ −  (53) 

 22
4

~2= ρσβ QK−  (54) 

 mAK 2
5 4= ρσβ  (55) 

 2
6

~4= ρσβ QK  (56) 

 

Finally, (45) can be written as  

 

 0=]~[]~[]~[ 2
6

2
54

4
3

2
21 vVQVQVQvvv λλλλλλ +++++  (57) 

 

where  

 

 0=1λ  (58) 

  22
2

~21)(~0.51~0.5= QKWWQWQW
η

ν
η

ρλ −−−                                     (59) 

 222
3

~= σρλ QK−  (60) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−− KQWW ~21)(1= 2

4 η
ν

η
ρλ  (61) 

 22
5 4= σρλ K−  (62) 

 22
6

~4= σρλ QK  (63) 

 

Substituting (46) into (50), we have  

 

0=3
4

2
321 vhvhvhh +++                                                          (64) 

 

where  

 

1511 = αββ +h  (65) 
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 251622 = αβαββ ++h                                                            (66) 

 263533 = αβαββ ++h                                                            (67) 

 3644 = αββ +h  (68) 

 

Substituting (46) into (57), we have  

 

0=4
5

3
4

2
321 vgvgvgvgg ++++                                                   (69) 

 

where  

 
2
15141 = αλαλ +g                                                                                   (70) 

2152412 2= ααλαλλ ++g                                                                     (71) 

2
25163153423 2= αλαλααλαλλ ++++g                                             (72) 

263254 2= αλααλ +g                                                                            (73) 

36
2
3535 = αλαλλ ++g                                                                           (74) 

 

Equations (64) and (69) are third and fourth order polynomials that we solve numerically. The solutions 

map Q~  into v . There may be multiple solutions (multiple v  for a given Q~ ). We then plot these two 

schedules in a space with v  on the vertical axis and Q~  on the horizontal axis, as in Figures 1-2. There is 

an equilibrium when the two schedules intersect. The precise equilibria can be found by solving (43)-(45) 

numerically in Gauss as a fixed point problem in v , V  and Q~ . We choose starting values that are close 

to the equilibria found through visual inspection of where the two schedules intersect. Visual inspection 

gives approximate values for Q~  and v . The corresponding value for V  follows from (46). 
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Appendix 2. Solving the Switching Equilibria 
 

We now consider the equilibria in Section 4 of the paper where we allow for a switch between a low and 

high risk state. 1p  ( 2p ) is the probability that next period we will be in the low (high) risk state when this 

period we are in the low (high) risk state. The log equity prices in the low and high risk states are 

 
2

111
risk low ~= ttt SVSvqq −+                                                           (75) 

2
222

riskhigh ~= ttt SVSvqq −+                                                         (76) 

 

Assume that currently we are in the low risk state at time t . Analogous to (41), the expectation of 

11 ++ + tt AQ , conditional on being in a low risk state in 1+t , is  

 
2

3,2,1,111 =)1|( tlowtlowlowttt SaSaalowistAQE ++++ +++  

 

where AQa low ++ )(1~= 2
111, σω , ρρ AmvQa low +112,

~= , 2
113,

~= ρωQa low  and 2
111 0.5= vV +−ω . 

Similarly, the expectation of 11 ++ + tt AQ  conditional on being in the high risk state at 1+t  is  

 
2

3,2,1,111 =)1|( thighthighhighttt SaSaahighistAQE ++++ +++  

 

where AQa high ++ )(1~= 2
221, σω , ρρ AmvQa high +222,

~= , 2
223,

~= ρωQa high  and 2
222 0.5= vV +−ω . 

 

The expectation of 11 ++ + tt AQ  is then  

 

 )( 11 ++ + ttt AQE  

)1|()(1)1|(= 11111111 highistAQEplowistAQEp tttttt ++−+++ ++++++  

 2
3,2,1,= tlowtlowlow SdSdd ++  (77) 

 

where highilowilowi apapd ,1,1, )(1= −+ , 1,2,3=i . 

 

The variance of 11 ++ + tt AQ  is  
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2
11

2
1111 ))(()(=)( ++++++ +−++ tttttttt AQEAQEAQvar                                  (78) 

 

Dropping terms in tS  that are third and higher order, (77) gives  

 

 2
3,1,

2
2,2,1,

2
1,

2
11 )2(2=))(( tlowlowlowtlowlowlowttt SdddSdddAQE ++++ ++  (79) 

 

Next consider 2
11 )( ++ + ttt AQE . Conditional on being in a low risk state at 1+t , we have  

 

 14,
2

3,2,1,11 = +++ ++++ tlowtlowtlowlowtt aSaSaaAQ ε  (80) 

 

where AmSvQa tlow ++ )2(~= 1114, ρω . Using the definition of lowa4, , we then have  

 

 2
,3,21,

2
11 =)1|)(( lowtlowtlowttt SbSbblowistAQE ++++ ++  (81) 

 

where 22
11

2
1,1, )~(= σAmvQab lowlow ++ , 2

11112,1,2, )~(~42= ρσωAmvQQaab lowlowlow ++ , and 

222
1

2
13,1,

2
2,3,

~42= σρωQaaab lowlowlowlow ++ . Similarly, conditional on being in a high risk state at 1+t  we 

have  

 

 2
3,2,1,

2
11 =)1|)(( thighthighhighttt SbSbbhighistAQE ++++ ++  (82) 

 

Here highib ,  ( 1,2,3=i ) is defined analogously to lowib ,  with subscripts low  replaced by high  and 

subscripts 1 for Q~ , v  and ω  replaced by 2. This implies that in the low risk state at t :  

 

 2
3,2,1,

2
11 =)( tlowtlowlowttt ScSccAQE +++ ++  (83) 

 

where highilowilowi bpbpc ,1,1, )(1= −+ , 1,2,3=i . 

 

It follows that  

 

( ) ( ) tlowlowlowlowlowtt SddcdcAQvar 2,1,2,
2

1,1,11 2=)( −+−+ ++  

( ) 2
3,1,

2
2,3, 2 tlowlowlowlow Sdddc −−+                                          (84) 
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Finally, a quadratic approximation around 0=tS  of 1+tt RQ  gives  

 

 2
3,2,1,1 = tlowtlowlowtt SeSeeRQ +++  (85) 

 

 where [ ] 111,
~~)(1= QQKWe low +−ν

η
, [ ] 1112,

~~2)(1= vQQKWe low +−ν
η

 and 

[ ] 1
2
11113,

~)(~2)(1= QvVQKWe low +−+− ων
η

. 

 

Substituting these results into the market equilibrium condition (27), and taking a second order 

approximation around 0=tS , again gives (29). Setting 0=0Z , 0=1Z  and 0=2Z  gives respectively 

  

)(=)( 2
1,1,1,1, lowlowlowlow dcKedW −−                                                            (86) 

)2(=)( 2,1,2,2,2, lowlowlowlowlow ddcKedW −−                                                 (87) 

)2(=)( 3,1,
2
2,3,3,3, lowlowlowlowlowlow dddcKedW −−−                                      (88) 

 

All of this is conditional on being in the low risk state at t . We can similarly impose market equilibrium 

conditional on being in the high risk state at t . Define highic ,  and highid ,  ( 1,2,3=i ) the same as lowic ,  

and lowid , , with 1p  replaced by 21 p− . Also define highie ,  ( 1,2,3=i ) the same as lowie , , with the 

subscripts 1 for Q~ , v , V  and ω  replaced by subscripts 2. Then imposing market clearing we get three 

equations analogous to (86)-(88) with the subscripts low  replaced by high . Solving these six equations 

jointly gives the solutions for 1
~Q , 2

~Q , 1v , 2v , 1V  and 2V . This is done numerically in Gauss, using as 

starting values the solutions for equilibria 1 and 2 without switching. 

 
  

 


