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Abstract 
 

Right-tailed unit root tests have proved promising for detecting exuberance in economic and financial 

activities. Like left-tailed tests, the limit theory and test performance are sensitive to the null hypothesis 

and the model specification used in parameter estimation. This paper aims to provide some empirical 

guidelines for the practical implementation of right-tailed unit root tests, focusing on the sup ADF test of 

Phillips, Wu and Yu (2011), which implements a right-tailed ADF test repeatedly on a sequence of 

forward sample recursions. We analyze and compare the limit theory of the sup ADF test under 

different hypotheses and model specifications. The size and power properties of the test under various 

scenarios are examined in simulations and some recommendations for empirical practice are given. 

An empirical application to Nasdaq data reveals the practical importance of model specification on test 

outcomes. 
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1. Introduction 
 

In distinguishing between two hypotheses, such as a unit root null and a stationary alternative, results are 

often sensitive to model formulation. In effect, the maintained hypothesis or technical lens through which 

the properties of the data are explored can influence outcomes in a major way. Formulating a suitable 

maintained hypothesis is particularly difficult in the presence of nonstationarity because of the different 

roles that parameters can play under the null hypothesis of a unit root and the alternative of stationarity. 

Many of these issues of formulation have already been extensively studied in unit root testing. 

 

Suppose, for example, that the null hypothesis is that the data is difference stationary and the alternative 

is that the data is stationary. If we run the ADF regression 

 

( ) ,0,,=: 2

1=
11 σεεφβ

iid

ttiti

k

i
tt yyyR ~+∆+∆ −− ∑                                          (1) 

 

and test the null 0=β  against the alternative 0<β , we also (implicitly) assume that the mean of ty  is 

zero under the alternative. Under this lens any evidence of a non-zero mean in the sample is likely to be 

interpreted as evidence in favor of the null and the test procedure tends to have poor power. A more 

suitable lens allows for a non zero mean in ty  under the alternative through the regression  

 

( ) ,0,,=: 2

1=
12 σεεφβα

iid

ttiti

k

i
tt yyyR ~+∆++∆ −− ∑                                      (2) 

 

even though α  is zero under the null. Similarly, if the null is difference stationarity and the alternative 

trend stationarity, then the regression model (2) will be inappropriate because an empirical trend may be 

misinterpreted as evidence of a unit root, leading to the augmented formulation  

 

( ) ,0,,=: 2

1=
1103 σεεφβαα

iid

ttiti

k

i
tt yytyR ~+∆+++∆ −− ∑                                 (3) 

 

where we can test the null 0=β  against the alternative 0<β , even if 0=1α  under the null. Use of the 

maintained hypothesis 3R  allows for both a unit root with drift ( 0=0 /α  and 0)=1α  under the null and 

trend stationarity ( 0=0 /α  and 0)=1 /α  under the alternative. Similar issues, of course, arise with more 

complex maintained hypotheses that allow for trend breaks and other deterministic components. The 
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regression model of a left-tailed unit root test (against stationary or trend stationary alternatives) needs to 

nest the alternative hypothesis.1 

 

Right-tailed unit root tests are also of empirical interest, particularly in detecting exuberance in financial 

markets or mildly explosive alternatives (Diba and Grossman, 1988; Hall, Psaradakis and Sola, 1999; 

Phillips, Wu and Yu, 2011, PWY hereafter). With these right-tailed tests, there are related issues of model 

formulation. The present work examines appropriate ways of formulating empirical regressions when the 

null hypothesis is difference stationarity and the alternative is a mildly explosive process (Phillips and 

Magdalinos, 2007) of the type  

 

( ) ,0, and 1= with =: 2
1 σεδεδ θ NcTyyH

iid

tTttTtA ~−
− ++                             (4) 

 

where 0>c , ( )0,1∈θ  and T  is the sample size. AH  is formulated with a zero intercept since a non-

zero intercept produces a dominating deterministic component that has an empirically unrealistic 

explosive form (Phillips and Yu, 2009). Similar characteristics apply in the case of inclusion of a 

deterministic trend term in AH . Since these forms are unreasonable for most economic and financial 

time series, the model (4) is formulated without an intercept or a deterministic trend. 

 

Suppose we run 1R  to investigate evidence for mildly explosive behavior as in (4). Analogous to the 

effects in a left-tailed unit root test, in a regression of the form 1R  any evidence of non-zero mean in ty∆  

may be misjudged as evidence in favor of the alternative - in this case, mildly explosive behavior. To 

elaborate, consider the following cases where under the null the mean of ty∆  is not necessarily zero:  

 

( ) ,0,,=: 2
101 σεε NyyH

iid

tttt ~+−                                                                               (5) 

( ) ,0,and1/2>0,> with =: 2
102 σεηεη NdydTyH

iid

tttt ~++ −
−                           (6) 

( ) .0,and0~with ~=: 2
103 σεαεα NyyH

iid

tttt ~≠++ −                                              (7) 

 

In all three specifications, ty  is (asymptotically) difference stationary. The mean of ty∆  in 01H  is zero. In 

02H , ty∆  has a local-to-zero mean (i.e η−dT ) which is of order of ),( η−TO  while in 03H  the time series 

ty∆  has a non-zero constant mean and ty  is a stochastic trend with deterministic linear drift. Now 

suppose that the true null model under a right-tailed unit root test is 02H  or 03H  and the regression 

                                                 
1  Similar arguments can be found in Dickey, Bell and Miller (1986) and Davidson and MacKinnon (2004). 
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model is 1R . Due to the fact that the regression model does not allow for deterministic-trend-like behavior 

in ty  under the null, the presence of a non-zero mean in ty∆  (i.e. η−dT  in 02H  and α~  in 03H ) may 

likely be misinterpreted as evidence that supports an explosive alternative. 

 

Table 1 summarizes five scenarios that are considered in this paper. Since ty  does not have 

deterministic trend behavior under the null model 01H , Cases 1 and 2 are expected to be less empirically 

reasonable formulations given the mildly explosive alternative. Further, although 3R  has a constant as 

well as a deterministic trend and both of these may generate deterministic-trend-like behavior under the 

null, the presence of either of these two terms is empirically unrealistic when 0>β . Thus, Case 5 also 

seems inappropriate. By contrast, Cases 3 and 4 are both empirically more realistic. Diba and Grossman 

(1988) implemented a unit root test based on Case 5, while the test given in PWY is based on Case 2. 

 

This paper illustrates the practical importance of the null hypothesis and regression model specification in 

right-tailed unit root testing in the context of the sequential procedures of the type proposed by PWY to 

detect bubbles in economic and financial data. This test implements a right-tailed unit root test repeatedly 

on a sequence of forward expanding samples. We discuss the asymptotic distributions of the test statistic 

and examine the size and the power properties of the test under different scenarios. Based on the 

simulation findings, we provide guidelines for the selection of an appropriate null hypothesis and a 

suitable regression model formulation with associated test critical values. 

 

The rest of the paper is organized as follows. Section 2 reviews the respective limit distributions of the 

ADF statistic under Cases 1 - 5 and examines the finite sample performance of the right tailed unit root 

tests under Cases 3 and 4. Section 3 introduces several different types of exuberant behavior for the 

alternative hypothesis: the periodically collapsing explosive behavior of Evans (1991); the locally 

explosive behavior introduced by Phillips and Yu (2009, PY hereafter); and a modification of the PY 

model which produces a more realistic generating process for locally explosive behavior. The sup ADF 

test (i.e., the sequential right-tailed ADF test), along with the behavior of the sup ADF statistic (including 

its limiting and finite sample distributions), are explored in Section 4. Section 5 reports size and power 

properties for the sup ADF test under Cases 3 and 4. We apply the sup ADF test using model 

formulations corresponding to Cases 3 and 4 to NASDAQ market data in Section 6. Section 7 concludes. 

Proofs of propositions are collected in a separate technical note which is available for download from 

https://sites.google.com/site/shupingshi/Hypothesis_Appendix.pdf?attredirects=0. 
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2. Right-Tailed Unit Root Tests 
 

Right-tailed unit root tests, like their left-tailed counterparts, have asymptotic distributions which depend 

on the null hypothesis and the regression model. 

 

Proposition 2.1 Under Case 2 and Case 3 (with 1/2>η ), the asymptotic distribution of the ADF statistic 

is 

 

( )[ ] ( ) ( )

( ) ( )
( ),:=

111
2
1

231/221

0

21

0

1

0

2

WF
dssWdssW

dssWWW
ADF

L

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡−

−−
→

∫∫

∫
                                      (8) 

 

where W  is a standard Wiener process and 
L
→  denotes the convergence in distribution. Under Case 1, 

the asymptotic distribution of the ADF statistic is  

 

( )[ ] ( ) ( );:=11
2
1

1

1/2
21

0

2 WFdssWWADF
L −

⎥⎦
⎤

⎢⎣
⎡−→ ∫                                          (9) 

 

Under Case 4, the asymptotic ADF distribution is  

 

( ) ( ) ( ),:= 4

1/2
21

0

1

0

1

0
WFdssdssWssdWADF

L −

⎟
⎠
⎞⎜

⎝
⎛
⎥⎦
⎤

⎢⎣
⎡ −→ ∫∫∫                                  (10) 

 

which is identical to the standard normal; Under Case 5, the asymptotic distributions of the ADF statistic is  

 

( ) ( )WF
ABCAC

ADCDAFCFEADF
L

51/222
:=

41212
46612

−+−

−+−−
→                                    (11) 

 

with ( ) ( ) ( ) ( ) ( )[ ]11
2
1=,1=,=,=,= 21

0

21

0

1

0
−∫∫∫ WEWDsdssWCdssWBdssWA  and 

( ) ( )dssWWF ∫−
1

0
1= .  
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Remark 2.1 The asymptotic ADF distribution in Case 3 is identical to that of Case 2 despite the inclusion 

of an intercept in the null hypothesis model. The reason that the inclusion of an intercept does not affect 

the limit distribution is that the intercept effect is of a smaller order of magnitude than the stochastic trend.  

 

Remark 2.2 If 1/2=η  in Case 3, then the asymptotic ADF distribution is  

 

( )( ) ( ),,:= 30
1/22 σσσσσσ WFABCADADF

L −
−−→                                      (12) 

 

with ( ) ( ) ( ) ( )1=,2
3
1=,

2
1=

1

0

21

0

21

0
WCsdssWdssWBdssWA σσσ σσσ ∫∫∫ +++  and 

( ) ( ) ( )[ ]11
2
11= 21

0
−+⎥⎦

⎤
⎢⎣
⎡ − ∫ WdssWWD σσ . Importantly, the limit theory depends on the nuisance 

parameter σ  and hence it is not invariant unless we include a trend in the regression or adjust for the 

trend in some other way (for example, Schmidt and Phillips, 1992 and Phillips and Lee, 1996).  

 

Remark 2.3 Suppose 1/2<η  in Case 3, then the asymptotic ADF distribution is equivalent to that of 

Case 4, (10). This result arises because the intercept is of higher order of magnitude and behaves like a 

linear deterministic trend.  

 

Remark 2.4 The asymptotic ADF distributions under Case 1, Case 2 and Case 5 are well documented in 

the unit root literature (as is the fact that the asymptotic ADF distribution under Case 4 is standard 

normal); see Phillips (1987) and Phillips and Perron (1988). We provide an alternative expression for the 

asymptotic ADF distribution under Case 4, (10), because this aids the derivation below.  

 

Remark 2.5  As discussed above, Case 3 and Case 4 are empirically more reasonable than the other 

cases. This observation is in contrast to the left-tailed unit root test where Case 2 and Case 5 are found to 

be empirically more reasonable. In Case 3 we compare a unit root model with an asymptotically negligible 

intercept with a mildly explosive model. In Case 4, we compare a unit root model with a intercept with a 

mildly explosive model. In finite samples, the null hypothesis in both case may exhibit a linear trend but 

the alternative hypothesis has a nonlinear trend behavior.  

 

2.1 The Finite Sample Distributions of the Unit Root Test 
 

The finite sample distributions of the ADF test under Case 1, Case 2 and Case 5 are well documented; 

see, for example, Fuller (1995) and Hamilton (1994). In this Section we only compare the finite sample 

distribution of the ADF statistic with the corresponding asymptotic distribution under Case 3 and Case 4. 

The finite sample distributions are obtained from 2,000  Monte Carlo simulations. The lag order is 
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determined by the significance test proposed by Campbell and Perron (1991) with the maximum lag 

length 12 . The asymptotic distribution is obtained by numerical simulation with 2,000  iterations. The 

Wiener process is approximated by partial sums of (0,1)N  with 5,000  steps. 

Figure 1 plots the finite sample distributions of the ADF statistic under Case 3 when 1=~ −Tα  (i.e. 1=d  

and 1=η ) and Case 4 when 1=~α  (i.e. 1=d  and 0=η  in Case 2). The dotted lines in the figure 

correspond to the finite sample distributions of the ADF statistic with sample size { }40040,80,200,=T  

and the solid lines are the asymptotic distributions. As we can see, the finite sample distribution of the 

ADF statistic converges to the asymptotic distribution )(23 WF  under Case 3 in Figure 1a and ( )WF4  

under Case 4 in Figure 1b as the sample size increases. 

 

Figure 2 displays the finite sample distributions of the ADF statistic when the regression model is 2R , 

400=T  and ηα −T=~  (i.e. 1=d ) with { }0.1,01,0.9,...,=η . We can observe the following phenomena. 

First, when 0.5>η  (Case 3) the finite sample distribution moves towards the asymptotic distribution 

( )WF23  as η  increases. Nevertheless, the discrepancy among the finite sample distributions with 

{ }8,0.9,10.6,0.7,0.=η  is negligible. Second, the finite sample distribution of the ADF statistic with 

0.5=η  is significantly different from those with 0.5>η . Third, when 0.5<η  (Case 4) the discrepancy 

among the finite sample distributions with { }2,0.1,00.4,0.3,0.=η  is quite visible. However, we observe 

a tendency of convergence towards the asymptotic distribution ( )WF4  as η  decreases (or the drift value 

α~  in 03H  increases). 

 

3. Exuberant Behavior 
 

Exuberance may manifest in various forms. In this Section, we focus on the periodically collapsing 

explosive process of Evans (1991) and a new locally explosive process as possible alternatives. 

 

3.1 Periodically Collapsing Explosive Process 
 

The DGP proposed by Evans (1991) consists of a market fundamental component f
tP , which follows a 

random walk process  

 

( )0,1,~= 1 NPuP
iid

ttf
f

t
f

t ~εεσ++ −                                                   (13) 
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and a periodically collapsing explosive bubble component such that  

 

bBBB ttBtt <if,= 1,
1

1 +
−

+ ερ                                                                     (14) 

( ) ( ) ,if,][= 1,1
1

1 bBBB ttBttt ≥−+ ++
−

+ ερζθπρζ                                   (15) 

 

where 1>1−ρ  and ( )/2exp= 2
, τε −ttB y  with ( )20,τNy

iid

t ~ . tθ  follows a Bernoulli process which takes 

the value 1 with probability π  and 0  with probability π−1 . ζ  is the remaining size after the bubble 

collapse. The bubble component has the property that ( ) ttt BB 1
1 = −
+ ρE . By construction, the bubbles 

collapse completely in a single period when triggered by the Bernoulli process realization. 

 

The market fundamental equation, (13), is equivalent to the combination of a random walk dividend 

process and the Lucas asset pricing equation  

 

( )2
1 0,,= D

iid

DtDttt NDD σεεµ ~++ −                                                  (16) 

( )
,

11
= 2 t

f
t DP

ρ
ρ

ρ
µρ

−
+

−
                                                                 (17) 

 

where µ  is the drift of the dividend process, 2
Dσ  is the variance of the dividend. The drift of the market 

fundamental process u~  equals ( ) 11 −− ρµρ  and the standard deviation ( ) 11= −− ρρσσ Df . In Evans 

(1991), the parameter values for µ  and 2
Dσ  were matched to the sample mean and sample variance of 

the first differences of real S&P500 dividends from 1871 to 1980 . The value for the discount factor ρ  is 

equivalent to a 5%  annual interest rate. In other words, the parameter settings in Evans (1991) 

correspond to a yearly frequency. In accordance with our empirical application, we consider a set of the 

parameters calibrated to monthly data. Parameters µ  and 2
Dσ  are set to be the sample mean and the 

sample variance of the monthly first differences of real NASDAQ dividends as described in the application 

section (normalized to unity at the beginning of the sample period). These are 0.0020=µ  and 

0.0034=2
Dσ  respectively. The discount factor equals 0.985. We can then calculate the values of u~ , 

fσ , fP0  based on those of µ , 0
2 , DDσ . 

 

The setting of parameters in the bubble component, (14) - (15), are the same as those in Evans (1991). 

The asset price tP  is equal to the sum of the market fundamental component and the bubble component, 
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namely t
f

tt BPP κ+= , where κ  controls the relative magnitudes of these two components. These two 

settings are provided in Table 2 and are labeled yearly and monthly respectively. 

 

Figure 3a illustrates a realization of this DGP with the yearly parameter settings (sample size 100=T ) 

and Figure 3b displays a realization of this DGP with the monthly parameter settings ( 200=T ). 

 

3.2 Locally Explosive Process 
 

Locally explosive behavior can be expressed in terms of an AR process with time-varying coefficients 

such that  

 

( ),0,1,= 1 Nyuy
iid

ttttttt ~εεσρ ++ −                                                 (18) 

 

where tu  is the intercept, tρ  is the autoregressive coefficient and tσ  is the disturbance standard 

deviation. 

 

In PY, it is assumed that 0=tu  and σσ =t  for all Tt ,1,= L . The autoregressive coefficient tρ  is 

greater than 1, namely αρ −+ cTt 1=  with 0>c  and ( )0,1∈α , for the bubble expansion period, but 

otherwise equals unity, viz., 1=tρ . More specifically,  

 

( ) ( )fetTett TtTyTtyy ≤≤+ −− 11 11 <= ρ ( ) ( )ftffTk

t

fTk
TtTty ≤+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
++ ∗

+
∑ 11 εε >

1=
            (19) 

 

where ∗∗− ++ yyycT
eTfTT =,1= αρ  with ( )1= pOy∗ , ( )⋅1  is an indicator function, eT  is the origination 

date of the bubble and fT  is the termination date. 

 

Notice that ty  is re-initialized to 
eTy  (with a small perturbation) upon the bubble collapse. Although 

bubbles frequently collapse rapidly, in many cases it is unrealistic to require complete collapse within one 

period. For instance, according to PWY, the dot-com bubble began to collapse in March 2000 and the 

termination date was between September 2000 and March 2001. Therefore, instead of a sudden collapse 

as in equation (19), we assume that ty  switches to a (mildly) stationary regime when the bubble starts to 

burst. The new DGP can be specified as  
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[ ) ( ]
[ ]
( ]

,
,,
,,

,1,,
=

31

21

111

⎪
⎩

⎪
⎨

⎧

∈+
∈+

∪∈++

−

−

−

cfttT

fettT

cett

t

TTty
TTty

TTTtyu
y

εσγ
εσφ
εσ

                                          (20) 

 

where cT  marks the conclusion of the bubble collapse, αφ −+ TcT 11=  and βγ −− TcT 21=  with 

0>, 21 cc  and [ )0,1, ∈βα . The formulation of the AR coefficients Tφ  and Tγ  both involve mild 

deviations from unity in the sense of Phillips and Magdalinos (2007), one in the explosive direction for the 

bubble expansion, the other in the stationary direction for the bubble collapse. Equation (20) corresponds 

with (18) if we set  

 

                                                              ,= 1usu ntt  

                                                              ,= TctTbtntt sss γφρ ++  

,= 321 σσσσ ctbtntt sss ++  

 

where ( ]( ),,)0,[= TTTts cent ∪∈1  ( ),],[= febt TTts ∈1  ( )],(= cfct TTts ∈1 , which are the regime 

indicators for the market fundamental, the bubble expansion and the bubble collapse respectively. 

 

We illustrate the process (20) by setting the market fundamental regime as in Table 2 (monthly): 

94.122,=0y  0.131,=0u  3.829=1σ . We set other parameters relating to the bubble expansion and 

collapsing regime to be: 1,== 21 cc  0.6,=α  0.5,=β  ,= 12 σσ  [ ],0.6=,2= 13 TTeσσ  

[ ],0.70= TTf  [ ]TTc 0.75= (we explore different settings for parameters cfe TTT ,,,,βα  in the size and 

power comparison Section). The sample size T  is equal to 200 . The implied autoregressive coefficients 

1.042=200φ  and 0.929=200γ . Figure 4 illustrates one realization of the DGP. Compared with the PY 

and Evans DGPs, a distinguishing feature of this DGP is that the bubble collapsing process is a gradual 

one and hence it is more realistic. 

 

4. The Sup ADF Test 
 

The sup ADF (SADF) test of PWY was suggested to test the existence of exuberant behavior in economic 

and financial time series. The alternative hypothesis of the test therefore includes both periodically 

collapsing explosive behavior and locally explosive behavior. The null hypotheses are exactly the same 

as those for the right-tailed unit root test in equation (5) - (7). In the sup ADF test, the right-tailed unit root 
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test is implemented repeatedly on a forward expanding sample sequence and inference is based on the 

sup value of the corresponding ADF sequence. 

 

Suppose r  is the window size of the regression (proportional to the full sample size) for the right-tailed 

unit root test. In the sup ADF test, the window size r  expands from 0r  to 1  through the recursive 

calculations. The smallest window size 0r  is selected to ensure that there are sufficient observations to 

achieve estimation efficiency. The number of observations in the regression is [ ],= TrTr  where [ ]⋅  

signifies the integer part of its argument and T  is the total number of observations. 

 

The regression models for the sup ADF test are: 

 

;=:
1=

11 tit
i
r

k

i
trt

s yyyR εφβ +∆+∆ −− ∑                                                           (21) 

;=:
1=

12 tit
i
r

k

i
trrt

s yyyR εφβα +∆++∆ −− ∑                                                   (22) 

,=:
1=

13 tit
i
r

k

i
rtrrt

s ytyyR εφγβα +∆+++∆ −− ∑                                          (23) 

 

where rTt ,1,= L  and k  is the lag order, which is determined by a significance test (Campbell and 

Perron, 1991). The corresponding ADF t -statistic is denoted by rADF . To test for the existence of 

bubbles, inferences are made based on the sup ADF statistic, which is defined as [ ] rrr ADFsup ,10∈  and 

denoted by ( )0rSADF . It is important to highlight the dependence of SADF  on 0r  although little 

attention has been paid to this dependency in the literature. 

 

Like the ADF  test, there are five cases for the SADF  test, summarized in Table 2, by replacing 

regression models (1)-(3) with (21)-(23). 

 

4.1 The Limiting Distribution of Sup ADF 
 

Proposition 4.1 Under Case 2 and Case 3 (with 1/2>η ), the asymptotic distribution of the sup ADF 

statistic is  
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( )
[ ]

( )[ ] ( ) ( )

( ) ( )
( );,:=2

1

sup 0781/22

0

2

0

1/2

0

2

,10
0 rWF

dssWdssWrr

rdsWsWrrWr
rSADF

rr

r

rr

L

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡−

−−
→

∫∫

∫
∈

                    (24) 

 

Under Case 1, the sup ADF statistic converges to  
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[ ]

( )[ ] ( ) ( );,:=
2
1sup 06
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⎬
⎫
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⎨
⎧

⎥⎦
⎤
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−

∈
∫                           (25) 

 

Under Case 4, the sup ADF statistic converges to  

 

( )
[ ]
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1/2
2

000,10
0 rWFdssdssWssdWrSADF

rrr

rr
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⎭
⎬
⎫

⎩
⎨
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⎟
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⎛
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⎤
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−
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Under Case 5, the sup ADF statistic converges to 

 

( )
[ ]

( ) ( )
( ) ( ),,:=

41212
23226sup 0101/222323/2

3

,10
0 rWF

rArBCrCAr
rACrDrACFrErSADF

rrrrr

rrrrrrr

rr

L

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−

−+−−
→

∈
             (27) 

 

with ( ) ( ) ( ) ( ) ( )[ ]rrWErWDsdssWCdssWBdssWA rr

r

r

r

r

r

r −∫∫∫ 2

0

2

00 2
1=,=,=,=,=  and 

( ) ( )dssWrrWF
r

r ∫− 0
= .  

 

Remark 4.1 The asymptotic SADF  distributions are obtained by applying the sup  function to the 

asymptotic rADF  distributional space (based on the continuous mapping theorem). It implies that the 

limsup  and the suplim  operations are equivalent, namely  

 

[ ]
{ }

[ ]
},lim{sup=suplim

,10,10
r

Trr
r

rrT
ADFADF

∞→∈∈∞→
                                               (28) 

 

for all cases.  

 

Remark 4.2 If 1/2=η  in Case 3, then the asymptotic distribution of the SADF statistic is 
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( )
[ ]

( )( )[ ] ( ),,:=sup 062
1/22

,,,,,
1/2

,10
0 rWFArBCArDrrSADF

rrrrrrrrrr
rr

L −−

∈
−−→ σσσσσ  

 

with ( ) ( ) ( ) ( )rWCsdssWdssWrBdssWrA
rr

r

r

r

rrr

r

rrr =,2
3
1=,

2
1= ,0

2

0

23
,0, σσσ σσσ ∫∫∫ +++  and 

( ) ( ) ( )[ ]rrWdssWrrWD r

r

rr −+⎥⎦
⎤

⎢⎣
⎡ − ∫ 2

0, 2
1= σσ . Similar to the ADF statistic, the limit theory depends on 

the nuisance parameters rσ  for all [ ],10rr∈ .  

 

Remark 4.3 The asymptotic rADF  distribution under Case 4 is  

 

( ) ( ) ,
1/2

2

000

−

⎟
⎠
⎞⎜

⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ −→ ∫∫∫ dssdssWssdWADF

rrrL

r                                         (29) 

 

which is identically distributed as standard normal. Suppose [ ],1, 0rrr BA ∈  and BA rr ≠ , the asymptotic 

Ar
ADF  distribution and the asymptotic 

Br
ADF  distribution are correlated due to the fact that both of 

them are functions of a standard Wiener process.  

 

Remark 4.4 The asymptotic SADF distribution in Case 2, (24), is identical to that in PWY. The asymptotic 

SADF distributions under the other four cases have not been discussed in the literature. However, as 

pointed out in Remark 2.5, we believe that only Case 3 and Case 4 are empirically reasonable for 

economic and financial time series.  

 

In Figures 5 we examine the sensitivity of the asymptotic distributions of SADF  with respect to 0r . In 

both cases, the asymptotic distributions are obtained by numerical simulation based on 2,000  iterations. 

The Wiener process is approximated by partial sums of (0,1)N  with 5,000  steps. The smallest window 

size 0r  is set to be { }..10,0.050.2,0.15,0  

 

Figure 5a displays the asymptotic distributions under Case 3 while Figure 5b is for Case 4. Under both 

cases, the asymptotic distributions of the SADF statistic move sequentially to the right as 0r  decreases.2  

                                                 
2  Intuitively, when 0r  is smaller, the feasible range of r  (i.e. [ ],10r ) becomes wider and hence the distributional space of 

rT ADFlim ∞→  expands. The asymptotic SADF distribution, which applies the sup function to the aforementioned distributional 

space, should move sequentially towards the right as 0r  decreases. 
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In addition, like the left-tailed unit root test, the asymptotic distribution under Case 4 has larger values for 

the 90%, 95% and 99% quantiles. For example, the 95% asymptotic critical values for Case 3 with 

{ }.10,0.050.2,0.15,0=0r  are respectively 1.54,1.581.39,1.44,  and those for Case 4 are respectively 

2.91,2.962.79,2.86, . Obviously, the critical values are sensitive to 0r . 

 

4.2 The Finite Sample Distribution of Sup ADF 
 

The finite sample distribution of the SADF statistic depends on the sample size ,T  the value of the drift in 

the null hypothesis ( η,d  in Case 3 and α~  in Case 4) and the smallest window size 0r . Figure 6 displays 

the finite sample distributions of the SADF statistic when 0.1=0r  and the sample sizes are 

0,1000400,600,80 . The parameters d  and η  in Case 3 and α~  in Case 4 are set to unity. As we can 

see, the finite sample distribution of SADF moves towards the asymptotic distribution ( ),0.178 WF  under 

Case 3 and moves towards ( ),0.19 WF  under Case 4 as the sample size T  increases. 

 

The convergence illustrates the validity of interposing the limsup  and suplim  operations in equation (28) 

under Case 3 and Case 4. The left-hand side variable in this equation can be approximated by the finite 

sample SADF distribution with a reasonably large sample size (i.e. 1000≥T ) while ( ),0.178 WF  and 

( ),0.19 WF  are the right-hand side variables for Case 3 and Case 4. 

 

Figure 7 describes the finite sample distributions of the SADF statistic when the regression model is sR2 , 

400=T , 0.1=0r  and the drift value ηα −TT =~  (i.e. 1=d ) with { }0.1,01,0.9,...,=η . The solid line on 

the left is the ( ),0.178 WF  distribution, and that on the right hand side is ( ),0.19 WF . The dotted lines in 

between are the finite sample distributions. We observe a similar pattern as in Figure 2. For a given T  

and 0r , the finite sample distribution moves towards ( ),0.178 WF  as η  increases and shifts towards 

( ),0.19 WF  as η  decreases. An obvious separation occurs when 0.5=η . The discrepancy among the 

finite sample distributions is negligible with { }8,0.9,10.6,0.7,0.=η , but becomes considerably large with 

{ }2,0.1,00.4,0.3,0.=η . 

 

Like the finite sample ADF distribution described in Figure 2, the finite sample SADF distribution is 

invariant to η  under Case 3 (when 0.5>η ) while it varies significantly with η  when it is less than 0.5  

(which is equivalent to Case 4). Combining with the fact that the true value of η  is usually unknown in 

practice, we may not be able to obtain an accurate finite sample distribution under Case 4 and hence an 
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exact implementation of the test (using the finite sample critical values) under this case may not be 

feasible. 

 

5. Size and Power Comparison 
 

The 90%, 95% and 99% quantiles of the asymptotic and finite sample distributions of the SADF statistic 

under Cases 3 and Case 4 are presented in Table 4. The asymptotic critical values are obtained by 

numerical simulations with 2,000 iterations. The Wiener process is approximated by partial sums of 

(0,1)N  with 5,000  steps. The finite sample critical values are obtained from the 2,000  Monte Carlo 

simulations. The parameters d  and η  in Case 3 and α~  in Case 4 are equal to unity. 

 

Table 5 gives sizes for the SADF test based on nominal asymptotic critical values for Cases 3 and 4 and 

with sample sizes 100,200=T  and 400 . The nominal size is 5%. The DGP is specified according to 

the respective null hypotheses ( 1==ηd  in Case 3 and 1=~α  in Case 4). The number of iterations for 

size calculations is 2,000. The smallest window size has 40 observations. Table 5 shows that there are 

significant size distortions under both cases when using the asymptotic critical values. 3  The size 

distortions (when the sample size is 400 ) can also be observed from the discrepancy between the finite 

sample distributions and their corresponding asymptotic distributions in Figure 7. 

 

5.1 Periodically Collapsing Explosive Behavior 
 

To calculate the power of the tests, we need to specify the alternative hypothesis. First, we assume the 

DGP is Evans (1991) periodically collapsing explosive process, with both yearly and monthly parameters 

settings (see Table 2). For the yearly parameters setting, we calculate powers of the sup ADF test under 

Cases 3 and 4 with sample sizes 100 and 200. The sample size is set to 100, 200 and 400 for the DGP 

with the monthly parameter setting. The power calculations are based on the 95% quantiles of the finite 

sample distributions. 

 

From Table 6 power of the test evidently increases with sample size. Under the yearly parameter setting 

and 200=T , power under Cases 3 and 4 is 21% and 17% higher than when 100.=T  

 

Furthermore, Case 3 always outperforms Case 4 in terms of power. From the left panel of Table 6 (yearly 

parameters setting), the power of the SADF test under Case 3 is 12% and 16% higher than Case 4 when 

                                                 
3  Suppose one keeps the smallest fractional window size 0r  unchanged for all sample sizes. The size of the SADF test will 

decrease as the sample size increases. For example, if 0.4=0r , the size of SADF test under Case 3 is 0.077 when sample 

size is 200 and it is 0.062 when sample size is 400. However, when T is large, there is some advantage to using a small value 
for 0r  so that the sup ADF test does not miss any opportunity to capture an explosive phase. 
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100=T  and 200 . With the monthly parameters setting (right panel), when 100=T , 200 and 400, the 

power of the SADF test under Case 3 is 21%, 20% and 14% higher than Case 4. 

 

5.2 Locally Explosive Behavior 
 

Second, we let the DGP be the locally explosive model defined by equation (20). The parameter settings 

are the same as in Section 3.2. As we mentioned, this DGP is more realistic than both PY and Evans in 

the sense that the explosive behavior does not collapse completely within one period. Instead, the bubble 

collapsing process is assumed to be a (mildly) stationary process. The parameter β  controls the 

contraction rate of the bubble, the duration of which is fc TT − . To explore the sensitivity of the SADF test 

to these two coefficients, we calculate powers of the test by setting β  equal to 0.4,0.5  and 0.6  (see 

Table 7) and fc TT −  equal to [ ] [ ]TT 0.10,0.05  and [ ]T0.15  (Table 8). In general, we find that the 

power of the SADF test is invariant to the contraction rate and the contraction duration of the bubble. 

 

The explosive rate of the bubble is determined by parameter α  and the duration of the bubble expansion 

ef TT − . In simulations, we allow α  to be 0.550.6,  and 0.5  (Table 7) and ef TT −  to be 

[ ] [ ]TT 0.15,0.10  and [ ]T0.20  (see Table 8). From Table 7, we can see that, ceteris paribus, the power 

of the SADF test increases as α  decreases. That is, the frequency of successfully detecting the 

existence of exuberant behavior is higher when the expansion rate is faster. For example, under Case 3, 

when 200=T , 0.5=β  and α  takes the values 0.550.6,  and 0.5 , the power is 62%, 67% and 72% 

respectively. Moreover, we can see from Table 8 that the power of the SADF test is higher when the 

duration of the bubble expansion is longer. For instance, when 200=T  and [ ]TTT fc 0.10=− , the 

power under Case 3 with =ef TT −  [ ],0.10T  [ ],0.15T  [ ]T0.20  is 61%, 79% and 88% respectively. 

 

The location of the bubble episode is indicated by eT . Table 9 illustrates the power of the SADF test with 

][0.6],[0.4],[0.2= TTTTe . We observe that given an identical expansion rate and expansion duration of 

the bubble, if the bubble episode occurs at an earlier stage of the sample period, the frequency of 

successfully detecting a bubble episode is higher. For instance, when 0.6=200,= αT  and 

][0.15= TTT ef − , the power under Case 3 is 89%, 82% and 79% for [ ] [ ] [ ]TTTTe 0.6,0.4,0.2=  

respectively. 

 

Table 10 illustrates the power of the SADF with different sample sizes under Cases 3 and Case 4. First, it 

is clear that the power of the test is higher when the sample size is larger. The power under Case 3 are 
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57%, 62% and 73% for 400200,100,=T . Second, Case 3 is always superior to Case 4 in terms of 

power. For example, when the sample size T  equals 200, the power under Case 3 is 20% greater than 

that under Case 4. Most importantly, the last observation apply to Table 7, Table 8, Table 9 and Table 10. 

 

6. Application to the NASDAQ 
 

We apply the sup ADF test with different hypotheses and model specifications to the NASDAQ stock 

market over the period from February 1973 to July 2009 (constituting 438 observations). The NASDAQ 

composite index and the NASDAQ dividend yield are obtained from DataStream International. The 

consumer price index, which is used to convert stock prices and dividends into real series, is downloaded 

from the Federal Reserve Bank of St. Louis. 

 

Figure 8 illustrates the dynamics of the real NASDAQ index and the real NASDAQ dividend (normalized 

to 100 at the beginning of the data series) during the sample period. The real NASDAQ index grows 

steadily, manifesting an upward drift, until the early 90s. This is followed by a rapid increase to a peak that 

is 944.4 times bigger than the starting point of the series. The NASDAQ index, then dropped quickly to a 

level of less than 248 times of the starting point at April 2003. It recovers gradually until October 2008, 

however, followed by another sudden crash. Relative to the NASDAQ index, the dividend process 

changes are of a much smaller magnitude (although it is volatile throughout the sample period). 

 

Table 11 displays the SADF statistics for the logarithmic real NASDAQ index and the logarithmic real 

NASDAQ dividend, along with respective finite sample critical values, under Case 3 and Case 4. The 

critical values are obtained from 2,000 Monte Carlo simulations with sample size 348. The parameters d  

and η  in Case 3 and α~  in Case 4 are set to 1. The smallest window is set to have 40 observations. For 

the logarithmic real NASDAQ index, we reject the unit root null hypothesis against the explosive 

alternative at the 10% significance level under Case 3 whereas we fail to reject the null hypothesis at the 

10% significance level under Case 4. Furthermore, we cannot reject the null hypothesis of unit root at the 

10% significance level for the logarithmic real NASDAQ dividend under both cases. 

 

In other words, with the specification of Case 3, we find evidence of exuberance in the NASDAQ stock 

market using the sup ADF test. However, if the null hypothesis and the regression model are specified as 

in Case 4, the sup ADF suggests no evidence of bubble existence in the NASDAQ stock market during 

the sample period. These results reveal that the empirical evidence of exuberance in the NASDAQ is 

sensitive to model specification. 
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7. Conclusion 
 

This paper has investigated various formulations of the null and alternative hypotheses and the effect of 

the chosen regression model on the detection of exuberance in economic and financial time series. In 

particular, we identify two empirically reasonable setups and neither setup includes a linear deterministic 

trend in the regression. In both cases, we estimate the autoregressive coefficient from the following model: 

 

.=
1=

1 titi

k

i
tt yyy εφβα +∆++∆ −− ∑  

 

In one case the null hypothesis has an asymptotically negligible intercept while in the other case the 

intercept is a constant. The limiting distributions of the ADF statistic and the SADF statistic are derived in 

both cases. The asymptotic critical values are obtained via simulations. 

 

The size and power properties have been examined and compared. When asymptotic critical values are 

used, the SADF test shows significant size distortions under both cases. Therefore, when the sample size 

is small (i.e. 400≤T ), we suggest using finite sample critical values, instead of the asymptotic critical 

values, for the SADF test. 

 

For the power calculation, we consider two DGPs: Evans (1991) periodically collapsing explosive process 

(with both yearly and monthly parameter settings) and the locally explosive process proposed in this 

paper (with monthly parameters setting). The conclusion drawn from these two DGPs is consistent. Our 

findings indicate that the preferred procedure for practical implementation is to estimate the regression 

model of equation (2) and specify the null hypothesis to be an asymptotically negligible intercept in the 

right-tailed unit root test. The empirical application of these methods to the NASDAQ stock market 

demonstrates the importance of hypothesis and model specification in the right-tailed unit root test, 

revealing some sensitivity in the outcomes of the test to these modeling decisions. 
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Table 1. Different Model Formulations for Right-Tailed Unit Root Tests 
  
   Case 1 Case 2 Case 3 Case 4 Case 5 
      
Null Model  

01H  01H  02H  03H  030201 // HHH

Regression Model  
1R  2R  2R  2R  3R  

 

 

Table 2. Parameter Settings 
   
   u~  fσ  fP0  ρ  b  0B  π  ζ  τ  κ  

           
Yearly  0.740 7.869 41.195 0.952 1 0.50 0.85 0.50 0.05 20 

Monthly  0.131 3.829 94.122 0.985 1 0.50 0.85 0.50 0.05 150

  

 

Table 3. Different Cases for the Sequential Right-Tailed Unit Root Test 
  
   Case 1 Case 2 Case 3 Case 4 Case 5 
      
Null Hypothesis  

01H  01H  02H  03H  030201 // HHH

Regression Model  sR1  sR2  sR2  sR2  sR3  
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Table 4. Critical Values of the SADF Statistic (Against Explosive Alternative) 
   
   Case 3 Case 4 

 90%  95%  99%  90%  95%  99%  

 
The asymptotic critical values of the SADF statistic 

0.4=0r   0.88 1.20 1.87 2.27 2.62 3.20 

0.2=0r   1.10 1.39 1.95 2.48 2.79 3.39 

0.1=0r   1.23 1.54 2.04 2.58 2.92 3.42 

The finite sample critical values of the SADF statistic 

100=T  and 0.4=0r   1.32 1.77 2.87 2.80 3.25 4.05 

200=T  and 0.2=0r   1.49 1.93 2.83 2.95 3.36 4.17 

400=T  and 0.1=0r   1.63 2.01 2.85 3.04 3.44 4.25 

  
Note: the asymptotic critical values are obtained by numerical simulations with 2,000 iterations. The Wiener process is approximated 

by partial sums of (0,1)N  with 5,000 steps. The finite sample critical values are obtained from the 2,000 Monte Carlo 
simulations. The parameters d  and η  in Case 3 and α~  in Case 4 are set to unity.  

 

 

Table 5. Sizes of the SADF Test (Using Asymptotic Critical Values). The Data Generating Process 
is Specified According to the Respective Null Hypothesis. Parameters η,d  in Case 3 and 
α~  in Case 4 are Set to Unity. The Nominal Size is 5%.  

   

   Case 3 Case 4 
   

100=T  and 0.4=0r   0.117 0.127 

200=T  and 0.2=0r   0.126 0.118 

400=T  and 0.1=0r   0.118 0.122 

  
Note: the number of iterations for size calculation equals 2,000.   
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Table 6. Powers of the SADF Test Under Evans (1991) Periodically Collapsing Explosive Behavior 
  
   Yearly  Monthly 

  Case 3 Case 4  Case 3 Case 4 
      

100=T  and 0.4=0r   0.39 0.27  0.54 0.33 

200=T  and 0.2=0r   0.60 0.44  0.73 0.53 

400=T  and 0.1=0r   - -  0.86 0.72 

  
Note: the number of iterations for power calculation equals 2,000. 
 

 

Table 7. Powers of the SADF Test for the Locally Explosive Behavior (The Rates of Bubble 
Expansion and Contraction). Parameters are Set as:  

 
[ ] [ ]

[ ] 0.2=200,=,0.75=

,0.7=,0.6=,2=3.829,==1,==0.131,=94.122,=

0

13212100

rTTT

TTTTccuy

c

feσσσσ
 

  

  β          0.4   0.50       0.60  

  Case 3 Case 4  Case 3 Case 4  Case 3 Case 4
         

1.04=0.60,= Tφα   0.63 0.42  0.62 0.42  0.62 0.42 

1.05=0.55,= Tφα   0.67 0.47  0.67 0.47  0.67 0.46 

1.07=0.50,= Tφα   0.72 0.49  0.72 0.48  0.71 0.47 

  
 Note: the number of iterations for power calculation equals 2,000.   
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Table 8. Powers of the SADF Test for the Locally Explosive Behavior (The Duration of Bubble 
Expansion and Contraction). Parameters are Set as: 

 

[ ]TT
rTccuy

e 0.6=
0.2,=200,=0.5,=0.6,=,2=3.829,==1,==0.131,=94.122,= 013212100 βασσσσ

  

fc TT −         [ ]T0.05    [ ]T0.10     [ ]T0.15  

  Case 3 Case 4  Case 3 Case 4  Case 3 Case 4
         

[ ]TTT ef 0.10=−   0.63 0.43  0.61 0.42  0.62 0.42 

[ ]TTT ef 0.15=−   0.79 0.61  0.79 0.63  0.79 0.62 

[ ]TTT ef 0.20=−   0.87 0.71  0.88 0.72  0.88 0.72 

  
Note: the number of iterations for power calculation equals 2,000. 
 

 

Table 9. Powers of the SADF Test for the Locally Explosive Behavior (The Location of the Bubble 
Episode). Parameters are Set as: 

 

[ ]TTT
rTccuy

fc 0.05=
0.2,=200,=0.5,=0.6,=,2=7.869,==1,==0.740,=41.195,= 013212100

−
βασσσσ

  

  eT   [ ]T0.2   [ ]T0.4   [ ]T0.6  

  Case 3 Case 4  Case 3 Case 4  Case 3 Case 4
         

[ ]TTT ef 0.10=−   0.78 0.61  0.68 0.51  0.63 0.42 

[ ]TTT ef 0.15=−   0.89 0.79  0.82 0.67  0.79 0.62 

[ ]TTT ef 0.20=−   0.94 0.86  0.90 0.78  0.88 0.72 

  
Note: the number of iterations for power calculation equals 2,000.   
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Table 10. Powers of the SADF Test for the Locally Explosive Behavior (The Sample Size). 
Parameters are Set as:  

 

[ ]TTTTTT
TTccuy

fcef

e

0.05=],[0.10=
],[0.6=0.5,=0.6,=,2=7.869,==1,==0.740,=41.195,= 13212100

−−
βασσσσ

 

  

   Case 3 Case 4 
   

100=T  and 0.4=0r   0.57 0.36 

200=T  and 0.2=0r   0.62 0.42 

400=T  and 0.1=0r   0.73 0.52 

  
Note: the number of iterations for power calculation equals 2,000.   
 

 

Table 11. The Sup ADF Test of the NASDAQ Stock Market 
   
   Case 3 Case 4 
   
Log Real NASDAQ Index  1.90 1.90 

Log Real NASDAQ Dividend  -1.07 -1.07 

Finite sample critical values 

90%  1.60 3.02 

95%  1.97 3.41 

99%  2.89 4.18 

  
Note: Critical values of the sup ADF test are obtained from 2,000 Monte Carlo simulations with sample size 438. The parameters d  

and η  in Case 2 and α~  in Case 3 are set to 1. The smallest window is set to have 40 observations.  
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Figure 1. The Finite Sample Distribution of the ADF Statistic under Case 3 and Case 4 with T = 40, 
80, 200, 400.  
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Figure 2. The Finite Sample Distribution of the ADF Statistic when the Regression Model is 

400=,2 TR  and ηα −T=~  (i.e. 1=d ) with 0.1,01,0.9,...,=η  
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Figure 3. The Simulated Time Series based on Evans' DGP 
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Figure 4. The Simulated Time Series based on Equation (20) 
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Figure 5. The Asymptotic Distributions of the SADF Statistic with 0.10,0.050.20,0.15,=0r  
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Figure 6. The Finite Sample Distributions of the SADF Statistic when 0.1=0r  and the Sample 
Sizes are 0,1000400,600,80 . The Parameters d  and η  in Case 3 and α~  in Case 4 are 
Set to 1 
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Figure 7. The Finite Sample Distributions of the SADF Statistic when the Regression Model is sR2 , 

0.1=400,= 0rT  and ηα −T=~  (i.e. 1=d ) with { }0.1,01,0.9,...,=η  
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Figure 8. NASDAQ Stock Market Sampled from February 1973 to September 2009 (Normalized to 

100 at the Beginning of Data Series) 
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