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Abstract

Open economy macroeconomics typically abstracts from portfolio structure. But the recent experience

of financial globalisation makes it important to understand the determinants and composition of gross

country portfolios. This paper presents a simple approximation method for computing equilibrium financial

portfolios in stochastic open economy macro models. The method is widely applicable, easy to implement,

and delivers analytical solutions for optimal gross portfolio positions in any combination of types of

asset. It can be used in models with any number of assets, whether markets are complete or incomplete,

and can be applied to stochastic dynamic general equilibrium models of any dimension, so long as the

model is amenable to a solution using standard approximation methods.
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1. Introduction

Open economy macroeconomic models typically represent international financial linkages in terms of

net foreign assets and the current account. Recent data show, however, that there are large cross-country

gross asset and liability positions. Lane and Milesi-Ferretti (2001, 2006) show that these gross portfolio

holdings have grown rapidly, particularly in the last decade. The existence of large gross positions

offers a number of interesting challenges for open economy macro theory. For instance, can international

macroeconomic models offer any explanation for the observed structure of portfolio holdings? What are

the important macroeconomic determinants of the size and composition of gross portfolio positions?

The importance of gross asset positions, however, goes beyond questions about the determinants of

portfolio choice. This is because gross asset and liability positions can themselves have important

effects on macroeconomic dynamics. For instance a change in the nominal exchange rate or a change

in equity prices can give rise to capital gains and losses for gross positions which can have very large

effects on the value of net foreign assets.1

While these issues are obviously of interest to open economy macroeconomists and policymakers,

current theoretical models and current solution methods cannot be used to analyse the implications of

gross portfolio holdings in any very systematic way. This is because it is difficult to solve portfolio

choice problems within standard general equilibrium macroeconomic models with complex asset markets.

One approach that has recently been adopted is to focus on complete markets structures. Engel and

Matsumoto (2005) and Kollmann (2006) represent examples of such an approach. In the case of

complete markets, it is possible to solve for a macroeconomic equilibrium without having first to solve

for behaviour in asset markets. It is then possible to derive and analyse the implied country portfolios

which support the macroeconomic equilibrium.2

The complete markets approach certainly offers a useful starting point for analysing gross asset positions.

But a large body of empirical evidence on the failure of risk-sharing across countries throws doubt on

the hypothesis that international financial markets are complete (see, for instance, Obstfeld and Rogoff,

2000). Furthermore, there can be no certainty that complete markets are a good approximation to the

true position, particularly with regard to the implication for optimal portfolios. It is therefore important to

make progress in the analysis of portfolio choice in open economy macroeconomic models with

incomplete markets. This presents a number of problems, however, principally because standard solution

methods cannot be used to analyse macro models with multiple assets but incomplete markets. In such

models the equilibrium portfolio allocation depends on macroeconomic outcomes, and macroeconomic

outcomes depend on the equilibrium portfolio allocation. But, unlike the complete markets case, a solution

1 Lane and Milesi-Ferretti (2001) emphasise the quantitative importance of valuation effects on external assets and liabilities.
See also subsequent work by Ghironi et al. (2005), Gourinchas and Rey (2005), and Tille (2003, 2004).

2 For a comprehensive analysis of problems of portfolio choice for investors, see Campbell and Viceira (2002). See also Kraay et al.
(2005) for an analysis in an international context.
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for macro outcomes cannot be derived without first obtaining a solution for the equilibrium portfolio

allocation. This means that models with incomplete markets are intractable in all but the most restricted

of cases. These problems are made more acute because it proves infeasible to apply standard first-order

and second-order approximation methods to incomplete markets models. The optimal portfolio allocation

is generally indeterminate in a first-order approximation of a model. It is also indeterminate in the

non-stochastic steady state, which is the natural starting point for standard approximation methods.

In this paper we develop and present a solution method which overcomes these problems. Our method

can be applied to any standard open economy model with any number of assets, any number of state

variables and complete or incomplete markets. We find a general formula for asset holdings which fits

naturally into the standard solution approach for DSGE models. In fact, our solution formula can be

applied directly using a standard first-order accurate solution that is generally derived in the analysis of

DSGE models. It is not necessary to repeat the derivation of our formula for every model. The technique

is simple to implement and can be used to derive either analytical results (for sufficiently small models)

or numerical results for larger models. In the case of numerical solutions, the execution time of the

solution code is no longer than required to obtain a standard log-linear solution.

A key innovation in our approach is to recognise that, at the level of approximation that open economy

macro-economists normally analyse multi-country models, one only requires a solution for steady-state

asset holdings. Higher-order aspects of portfolio behaviour are not relevant for the first-order accurate

macro dynamics. Another way to say this is that time variation in portfolio shares is irrelevant for all

questions regarding first-order responses of macroeconomic variables like consumption, output, etc.

in a DSGE model. Therefore, the approximation we derive exhausts all the macroeconomic implications

of portfolio choice at this level of approximation.

Using this fact, we characterise the optimal portfolio by a combination of a second-order approximation

of the portfolio selection condition with a first-order approximation to the remaining parts of the model.3

Of course, these two approximations will be interdependent; the endogenous portfolio weights will

depend on the variance-covariance matrix of excess returns produced by the general equilibrium model,

but that in turn will depend on the portfolio positions themselves. We show that this simultaneous

system can be solved to give a simple closed form analytical solution for the portfolio weights.

In the existing literature a number of alternative approaches have been developed for analysing

incomplete-markets models. Judd et al. (2002) develop a numerical algorithm based on ‘spline collocation’

and Evans and Hnatkovska (2005) present a numerical approach that relies on a combination of

perturbation, projection and continuous-time approximation techniques. The methods proposed by

Judd et al. (2002) and Evans and Hnatkovska (2005) are designed to handle dynamic general equilibrium

3 Higher-order aspects of portfolio behaviour can be derived by considering higher-order approximations of the model. This is
a relatively straightforward extension of our method. The current paper focuses on the derivation of steady-state portfolios
because this represents a distinct and valuable first-step in the analysis of portfolio choice in open-economy DSGE models.
In an interesting recent paper, Tille and van Wincoop (2006) show how higher-order solutions to portfolio behaviour in an open
economy model can be obtained numerically via an iterative algorithm. Their approach requires the numerical computation of
steady-state portfolios in manner analogous to the analytical solutions derived in this paper. For an analytical approach to the
derivation of higher-order solutions to portfolios, see the companion to the present paper (Devereux and Sutherland, 2006b).
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models and they are capable of analysing time variation in portfolios. On the other hand these methods

are very complex compared to our approach and they represent a significant departure from standard

DSGE solution methods. Devereux and Saito (2005) use a continuous time framework which allows

some analytical solutions to be derived and allows for time varying portfolios. But their approach cannot

handle general international macroeconomic models with diminishing-returns technology or sticky nominal

goods prices.

In the existing literature our method is most closely related to the work of Samuelson (1970),

Judd (1998) and Judd and Guu (2001). Samuelson, who analyses a simple static portfolio allocation

problem for a single investor, shows how a mean-variance approximation of a portfolio selection problem

is sufficient to identify the optimal portfolio in a near-non-stochastic world. Judd and Guu, who consider

a static model of asset market equilibrium, show how the problem of portfolio indeterminacy in the

non-stochastic steady state can be overcome by using a Bifurcation theorem in conjunction with the

Implicit Function Theorem. This allows them to identify an appropriate approximation point and to

construct higher-order Taylor series approximations for equilibrium portfolios which are valid in a

neighbourhood of this approximation point. The approximation point they identify is a bifurcation point

in the set of non-stochastic equilibria. Our solution approach relies on first-order and second-order

approximations of the model, rather than the Implicit Function and Bifurcation Theorems, but the

underlying theory described by Judd and Guu (2001) is applicable to our equilibrium solution. In particular,

the steady-state gross portfolio holdings derived using our technique correspond to the approximation

point derived by the Judd and Guu method. Our equilibrium portfolio can therefore be rationalised in the

same way, i.e. it is a bifurcation point in the set of non-stochastic equilibria.4

This paper proceeds as follows. The next section sets out a general portfolio choice problem within a

generic open economy model. Section 3 develops and describes our solution method. Section 4 presents

two examples of how our technique can be use to solve for bond and equity holdings in simple

two-country models. Section 5 concludes the paper.

2. A Generic Open Economy Model with Country Portfolios

The solution process is explained in the context of a two-country open economy model. The model is

chosen to be general enough to encompass the range of structures that are widely used in the recent

open economy macro literature. However, only those parts of the model necessary for understanding

the portfolio selection problem need to be explicitly described here. Other components of the model,

such as the labour supply decisions of households and the production and pricing decisions of firms,

are not directly relevant to the portfolio allocation problem, so, for the moment, these parts of the model

4 Judd and Guu use their technique to investigate the effects of stochastic noise on the equilibrium portfolio. They therefore
solve for the first and higher-order derivatives of portfolio holdings with respect to the standard deviation of the underlying
shock. In this sense they are able to derive higher-order approximations of portfolio behaviour around the steady-state portfolio.
As in Judd and Guu, our steady-state asset holdings can be used as the starting point for deriving higher-order approximations.
As Samuelson (1970) shows, this requires taking higher-order approximations of the portfolio optimality conditions and the
model. This allows analysis of the effects of the level of noise on portfolios (is a similar way to Judd and Guu). It also allows an
analysis of time variation in equilibrium portfolios.
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are suppressed. It is important to emphasise from the start, however, that the solution process, and the

model used to describe it, are consistent with a wide range of specifications for labour supply, pricing

and production. Thus, the non-portfolio parts of the model may be characterised by endogenous or

exogenous employment, sticky or flexible prices and wages, local currency pricing or producer currency

pricing, perfect competition or imperfect competition, etc.

It is assumed that the world consists of two countries, which will be referred to as the home country and

the foreign country. The home country is assumed to produce a good (or a bundle of goods) with

aggregate quantity denoted  (which can be endogenous) and aggregate price . Similarly the foreign

country produces quantity  of a (potentially differentiated) foreign good (or bundle of goods) at price

. In what follows foreign currency prices are denoted with an asterisk.

Agents in the home country have a utility function of the form

(1)

where  is a bundle of the home and foreign goods and (.) is a twice continuously differentiable period

utility function. The function (.) captures those parts of the preference function which are not relevant

for the portfolio problem.5 The aggregate consumer price index for home agents is denoted P.

It is assumed that there are  assets and a vector of  returns (for holdings of assets from period  – 1

to ) given by

Asset payoffs and asset prices are measured in terms of the aggregate consumption good of the home

economy (i.e. in units of ). Returns are defined to be the sum of the payoff of the asset and capital

gains expressed as a percentage of the asset price. It is assumed that the vector of available assets is

exogenous and predefined.

The budget constraint for home agents is given by

(2)

where  are the holdings of the  assets purchased at the end of period t – 1 for

holding into period t. It follows that

(3)

5 For these other aspects of the preference function to be irrelevant for portfolio selection it is necessary to assume utility is
additively separable in ( ) and (.). Extensions to cases of non-additive separability (e.g. habit persistence in consumption)
are straightforward, as will become more clear below. Using (1) allows us to illustrate the method with minimal notation.
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where  is net wealth at the end of period t – 1. In (2), Y is the total disposable income of home

agents expressed in terms of the home consumption good. Thus, Y may be given by 

where T is a fiscal transfer (or tax if negative).6

It is simple to show that the budget constraint can be re-written in the following form

(4)

where

and

Here the th asset is used as a numeraire and  measures the “excess returns” on the other n – 1 assets.

2.1 First-Order Conditions for Portfolio Allocation and Asset Market Equilibrium

At the end of each period agents select a portfolio of assets to carry into the following period. Thus, for

instance, at the end of period t home country agents select a vector  to hold into period t + 1. There

are n – 1 first-order conditions for the choice of the elements of  which can be written in the following

form

:
(5)

Foreign-country agents face a similar portfolio allocation problem with a budget constraint given by

(6)

where  is the real exchange rate. The real exchange rate enters this budget constraint

because  are measured in terms of the foreign aggregate consumption good while

(as previously explained) asset holdings and rates of return are defined in terms of the home

consumption good.

6 The budget constraint is defined so that by default, home residents receive all home income. This means that in a symmetric
equilibrium with zero net foreign assets , gross portfolio holdings exactly offset each other in value terms. This

convention simplifies the algebra, but it is not an important part of the analysis. It would be easy to assume that direct claims
to (some component of) home income was tradable on a stock market, and wage earnings represented the home residents’
non-capital income. In this case, even in a symmetric equilibrium with zero net foreign assets, agents in each economy would
have non-zero net portfolio positions. The method for approximating optimal portfolios applies equally to this environment.
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Foreign agents are assumed to have preferences similar to (1) so the first-order conditions

for foreign-country agents’ choice of  are

:
(7)

The two sets of first-order conditions, (5) and (7), and the market clearing condition , provide

3(n – 1) equations which, in principle, can be used to solve for the elements of  and .

However, given the non-linear nature of these equations, combined with expectational terms, it is only

possible to obtain exact solutions in very special cases. The solution method described below achieves

tractability (for the general class of portfolio problems) by replacing the first-order conditions of the

home and foreign agents with second-order approximations.

2.2 Other First-Order and Equilibrium Conditions

Clearly, in any given general equilibrium model, there will be a set of first-order conditions relating to

intertemporal choice of consumption and labour supply for the home and foreign consumers and a set

of first-order conditions for price setting and factor demands for home and foreign producers. Taken as

a whole, and combined with an appropriate set of equilibrium conditions for goods and factor markets,

this full set of equations will define the general equilibrium of the model. As already explained, the details

of these non-portfolio parts of the model are not necessary for the exposition of the solution method,

so they are not shown explicitly at this stage. In what follows these omitted equations are simply referred

to as the “non-portfolio equations” or the “non-portfolio equilibrium conditions” of the model.

The non-portfolio equations of the model will normally include some exogenous forcing variables. In the

typical macroeconomic model these take the form of AR1 processes which are driven by zero-mean

innovations. In what follows the covariance matrix of the innovations is denoted . As is the usual

practice in the macroeconomic literature, the innovations are assumed to be i.i.d. This means that  is

assumed to be non-time-varying.

It is convenient, for the purposes of taking approximations, to assume that the innovations are

symmetrically distributed in the interval . This ensures that any residual in an equation approximated

up to order  can be captured by a term denoted .7

7 Clearly there must be a link between  and . The value of  places an upper bound on the diagonal elements of . So an
experiment which involves considering the effects of reducing  implicitly involves reducing the magnitude of the elements of

.
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3. The Solution Procedure

The solution procedure proposed here is based on a Taylor-series approximation of the model.

The approximation is based around a point where the vector of non-portfolio variables is  and the

vector of portfolio holdings is . In what follows a bar over a variable indicates its value at the

approximation point and a hat indicates the log-deviation from the approximation point (except in the

case of , which are defined below).

The standard log-linear approximation procedures used in macroeconomics cannot be directly applied

to portfolio problems. This is for two reasons. Firstly, the equilibrium portfolio is indeterminate in a

first-order approximation of the model. And secondly, the equilibrium portfolio is indeterminate in the

non-stochastic steady state.

The first of these problems can be overcome by considering higher-order approximations of the model.

This is the approach we adopt. More specifically, we focus on a second-order approximation of the

portfolio problem. A second-order approximation captures the effects of second moments and is therefore

sufficient to capture the different risk characteristics of assets.

The second problem (i.e. the indeterminacy of the equilibrium portfolio in the non-stochastic steady

state) presents a somewhat greater difficulty. This is because it (apparently) rules out the most obvious

approximation point. We overcome this problem by treating the value of  as endogenous. Our procedure

solves for  by looking at the first-order optimality conditions of the portfolio problem in the (stochastic)

neighbourhood of the non-stochastic steady state. The solution for  is defined to be the one which

ensures that the second-order approximations of the first-order portfolio optimality conditions are satisfied,

within a neighbourhood of  and . The value of , meanwhile, is fixed and pre-specified. For this set

of variables we follow the normal practice in the international macro literature and choose  based on

a non-stochastic steady state of the model.8

From this description it might appear that we are approximating two sets of variables around two different

approximation points. It will be shown below, however, that the solution derived for  can be interpreted

as the equilibrium for portfolio holdings in a world with an arbitrarily small amount of stochastic noise, i.e.

the equilibrium in a ‘near-non-stochastic’ world. The use of the non-stochastic equilibrium for the

approximation point for non-portfolio variables is therefore mathematically consistent with the use of

our solution for  as the approximation point for portfolio holdings.9

8 In a sense our solution procedure reverses the normal perturbation methodology. The normal perturbation procedure is to
specify an approximation point and to solve for the approximate behaviour of variables around that point. Here the values of
some of the variables ( ) are unspecified at the approximation point and are determined endogenously by optimality conditions
which hold in the neighbourhood of the approximation point.

9 As mentioned before, in a non-stochastic world all portfolio allocations are equivalent and can be regarded as valid equilibria.
A stochastic world on the other hand (assuming independent asset returns and suitable regularity conditions on preferences)
has a unique equilibrium portfolio allocation. If one considers the limit of a sequence of stochastic worlds, with diminishing
noise, the equilibrium portfolio tends towards a limit which correspond to one of the many equilibria in the non-stochastic
world. As Judd and Guu (2001) point out, this limiting portfolio is a bifurcation point, i.e. it is the point in the set of non-
stochastic equilibria which intersects with the sequence of stochastic equilibria. We will show below that our solution corresponds
to the portfolio allocation at this bifurcation point.



Working Paper No.16/2007

8

Before describing the details of the solution method, it is useful to state two important general properties

of the approximated form of the model.

Property 1 In a first-order approximation of the non-portfolio parts of a model, the only aspect of the

portfolio allocation problem that appears is , i.e. portfolio holdings at the approximation point. The

deviation of portfolio holdings from their value at the approximation point, , does not play any part in

first-order accurate macroeconomic dynamics. (This property will be demonstrated in the next subsection.)

Property 2 The solution of a second-order approximation of the portfolio problem only requires the

non-portfolio parts of the model to be solved up to first-order accuracy. This is because the only terms

that appear in a second-order approximation of the equilibrium conditions of the portfolio problem are

second moments, and second-order accurate solutions for second moments can be obtained from

first-order accurate solutions for realised values (see Lombardo and Sutherland, 2005).

These two properties will be features of any model of the general form described above. Property 1 is

important because it implies that, when studying first-order macroeconomic dynamics, it is sufficient to

obtain a solution for . Property 2 is important because the first-order behaviour of the non-portfolio

parts of a model is easily analysed in terms of the standard theory of linearised macroeconomic models.

Solutions for the non-portfolio parts of a model can therefore be easily obtained using standard

linear algorithms.

It proves convenient (but is not essential) to use the symmetric non-stochastic steady state of the

model as the approximation point for non-portfolio variables. Thus ,  and

. Note that this implies . As explained above, the objective is to

derive a solution for .

Taking a second-order approximation of the home-country portfolio first-order conditions yields

:
(8)

where  (i.e. the coefficient of relative risk aversion). Re-writing (8) in vector form

yields

(9)

where
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and

The term  in (9) is a residual which contains all terms of order higher than two. Applying a similar

procedure to the foreign first-order conditions yields

(10)

The home and foreign optimality conditions, (9) and (10), can be combined to show that, in equilibrium,

the following conditions must hold

(11)

and

(12)

These two equations express the portfolio optimality conditions in a form which is particularly convenient

for the derivation of equilibrium portfolio holdings and excess returns. Equation (11) provides a set of

equations which must be satisfied by equilibrium portfolio holdings. And equation (12) shows the

corresponding set of equilibrium expected excess returns.

3.1 Time Variation

Before proceeding with a detailed description of how equations (11) and (12) can be used to derive

equilibrium, it is important to discuss the effects of time on portfolio equilibrium in the approximated

model. In the form equations (11) and (12) are currently presented it may appear that there is a separate

set of equilibrium conditions for each time-period and thus a separate solution for asset holdings in

each time-period. It is, however, simple to show that no element of the approximated portfolio problem

is time varying at the level of approximation employed here. It follows, therefore, that the time subscripts

in the above expressions can be omitted. This leaves a single non-time-varying set of equations and a

single set of non-time-varying unknowns.

The absence of time variation arises from a combination of Property 2 (stated above) and two further

properties of the approximated model:

Property 3 Expected excess returns, , are zero in all time periods in a first-order approximation

of the model. This is obvious from a first-order approximation of the portfolio first-order conditions

(i.e. the first-order parts of equations (9) and (10)). This implies that the expected cross product of

excess returns with any variable is equal to the covariance of excess returns with that variable, e.g. for

any variable  it must be true that .
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Property 4 The conditional one-period-ahead second moments generated by the first-order

approximation of the non-portfolio parts of the model are non-time-varying if the covariance matrix of

the innovations, , is non-time-varying. (This is a standard property of any linearised stochastic rational

expectations model with homoskedastic forcing processes.)

Property 3 implies the following:

(13)

and  is given by

(14)

Property 2 implies that second-order accurate solutions for the second-moments in these expressions

can be obtained from first-order accurate solutions for realised values of , ,

Property 4 implies that the solutions for these second-moments will be non-time varying provided  is

non-time-varying. Thus all the terms in equations (11) and (12) are non-time-varying.

3.2 Partial Equilibrium in Asset Markets

The next subsection will describe the derivation of portfolio equilibrium within a full general equilibrium

of the model. Before considering general equilibrium, however, it is insightful briefly to consider a partial

equilibrium solution to the portfolio problem. A partial equilibrium solution can be derived by substituting

for  and  in (11) using the home and foreign budget constraints. Note that, as stated in Property 2,

the budget constraint need only be approximated up to first-order accuracy. This is because  and 

only appear in (11) in second-order terms. First-order approximations of the home and foreign budget

constraints (in period t+1) imply

(15)

and

(16)

where the market clearing conditions,  and  have been imposed and 

and .The term  in these equations is a residual which contains all terms of

order higher than one. Note that, as stated in Property 1, in (15) and (16) there are no terms in  (the

deviations of gross asset holdings from their values at the approximation point).10

10 This can the thought of as a type of envelope theorem result. Given that, at an optimal choice of , expected returns are equal
(in equilibrium) up to the first order, time variation in the portfolio (i.e. ) can only affect net wealth at the second-order level.
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Using (15) and (16) to substitute for  in (11) and solving for  yields

(17)

where

where .11 The corresponding (partial equilibrium) solution for excess

returns is

(18)

where

Notice that (17) and (18) are very similar to the solutions for asset holdings and expected returns that

would emerge from a mean-variance model of portfolio allocation. Thus some of the intuition that applies

to models of that type is also applicable to the approximate solution for portfolio holdings proposed

here. Of course (17) and (18) are not full general equilibrium solutions for  and  because

 all depend on  via the impact of gross portfolio holdings on net wealth. Gross asset

holdings affect net wealth via the budget constraints (15) and (16). In turn this equation interacts with

first-order conditions for intertemporal allocation of consumption and work effort and potentially many

other components of a general equilibrium model. Thus the full solution of the portfolio allocation problem

requires a solution for the general equilibrium of the entire model.

3.3 A General Equilibrium Solution for Portfolio Holdings

The derivation of a full general equilibrium solution for  is now described.12 The objective is to find

values for the vector of portfolio allocations, , and solutions for the behaviour of  ,

which satisfy equation (11) and all the non-portfolio equations of the model.

Properties 1 and 2, stated above, play a crucial role in allowing a general equilibrium solution to be

derived. Property 2 implies that, in order to analyse equation (11) at the level of second-order accuracy,

it is only necessary to derive first-order accurate solutions for the behaviour of .

11 Note that  is a second-order term, so  is a first-order term and thus the residual in (17) is of order one. This is

consistent with the definition of  as the point of approximation.

12 The solution procedure will be described in terms of deriving a solution for . The corresponding solution for  is obviously

given by .
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Property 1 implies that  is the only aspect of portfolio behaviour that affects the first-order accurate

behaviour of . Two further important properties of the approximated model make it

possible to obtain a solution.

Property 5 Portfolio holdings, , only directly enter the first-order approximation of the non-portfolio

side of the model via budget constraints. In fact, because of Walras’ Law, only one budget constraint is

relevant. Here we focus on the home country budget constraint, which, in its linearised form, is given by

 .

Property 6 Up to a first order of accuracy, realised excess asset returns, , are zero-mean i.i.d.

random variables. This follows from Property 3.

Property 6 implies that the total realised excess return on the portfolio (i.e. ) is also a zero-mean

random variable (up to a first order of accuracy). This, in turn, implies that the value of  does not have

any effect on the eigenvalues or eigenvectors of the non-portfolio equations of the model.

These properties can now be used to derive a full general equilibrium solution for . From Property 6,

we may initially treat the realised excess return on the portfolio as an exogenous independent

mean-zero i.i.d. random variable denoted . The home country budget constraint can therefore be

written in the form

(19)

and the entire first-order approximation of the non-portfolio equations of the model can be summarised

in a matrix equation of the form

(20)

where  is a vector of predetermined variables, c is a vector of jump variables,  is a vector of exogenous

forcing processes and  is a vector of i.i.d. shocks and  is a column vector with unity in the row

corresponding to the equation for the evolution of net wealth (19) and zero in all other rows.13

The state-space solution to (20) can be derived using any standard solution method for linear rational

expectations models. It can be written as follows

13 As in many open economy macro models, there will be a unit root in the dynamics of net foreign assets, . This means that
we would not be able to compute unconditional second moments from the model. But, as shown above, the optimal portfolio
requires only conditional moments, which always exist. It would be easy to amend the model using methods suggested by
Schmitt-Grohe and Uribe (2003) so as to render the distribution of  stationary. This has no bearing on the use of our method
for computing optimal portfolios.
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(21)

This form of the solution shows explicitly, via the  matrices, how the first-order accurate

behaviour of all the model’s variables depend on exogenous i.i.d. innovations to net wealth.

By extracting the appropriate rows from (21) it is possible to write the following expression for the

first-order accurate relationship between excess returns,  and 

(22)

where the matrices  are formed from the appropriate rows of (21). Equation (22) shows how

first-order accurate realised excess returns depend on the exogenous i.i.d. shocks, , and the excess

return on the portfolio, .14

Now recognise that rather than being exogenous,  is determined by the endogenous excess portfolio

returns via the relationship

(23)

where the vector of portfolio allocations, , is to be determined. This equation, together with (22), can

be solved to yield expressions for  and  in terms of the exogenous innovations as follows

(24)

(25)

where

(26)

Equation (25), which shows how realised excess returns depend on the exogenous i.i.d. innovations of

the model, provides one of the relationships necessary to evaluate the left-hand side of (11). The other

relationship required is the link between   and the vector of exogenous

innovations, . This relationship can be derived in a similar way to (25). First extract the appropriate

rows from (21) to yield the following

(27)

14 Notice that, as follows from Property 6,  depends only on exogenous i.i.d. innovations and does not depend on the
values of the state variables contained in .
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where the matrices  are formed from the appropriate rows of (21). After substituting

for , this implies

(28)

where

(29)

Using (25) and (28) it is now simple to derive the following expression

(30)

where  is the covariance matrix of .15 The equilibrium value of  is that which satisfies the

following equation

(31)

This matrix equation defines (n –1) equations in the (n –1) elements of .

To solve for  first substitute for  in (31) and expand to yield

(32)

Substituting for  and multiplying by  yields

(33)

Note that  are all scalars. It therefore follows that  and

. Using these facts (33) simplifies to

(34)

which can be solved to yield the following expression for the equilibrium 

(35)

Notice that the residual in this expression is a first-order term. As previously noted, the solution for  is

simply given by .

15 Notice  does not appear in this expression because, by assumption, .
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3.4  in a ‘Near-Non-Stochastic’ World

It is now possible to demonstrate that our solution for  is consistent with the use of the non-stochastic

steady state as the approximation point for non-portfolio variables.

Suppose that the covariance matrix of the innovations is given by  where  is a scalar

and  is a valid covariance matrix. Notice that the solution for  given in (35) is independent of . So the

value of  given by (35) (and therefore the value of ) is equivalent to the value that would arise in the

case of an arbitrarily small, but non-zero, value of  - i.e. the value of  that would arise in a world which

is arbitrarily close to a non-stochastic world.

Furthermore, notice that as  tends to zero (which is equivalent to  tending to zero) the size of the

residual in (35) tends to zero. So, as the amount of noise tends to zero, the value of  becomes arbitrarily

close to the true value of portfolio holdings in the non-approximated model.

Our solution for  can therefore be thought of as the true portfolio equilibrium in a world which is

arbitrarily close to the non-stochastic equilibrium. So using our solution for  as the approximation

point for portfolio holdings is mathematically consistent with using the non-stochastic steady state as

an approximation point for the non-portfolio variables.16

3.5 Summary of the Procedure

It should be emphasised that implementing this procedure requires only that the user apply (35), which

needs only information from the first-order approximation of the model in order to construct the  and

 matrices. So long as the model satisfies the general properties described above, the other details of

the model, such as production, labour supply, and price setting can be varied without affecting the

implementation. The derivations used to obtain (35) do not need to be repeated. In summary, the solution

for equilibrium  has three steps:

1. Solve the non-portfolio equations of the model in the form of (20) to yield a solution in the form of (21).

2. Extract the appropriate rows from this solution to form .

3. Calculate  using (35).

16 In the terminology used by Judd and Guu (2001), it is clear that our solution corresponds to a bifurcation point in the set of
non-stochastic equilibria. So the portfolio allocation defined by (35) corresponds to one of the many possible non-stochastic
equilibria and is thus consistent with the non-stochastic steady-state values of the non-portfolio variables.
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4. Applications of the Method

This section presents two simple examples of how the above solution technique can be applied.

4.1 Example 1: A Two-Country Endowment Model with Trade in Nominal Bonds

Consider a one-good, two-country endowment economy where the utility of home households is given

by

(36)

where  is consumption of the single good. There is a similar utility function for foreign households.

The home and foreign endowments of the single good are auto-regressive processes of the form

(37)

where  and  are i.i.d. shocks symmetrically distributed over the interval

.

Asset trade is restricted to home and foreign nominal bonds. The budget constraint of home agents is

given by

(38)

where W is net wealth,  are holdings of home and foreign bonds and  and  are the

real returns on bonds. By definition, net wealth is the sum of bond holdings, i.e.

(39)

Real returns on bonds are given by

(40)

where  are home and foreign currency prices for the single tradable good and  and 

are the nominal returns on bonds. The law of one price holds so  where  is the nominal

exchange rate (defined as the home currency price of foreign currency).

Consumer prices are assumed to be determined by simple quantity theory relations of the following

form

(41)
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where home and foreign money supplies, , are assumed to be exogenous auto-regressive

processes of the following form

(42)

where  and  are i.i.d. shocks symmetrically distributed over the interval

.

To make the example easy, the four shock processes are assumed to be independent from each other.

So the covariance matrix of the vector of innovations,  , is given by

The first-order conditions for home and foreign consumption and bond holdings are

(43)

(44)

Finally, equilibrium consumption plans must satisfy the resource constraint

(45)

There are four sources of shocks in this model and only two independent assets. Assets markets are

incomplete.

4.1.1 First-Order Approximation

Application of the solution procedure requires a solution of the log-linear form of this model. First-order

approximation of (43) implies the following

(46)

while approximation of (44) implies

(47)
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First-order approximation of the resource constraint, the budget constraint and the quantity theory

relations yields

(48)

(49)

(50)

where foreign bonds are treated as the reference asset and  is the excess return on home bonds,

defined as

(51)

Notice that (47) implies that the expected excess return is zero (up to a first-order approximation) i.e.

. This is a demonstration of Property 3 in the context of this model. Notice that this

implies that nominal returns on bonds must satisfy

(52)

i.e. the nominal interest differential must equal the expected inflation differential. Combined with (51)

this implies that the realised excess return in period  is

(53)

i.e. the realised excess return is given by the difference between home and foreign price surprises. Price

surprises, by definition, can only depend on exogenous i.i.d. innovations. This is a demonstration of

Property 6 in the context of this model. Note that, since the law of one price holds, (53) is also equal to

the negative of the unexpected change in the exchange rate.

In order to write the model in the form of a first-order system it is useful to define the following relationships

(54)

(55)

where  represent expected home and foreign prices and the expected real

return on bonds.
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The equations of the model can now be collected together in the form of matrix equation system (20)

where the vectors ,  and  are defined as follows

and the coefficient matrices are drawn from equations (46) to (55).

4.1.2 Solution for Bond Holdings

The model is now in a form where it is straightforward to apply the solution procedure outlined in the

previous section. Any standard linear solution algorithm can be applied to the first-order system to yield

a state-space solution in the form of (21). In the case of the above model, the resulting expressions for

the matrices  are given by

Finally, applying (35) yields the following expression for bond holdings

Home consumers take a negative position in home currency bonds, balanced by a positive position in

foreign currency bonds. The home price level is countercyclical, so that home currency bonds have a

relatively high payoff when home output is high. This makes home currency bonds a relatively bad

hedge against home output risk, while foreign currency bonds are a relatively good hedge. An equivalent

statement is that the home country exchange rate appreciates in response to a positive home output

shock, increasing the return on home bonds relative to foreign bonds in this state. It is also noteworthy

that monetary policy volatility reduces the gross holdings of bonds. Although prices are fully flexible,

monetary volatility is costly because it reduces the usefulness of nominal bonds as a risk-hedging

instrument.



Working Paper No.16/2007

20

4.2 Example 2: A Two-Country Production Model with Trade in Equities

Now we extend the model of the previous example to allow for endogenous production, with productivity

and fiscal policy shocks. Assume now that households’ supply labour, and the utility of home households is

(56)

where now  is a composite consumption aggregate over home and foreign good categories,  is

labour supply, and  is a constant.  is defined as

(57)

where  are indices of individual home and foreign-produced goods with an elasticity of

substitution between individual goods denoted .The parameter  in (57) is the elasticity

of substitution between home and foreign composite goods. The aggregate consumer price index for

home agents is therefore

(58)

where  is the price index of home (foreign) goods. There is a similar utility function for foreign

households.

In this example, the focus is on trade in equities. The home budget constraint is given by

(59)

where again W is real net wealth,  is the real wage,  is real profit,  are holdings of home

and foreign equities and  are the real returns on equities. In addition,  is a lump-sum tax

which is used to finance government consumption. As before, net wealth satisfies

(60)

Firms produce differentiated products. The production function for each differentiated home good is

linear in labour with productivity , which is a stochastic productivity shock. The foreign country has an

analogous production function with productivity shock . The home and foreign productivity shocks

are given by

(61)

where  are i.i.d. shocks symmetrically distributed over the interval

. Firms maximise profits, and all prices are fully flexible ex-post.
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The home government is assumed to purchase a bundle of goods, denoted , with the same composition

as , with budget constraint . Similarly the foreign government purchases an amount  of a

bundle of foreign goods with the same composition as . We assume that government spending

satisfies

(62)

where  are i.i.d. shocks symmetrically distributed over the interval

. The non-stochastic equilibrium level  is set to match a

given value for , the ratio of government spending to GDP in a symmetric, non-stochastic equilibrium.

Home equities represent a claim on home aggregate profits. The real payoff to a unit of the home equity

is defined to be  are nominal profits. In a symmetric equilibrium, nominal profits

of each home firm will be , which are positive so long as . The real price of a unit

of home equity is denoted .Thus the gross real rate of return on the home equity is

.

The first-order conditions for home and foreign consumption and equity holdings are as in the previous

example, simply replacing , etc. The first order condition governing labour supply is

Profit maximisation by firms implies

Finally, the market clearing conditions are

As before, the four shocks are assumed to be independent from each other. As in the previous example,

asset markets are incomplete.

4.2.1 First-Order Approximation

First-order approximation of the model follows very closely that of the last example. The excess return

on foreign equity is given by

(63)

As in the previous example, the equations of the model can be collected together in the form of matrix

equation system (20). Then any standard linear solution algorithm can be applied to the first-order

system to yield a state-space solution in the form of (21).
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4.2.2 Solution for Equity Holdings

In order to illustrate the solutions for equity holdings, we make the further assumption that . In

this case we compute the following expressions for the matrices , 

where . Applying (35) yields the following expression for equity holdings

(64)

In the absence of government spending shocks, home households will hold a perfectly pooled portfolio

of home and foreign equity. Since the status quo embodied in budget constraint (59) implies that home

households receive all home profits, this requires that  is negative.

When , however, home equity represents a good hedge against the consumption risk of

government spending shocks, since home profits are relatively high when government spending is high.

In this case, households will hold less than a fully pooled equity portfolio. In fact, the presence of

government spending shocks may explain either partial or full home bias in equity portfolios.

The method can also be very easily applied to sticky price open economy models of the type developed

by, for instance, Obstfeld and Rogoff (1995), Benigno and Benigno (2003), Devereux and Engel (2003)

and Corsetti and Pesenti (2005). Devereux and Sutherland (2006a) show how the solution method can

be used to analyse the impact of alternative monetary policy rules on asset holdings in sticky-price

models of this type.
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5. Conclusion

Portfolio structure has become a central issue in open economy macroeconomics and international

finance. Despite this, existing models and solution methods are not well-suited to analysing portfolio

choice in policy-relevant general equilibrium environments. This paper has developed a simple

approximation method for portfolio choice problems in open economy models. Our approach is extremely

easy to implement and can be used in any of the existing models that rely on first-order approximation

methods. If the researcher is primarily interested in the implications of portfolio choice for the first-order

properties of macro variables (such as GDP, consumption, or the real exchange rate), either through

impulse response analysis or by computing second moments so as to describe volatility and comovement,

then the solution method outlined here allows a full answer to these questions. Since the overwhelming

majority of the research in international finance and macroeconomics is carried out at the level of first-

order approximation, the method is widely applicable. It can be used to study many empirical questions

in the interface between international finance and macroeconomics. Moreover, the method allows us to

study the macroeconomic determinants of optimal steady-state portfolio holdings for any asset or

combination of assets, whether markets are complete or incomplete.

The current paper focuses on the derivation of steady-state portfolios. If one is interested in the

time-variation in portfolio holdings (which, following from the analysis of this paper, have only a second-

order effect on macroeconomic variables), it is necessary to approximate the model to a higher order.

A companion paper (Devereux and Sutherland 2006b) shows how a straightforward extension of the

methods in this paper to higher-order approximations allows analysis of higher-order aspects of portfolio

behaviour, including the impact of time-variation on portfolio holdings.
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