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Abstract

A recursive test procedure is suggested that provides a mechanism for testing explosive behavior,

date-stamping the origination and collapse of economic exuberance, and providing valid confidence

intervals for explosive growth rates. The method involves the recursive implementation of a right-side

unit root test and a sup test, both of which are easy to use in practical applications, and some new limit

theory for mildly explosive processes. The test procedure is shown to have discriminatory power in
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detecting periodically collapsing bubbles, thereby overcoming a weakness in earlier applications of unit

root tests for economic bubbles. Some asymptotic properties of the Evans (1991) model of periodically

collapsing bubbles are analyzed and the paper develops a new model in which bubble duration depends

on the strength of the cognitive bias underlying herd behavior in the market. The paper also explores

alternative propagating mechanisms for explosive behavior based on economic fundamentals under

time varying discount rates. An empirical application to the Nasdaq stock price index in the 1990s

provides confirmation of explosiveness and date-stamps the origination of financial exuberance to June

1995, prior to the famous remark in December 1996 by Alan Greenspan about irrational exuberance in

financial markets, thereby giving the remark empirical content.

Keywords : Explosive root, irrational exuberance, mildly explosive process, Nasdaq bubble, periodically

collapsing bubble, sup test, time-varying discount rate, unit root test

JEL Classifications : G10, C22
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How do we know when irrational exuberance has unduly escalated asset values? (Alan Greenspan,

1996)

Experience can be a powerful teacher. The rise and fall of internet stocks, which created and then

destroyed $8 trillion of shareholder wealth, has led a new generation of economists to acknowledge that

bubbles can occur. (Alan Krueger, 2005)

1. Introduction

During the 1990s, led by DotCom stocks and the internet sector, the U.S. stock market experienced a

spectacular rise in all major indices, especially the Nasdaq index. Concomitant with this striking rise in

stock market indices, there was much popular talk among economists about the effects of the internet

and computing technology on productivity and the emergence of a “new economy” associated with

these changes. What caused the unusual surge and fall in prices, whether there were bubbles, and

whether the bubbles were rational or behavioral are among the most actively debated issues in

macroeconomics and finance in recent years.

Many researchers attribute the episode to financial bubbles. Examples include Greenspan (1996), Thaler

(1999), Shiller (2000), The Economist (2000), Cooper et al. (2001), Ritter and Welch (2002), Ofek and

Richardson (2002), Lamont and Thaler (2003), and Cunado et al. (2005). More recently, economists

have sought to rationalize the equity boom using a variety of economic variables, including uncertainty

about firm profitability (Pastor and Veronesi, 2006), declining macroeconomic risk (Lettau et al., 2006),

high and volatile revenue growth (Schwartz and Moon, 2000), learning (Pastor and Veronesi, 2007)

and other fundamentals.

Among the many references, the remark by Greenspan (1996) on December 5, 1996, is the most

celebrated, involving as it did the coining of the phrase “irrational exuberance” to characterize herd

stock market behavior, a phrase which remains the most oft-quoted remark of the former chairman of

the Federal Reserve Board. The remark has been influential in thinking about financial markets and herd

behavior and it also had some short-term market effects. Indeed, after Greenspan coined the phrase in

a dinner party speech, stock markets fell sharply worldwide the next day.1 However, in spite of this

correction, the Greenspan remark did not halt the general upward march of the U.S. market. On the

contrary, over the full decade of the 1990s, the Nasdaq index rose to the historical high of 5,048.62

points on March 10, 2000 from 329.80 on October 31, 1990 (see Figure 1).

One purpose of the present article is to examine empirically the Nasdaq market performance in relation

to the market perceptions of exuberance by Greenspan and other commentators. In particular, it is of

interest to determine whether the Greenspan perception of herd behavior was supported by empirical

1 For example, the stock markets in Frankfurt, Hong Kong, London, Toyko and the U.S. fell by 4, 3, 4, 3 and 2 percent,
respectively.
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evidence in the data or if Greenspan actually foresaw the outbreak of exuberance and its dangers when

he made the remark. To achieve this goal, we first define financial exuberance in the time series context

in terms of explosive autoregressive behavior and then introduce some new econometric methodology

based on forward recursive regression tests and mildly explosive regression asymptotics to assess the

empirical evidence of exuberant behavior in the Nasdaq stock market index. In this context, the approach

is compatible with several different explanations of this period of market activity, including the rational

bubble literature, herd behavior, and exuberant and rational responses to economic fundamentals. All

these propagating mechanisms can lead to explosive characteristics in the data. Hence, the empirical

issue becomes one of identifying the origination, termination and extent of the explosive behavior.

While with traditional test procedures “there is little evidence of explosive behavior” (Campbell, Lo and

MacKinlay, 1997, p. 260), with the recursive procedure, we successfully document explosive periods of

price exuberance in the Nasdaq.

Among the potential explanations of explosive behavior in economic variables, the most prominent are

models with rational bubbles, herd behavior, and propagating mechanisms based on economic

fundamentals such as models with time varying discount rates. Accordingly, we first relate our analysis

of explosive behavior to the rational bubble literature, where it is well known that standard econometric

tests encounter difficulties in identifying rational asset bubbles (Flood and Garber, 1980; Flood and

Hodrick, 1986; and Evans, 1991). The use of recursive tests enables us to locate exploding subsamples

of data and detect periods of exuberance. The econometric approach utilizes some new machinery that

permits the construction of valid asymptotic confidence intervals for explosive autoregressive processes

and tests of explosive characteristics in time series data. This approach can detect the presence of

bubbles in the data and date stamp for the origination and collapse of the bubble. Second, we consider

an alternative source of market exuberance and explosive behavior in terms of time varying discount

rates and show that time variation in discounting can produce explosive autoregressive behavior in

market prices in which the growth rate is related to the dynamic path of the discount rate. By doing so

we provide an alternative economic mechanism for exuberance without resorting to rational

bubble models. In this sense we complement the recent literature on rationalizing the 1990s internet episode.

We apply our econometric approach to the Nasdaq index over the full sample period from 1973 to 2005

and some sub-periods. Using the forward recursive regression technique, we date stamp the origin and

conclusion of the explosive behavior. To answer the question raised by Greenspan in the first header

leading this article, we match the empirical time stamp of the origination against the dating of Greenspan’s

remark. The statistical evidence from these methods indicates that explosiveness started in June 1995,

thereby predating and providing empirical content to the Greenspan remark in December 1996. The

empirical evidence indicates that the explosive environment continued until August 2001.

If the discount rate is time invariant, the identification of explosive characteristics in the data is equivalent

to the detection of a stock bubble, as argued in Diba and Grossman (1987, 1988). Using standard unit

root tests applied to the real U.S. Standard and Poor’s Composite Stock Price Index over the period

1871-1986, Diba and Grossman (1988) tested levels and differences of stock prices for nonstationarity,

finding support in the data for nonstationarity in levels but stationarity in differences. Since differences
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of an explosive process still manifest explosive characteristics, these findings appear to reject the

presence of a market bubble in the data. Although the results were less definitive, further tests by Diba

and Grossman (1988) provided confirmation of cointegration between stock prices and dividends over

the same period, supporting the conclusion that prices did not diverge from long-run fundamentals and

thereby giving additional evidence against bubble behavior. Evans (1991) criticized this approach, showing

that time series simulated from a nonlinear model that produces periodically collapsing bubbles manifests

more complex bubble characteristics that are typically not uncoverable by standard unit root and

cointegration tests. He concluded that standard unit root and cointegration tests are inappropriate tools

for detecting bubble behavior because they cannot effectively distinguish between a stationary process

and a periodically collapsing bubble model. Patterns of periodically collapsing bubbles in the data look

more like data generated from a unit-root or stationary autoregression than a potentially explosive process.

Recursive tests of the type undertaken in our paper are not subject to the same criticism and, as

demonstrated in our analysis and simulations reported below, are capable of distinguishing periodically

collapsing bubbles from pure unit root processes.

The remainder of the paper is organized as follows. Section 2 defines market exuberance, discusses

model specification issues and relates exuberance to the earlier literature on rational bubbles as well as

the recent literature on rationalizing episodes of escalation in asset prices in terms of economic

fundamentals. Section 3 discusses some econometric issues, such as finite sample estimation bias and

the construction of valid asymptotic confidence intervals for mildly explosive processes. Section 4

describes the data used in this study. The empirical results are reported in Section 5. Section 6 documents

the finite sample properties of our tests. This section also develops some asymptotic properties of the

Evans (1991) model of periodically collapsing bubbles and develops a new model in which the bubble

duration depends on the strength of the cognitive bias underlying the herd behavior in the market.

Simulations with these models are conducted and the finite sample properties of the tests are analyzed.

Section 7 concludes.

2. Specification Issues

2.1 Exuberance, Explosiveness, and Bubbles

When Greenspan coined “irrational exuberance”, the phrase was not defined – see the primary header

to this article. Instead, the appellation can be interpreted as a typically cryptic warning that the market

might be overvalued and in risk of a financial bubble. In the event, as the second header leading this

article indicates, the subsequent rise and fall of internet stocks to the extent of $8 trillion of shareholder

wealth renewed a long-standing interest among economists in the possibility of financial bubbles.

Theoretical studies on rational bubbles in the stock market include Blanchard (1979), Blanchard and

Watson (1982), Shiller (1984), Tirole (1982, 1985), Evans (1989), and Evans and Honkapohja (1992),

among many others; and empirical studies include Shiller (1981), West (1987, 1988), Campbell and

Shiller (1987, 1989), Diba and Grossman (1988), Froot and Obstfeld (1991), and Wu (1997). Flood and

Hodrick (1990) and Gurkaynak (2005) survey existing econometric methodologies and test results

for financial bubbles.
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It is well known in the rational bubble literature that bubbles, if they are present, should manifest explosive

characteristics in prices. This statistical property motivates a definition of exuberance in terms of explosive

autoregressive behavior propagated by a process of the form  where for certain

subperiods of the data  > 1. Figure 2 gives typical time series plots for stationary (  = 0.9), random walk

(  = 1.0) and explosive processes (  = 1.02) with intercept = 0 and inputs  (0, 1). The

differences in the trajectories are quite apparent.

The concept of rational bubbles can be illustrated using the present value theory of finance whereby

fundamental asset prices are determined by the sum of the present discounted values of expected

future dividend sequence. Most tests begin with the standard no arbitrage condition below

(1)

where  is the real stock price (ex-dividend) at time ,  is the real dividend received from the asset for

ownership between  –1 and , and  is the discount rate (  > 0). This section assumes  to be time

invariant. Section 2.2 examines the effects of time varying discount rates.

We follow Campbell and Shiller (1989) by taking a log-linear approximation2 of (1), which yields the

following solution through recursive substitution:

(2)

where

(3)

(4)

with , with  being the

average log dividend-price ratio, and

Obviously, 0 <  < 1. Following convention, we call  , which is exclusively determined by expected

dividends, the fundamental component of the stock price, and , which satisfies the difference equation

2 While log linear approximations of this type about the sample mean are commonly employed in both theoretical and empirical
work, we remark that they may be less satisfactory in nonstationary contexts where the sample means do not converge to
population constants. We therefore used the series both in log levels and in levels in our empirical work and found very similar
results for both cases.
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(5) below, the rational bubble component. Both components are expressed in natural logarithms. As

exp(  ) > 0, the rational bubble  is a submartingale and is explosive in expectation. Equation (4)

implies the following process

(5)

where  is the growth rate of the natural logarithm of the bubble and  is

a martingale difference.

As evident from (2), the stochastic properties of  are determined by those of  and . In the absence

of bubbles, i.e.,  = 0, , we will have  =  , and  is determined solely by  and hence by . In this

case, from (3), we obtain

(6)

If  and  are both integrated processes of order one, denoted by I(1), then (6) implies that  and  are

cointegrated with the cointegrating vector [1,-1].

If bubbles are present, i.e.,  , since (5) implies explosive behavior in ,  will also be explosive by

equation (2), irrespective of whether  is an integrated process, I(1), or a stationary process, denoted by

I(0). In this case,  is also explosive and therefore cannot be stationary. This implication motivated

Diba and Grossman (1988) to look for the presence of bubble behavior by applying unit root tests to

. Finding an empirical rejection of the null of a unit root in , Diba and Grossman (1988) concluded

that  was not explosive and therefore there was no bubble in the stock market.

In the case where  is I(1) and hence  is I(0), equation (6) motivated Diba and Grossman (1988) to

look for evidence of the absence of bubbles by testing for a cointegrating relation between  and . In

the presence of bubbles,  is always explosive and hence cannot co-move or be cointegrated with  if

 is itself not explosive. Therefore, an empirical finding of cointegration between  and  may be taken

as evidence against the presence of bubbles.

Evans (1991) questioned the validity of the empirical tests employed by Diba and Grossman (1988) by

arguing that none of these tests have much power to detect periodically collapsing bubbles. He

demonstrated by simulation that the low power of standard unit root and cointegration tests in this

context is due to the fact that a periodically collapsing bubble process can behave much like an I(1)

process or even like a stationary linear autoregressive process provided that the probability of collapse

of the bubble is not negligible. As a result, Evans (1991, p.927) claimed that “periodically collapsing

bubbles are not detectable by using standard tests. ”
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Equations (5) and (2) suggest that a direct way to test for bubbles is to examine evidence for explosive

behavior in  and  when the discount rate is time invariant. Of course, explosive characteristics in 

could in principle arise from  and the two processes would then be explosively cointegrated. However,

if  is demonstrated to be nonexplosive, then the explosive behavior in  will provide sufficient evidence

for the presence of bubbles because the observed behavior may only arise through the presence of .

Of course, it seems likely that in practice explosive behavior in  may only be temporary or short-lived,

as in the case of stock market bubbles that collapse after a certain period of time. Thus, the actual

generating mechanism for  can be much more complex than (5) and can reflect aspects of the market

such as herd behavior and cognitive bias (see Section 6.2). Some of these possibilities can be taken into

account empirically by looking at subsamples of the data.

Looking directly for explosive behavior in  and non-explosive behavior in  via right-tailed unit root

tests is one aspect of the empirical methodology of the present paper. Although this approach is

straightforward, it has received little attention in the literature. One possible explanation is the consensus

view that “empirically there is little evidence of explosive behavior” in stock prices, as noted in Campbell,

Lo and MacKinlay (1997, p.260) for instance. However, as Evans (1991) noted, explosive behavior is

only temporary when economic bubbles periodically collapse and in such cases the observed trajectories

may appear more like an I(1) or even stationary series than an explosive series, thereby confounding

empirical evidence. He demonstrated by simulation that standard unit root tests had difficulties in detecting

such periodically collapsing bubbles. In order for unit root test procedures to be powerful in detecting

explosiveness, we propose the use of recursive regression techniques and show below by analytic

methods and simulations that this approach is effective in detecting periodically collapsing bubbles.

Using these methods, the present paper finds that when recursive tests are conducted and data from

the 1990s are included in the sample, some strong evidence of explosive characteristics in  emerges.

Our tests are implemented as follows. For each time series  (log stock price or log dividend), we apply

the augmented Dickey-Fuller (ADF) test for a unit root against the alternative of an explosive root (the

right-tailed). That is, we estimate the following autoregressive specification by least squares3

(7)

for some given value of the lag parameter , where  denotes independent and normal distribution.

In our empirical application we use significance tests to determine the lag order , as suggested in

Campbell and Perron (1991). The unit root null hypothesis is  :  = 1 and the right-tailed alternative

hypothesis is  :  > 1.

In forward recursive regressions, model (7) is estimated repeatedly, using subsets of the sample data

incremented by one observation at each pass. If the first regression involves  observations,

for some fraction  of the total sample where [ ] signifies the integer part of its argument, subsequent

3 We also implemented the Phillips (1987) test and obtained very similar results to the ADF test.
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regressions employ this originating data set supplemented by successive observations giving a sample

of size  for . Denote the corresponding t-statistic by  and hence 

corresponds to the full sample. Under the null we have

and

where  is the standard Brownian motion.

Comparison of  with the right tailed critical values from sup  makes it possible

to test for a unit root against explosiveness. However, this testing procedure cannot stamp the emergence

or the burst of bubbles. To locate the origin and the conclusion of bubbles, one can match the time

series of , with , against the right tailed critical values from the asymptotic distribution of

the standard Dickey-Fuller t-statistic.

If these tests lead to a rejection of  in favor of , then we may construct a valid asymptotic confidence

interval for  using some new econometric theory for the explosive case, as explained in Section 3.

2.2 The Effects of a Time Varying Discount Rate

The above discussion uses a fixed discount rate . Allowing  to vary over time does not change the

explosive behavior of the bubble component, but it can have important effects on the fundamental

price. Recent work by Pastor and Veronesi (2006) has emphasized this possibility. These authors show

that the combination of a time varying discount rate and high uncertainty about future dividend growth

can substantially inflate market prices. Using a regime-switching model, Lettau et al. (2006) similarly

found that a significant portion of the price run-up can be accounted for by declining macroeconomic

risk. Neither of these papers discuss the potential for explosive dynamic effects in prices. The present

section illustrates this possibility by developing a simple propagating mechanism for explosive behavior

in the fundamental price under a time varying discount rate.

If dividends grow at a constant rate  with <  in (1), the fundamental value of the stock price4

(8)

This is the well-known Gordon growth model. It is evident that in this case the fundamental value can be

very sensitive to changes in  when  is close to . In fact, the fundamental value diverges as  ,

so that a price run-up is evidently possible under certain time profiles for the discount rate. This simple

4 This section develops the model in levels for analytic convenience.
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Gordon model reveals the potential impact of a time varying discount rate, but it provides no price

dynamics. The following argument provides an analytic formulation that shows how an explosive time

path in fundamental values can be generated by time variation in the discount rate.

Consider a continuous time version of (8) with time varing discount rate , viz.,

(9)

Suppose dividends have a constant expected growth rate  such that

(10)

and then  is a martingale when  = 0. Combining (9) and (10)

(11)

Given some fixed time point , constants > 0 and  >  > 0, let the time profile of the discount rate

 for  be as follows:

(12)

Then, the discount rate decreases towards some level  as  and jumps to the level

 immediately thereafter, as shown in Figure 3. Thus, the time profile of the discount

factor has a structural break at  in which a higher rate of discounting occurs at . The break itself

widens asymptotically as .

We then have

and the time path of  is explosive over . Over this interval,  evolves according to the

differential equation



Hong Kong Institute for Monetary Research

9

For  close to  the generating mechanism for  is approximately

which is an explosive diffusion because

since  > 0 and  < 1. The discrete time path of  in this neighbourhood is therefore propagated

by an explosive autoregressive process with coefficient .

The heuristic explanation of this behavior is as follows. As  there is growing anticipation that the

discount factor will soon increase. Under such conditions, investors anticipate the present to become

more important in valuing assets. This anticipation in turn leads to an inflation of current valuations and

price fundamentals  become explosive as this process continues.

On the other hand, for  >  we have

and then

So,  for >  and price fundamentals are collinear with  . When  is a Brownian motion

or an integrated process in discrete time,  and  are cointegrated. Thus, after time , price

fundamentals comove with .
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It follows that the time profile (12) for the discount rate  induces a subinterval of explosive behavior in

 before . In this deterministic setting, it is known as time  approaches that there will be an upwards

shift in the discount rate that makes present valuations more important. A more realistic model might

allow for uncertainty in this time profile and a stochastic trajectory for  that accommodated potential

upwards shifts of this type. Recursive tests of the type such as those described in the last section may

be used to assess evidence for subperiods of explosive price behavior that are induced by such time

variation in the discount rate.

3. Econometric Issues

3.1 Econometric Analysis of Explosive Processes

Recent work by Phillips and Magdalinos (2007a, 2007b) has provided an asymptotic distribution theory

for mildly explosive processes that can be used for confidence interval construction in the present

context. These papers deal with an explosive model of the form

(13)

which is initialized at some  independent of  , and where  is a sequence

increasing to  such that  as  . The error process  may comprise either independent

and identically distributed random variables or a weakly dependent time series with  = 0 and uniform

finite second moments so that sup .

The sequence  is local to the origin in the sense that  as , but for any

finite  it involves moderate deviations from a unit root, i.e., deviations that are greater than the

conventional  deviations for which unit root tests have nontrivial local power properties (see

Phillips, 1987) and unit root type distributions apply. The corresponding time series (which is strictly

speaking an array process)  in (13) is mildly explosive. Importantly,  may be within a slowly varying

factor of , for instance log , so that we may have .

Models of the form (13) seem well suited to capturing the essential features of economic and financial

time series that undergo mildly explosive behavior. They also seem appropriate for capturing periodically

collapsing bubble behavior where the bubble may appear over a subperiod of length  < . These

mildly explosive models have the very interesting and somewhat unexpected property, established in

Phillips and Magdalinos (2007a, 2007b), that they are amenable to central limit theory. Moreover, the

limit theory turns out to be invariant to the short memory properties of the innovations , so that

inferential procedures based on this limit theory is robust to many different departures from simple i.i.d.

errors. This means that the models and the limit theory may be used as a basis for statistical inference

with processes that manifest mildly explosive trajectories. For economic and financial data, this typically

means values of  that are in the region [1.005, 1.05]. In particular, if  and  = 200, we

have  [1.002, 1.053] for c  [0.1, 2] .
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Under some general regularity conditions, Phillips and Magdalinos show that the least squares regression

estimator  has the following limit theory for mildly explosive processes

of the form (13):

where  is a standard Cauchy random variable. It follows that a 100 (1 –  )% confidence interval for 

is given by the region

where  is the two tailed  percentile critical value of the standard Cauchy distribution. For 90, 95 and

99 percent confidence intervals, these critical values are as follows:

 = 6.315,  = 12.7,  = 63.65674

These values can be compared with the corresponding Gaussian critical values of 1.645, 1.96, 2.576.

The confidence intervals and limit theory are also invariant to the initial condition  being any fixed

constant value or random process of smaller asymptotic order than . This property provides some

further robustness to the procedure.

3.2 Finite Sample Bias Correction via Indirect Inference Estimation

Least squares (LS) regression is well known to produce downward biased coefficient estimates in the

first order autoregression (AR). This bias does not go to zero as the AR coefficient  and the bias

increases as  gets larger. It is therefore helpful to take account of this bias in conducting inference on

autoregressive coefficients such as  in (13). Several statistical procedures are available for doing so,

including the use of asymptotic expansion formulae (Kendall, 1954), jackknifing (Quenouille, 1956; and

Efron, 1982), median unbiased estimation (Andrews, 1993) and indirect inference (Gouriéroux et al., 1993).

Indirect inference was originally suggested and has been found to be highly useful when the moments

and the likelihood function of the true model are difficult to deal with, but the true model is amenable to

data simulation. In fact, the procedure also produces improved small sample properties and has the

capacity to reduce autoregressive bias, as shown by Gouriéroux et al. (2000) in the time series context

and Gouriéroux et al. (2007) in the dynamic panel context. We shall use indirect inference in the present

application because of its known good performance characteristics and convenience in autoregressive

model estimation.
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To illustrate, suppose we need to estimate the parameter  in the simple AR(1) model (i.e.  = 0 in model (7)5 )

(14)

from observations  , where the true value of  is . Some autoregressive bias reduction

methods, such as Kendall’s (1954) procedure, require explicit knowledge of the first term of the asymptotic

expansion of the bias in powers of . Such explicit knowledge of the bias is not needed in indirect

inference. Instead, indirect inference calibrates the bias function by simulation. The idea is as follows.

When applying LS to estimate the AR(1) model with the observed data, we obtain the estimate  and

can think of this estimate and its properties (including bias) as being dependent on  through the data.

Given a parameter choice , let  be data simulated from the true model, for h = 1,... , 

with  being the total number of simulated paths. Note that these simulations rely on the distributional

assumption made in (14). Let the LS estimator based on the  simulated path, given , be denoted

by .

The indirect inference estimator is defined as the extremum estimator

(15)

where  is some finite dimensional distance metric, and  is the parameter space which is compact.

In the case where  tends to infinity, the indirect inference estimator becomes

(16)

where  is the so-called binding function. In this case, assuming the function  to be

invertible, the indirect inference estimator is given by

The procedure essentially builds in a small-sample bias correction to parameter estimation, with the

bias being computed directly by simulation.

It can be shown that the asymptotic distribution of  is the same as that of  as  and

. So the asymptotic confidence interval derived in the previous section applies equally well to

the indirect inference estimator and will be implemented in what follows.

5 When  > 0, we need to augment model (14) accordingly.
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4. Data

Our data are taken from Datastream International. We collect monthly observations on the Nasdaq

composite price index (without dividends) and the Nasdaq composite dividend yields, and compute the

Nasdaq composite dividend series from these two series. We use the Consumer Price Index (CPI),

which is obtained from the Federal Reserve Bank of St. Louis, to convert nominal series to real series.

Our sample covers the period from February 1973 to June 2005 and comprises 389 monthly observations.

Figure 1 plots the time series trajectories of the Nasdaq real price and real dividend indices. Both series

are normalized to 100 at the beginning of the sample. As can be seen, both price and dividend grew

steadily from the beginning of the sample until the early 1990s. The price series then began to surge and

the steep upward movement in the series continued until the late 1990s as investment in DotCom

stocks grew in popularity. Early in the year 2000 the price abruptly dropped and continued to fall to the

mid 1990s level. The dividend series, on the other hand, remained steady throughout the sample period.

5. Testing and Dating Exuberance

Table 1 reports the  and sup   test statistics for both the log Nasdaq real price and log

Nasdaq real dividend indices for the full sample from February 1973 to June 2005, where  = 0.10. Also

reported are the various critical values for each of the two tests. For the  test, the asymptotic

critical values are obtained from Fuller (1996, Table 10.A.2). For sup   , the critical values are

obtained using Monte Carlo simulation based on 10,000 replications. Several conclusions are drawn

from the table. First, if we were to follow the convention and apply the ADF test to the full sample

(February 1973 to June 2005), the tests could not reject the null hypothesis  :  = 1 in favor of the

right-tailed alternative hypothesis  :  > 1 at the 5 percent significance level for the price series, and

therefore one would conclude that there was no significant evidence of exuberance in the price data. If

one believes in a constant discount rate, the result is consistent with Diba and Grossman (1988) and is

subject to the criticism leveled by Evans (1991) because standard unit root tests for the full sample

naturally have difficulty in detecting periodically collapsing bubbles. Second, the sup   test,

on the other hand, provides significant evidence of explosiveness in the price data at the 1 percent level,

suggesting the presence of price exuberance, but no evidence in the dividend data. However,

sup   cannot reveal the location of the exuberance.

To locate the origin and the conclusion of exuberance, Figure 4 plots the time series of the 

statistics together with the 5 percent asymptotic critical value for the log real price and the log real

dividend.6 The optimal lag length is determined using the procedure suggested by Campbell and Perron

6 The 5 percent asymptotic critical value is -0.08, which is very close to the 5 percent finite-sample critical value (-0.03) with 50
observations. Therefore, our conclusions from Figure 4 stay the same even if we apply the latter conservative critical value of
-0.03 to the forward recursive regressions.

We have also conducted the tests using price and dividend series in levels rather than in natural logarithms. The results are
similar and the conclusions remain qualitatively unchanged. They are not reported to conserve space and are available upon
request.

The above remarks apply to Figure 5 discussed below as well.
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(1991). Starting with 12 lags in the model, coefficients are sequentially tested for significance at the 5

percent level, leading to the selection of the model for which the coefficient of the last included lag is

significant at the 5 percent level.7 The initial start-up sample for the recursive regression covers the

period from February 1973 to April 1976 (10 percent of the full sample).

The forward recursive regressions give some interesting new findings (see Figure 4). The dividend series

is always nonexplosive. The stock price series is also tested to be nonexplosive for the initial sample,

which suggests no evidence of exuberance in the initial data. This feature is maintained until May 1995.

In June 1995, the test detects the presence of exuberance in the data and the evidence in support of

price exuberance becomes stronger from this point on and peaks in February 2000. The exuberance is

detected as continuing until July 2001, and by August 2001 there is no longer any evidence of exuberance

in the data. Interestingly, the first occurrence date for price exuberance in the data is June 1995, which

is 18 months before Greenspan’s historic remark of “irrational exuberance” made in December 1996.

To highlight the explosive behavior in the Nasdaq during the 1990s, we carry out the analysis using two

sub-samples. The first sub-sample is from January 1990 to December 1999, the 10-year period that

recent researchers have focused on (e.g., Pastor and Veronesi, 2006; Ofek and Richardson, 2003; and

Brunnermeier and Nagel, 2004). Panel A of Table 2 reports the test results. As above, we apply the

 and sup   tests for a unit root against the alternative of an explosive root to both the log real

price and log real dividend series. We also obtain the least squares estimate , the indirect inference

estimate , the 95 percent asymptotic confidence interval of  based on , and critical values for the

unit root tests.

All the results give strong evidence of explosiveness in  . For example, for the log real Nasdaq price

index, the  statistic for the full sample is 2.309, far exceeding the 1 percent critical value of 0.60.

Similar results occur with the sup   test. We therefore reject the null hypothesis of a unit root at the

1 percent significance level in favor of explosive behavior for the Nasdaq stock index. In contrast, there

is no evidence that the log real dividend series exhibits explosive behavior.8

Figure 5 graphs the trajectory of the  statistics together with the 5 percent asymptotic critical

value for sample observations from January 1990 to the end of the sample. As for the full sample, we

choose  = 0.10. Similar to Figure 4, we again date the start of price exuberance in June 1995, so the

empirically determined date of origination of the exuberance appears robust to the choice of the initial

sample. The recursive regressions detect the conclusion of exuberance in October 2000, somewhat

earlier than that reported in Figure 4.

7 Ng and Perron (1995) demonstrate that a too parsimonious model can have large size distortions, while an over-parameterized
model may result in reduction of test power. They show that methods based on sequential tests have an advantage over
information-based rules because the former have less size distortions and have comparable power.

8 The 5 and 1 percent critical values for a unit root against the stationary alternative are -2.86 and -3.42, respectively. Based on
these critical values, the  test will indeed reject the null hypothesis of a unit root in favor of the alternative of stationarity
for the dividend series.
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The autoregression gives the AR coefficient estimate  = 1.025 in stock price. Assuming that the error

term in the regression follows an i.i.d. normal distribution and  = 0, we obtain the indirect inference

estimate  = 1.033 via simulation with 10,000 replications. The associated 95 percent asymptotic

confidence interval for  is [1.016, 1.050]. This implies that the log stock price  will grow at the explosive

rate of 3.3 percent per month. Since the dividend series  is not explosive, with a constant discount

rate the fundamental price  is also not explosive, being determined exclusively by dividends according

to (3). Therefore, from (2),  (the log bubble) must also be explosive with a growth rate at least as high as

the growth rate of stock price,  = 3.3 percent per month. With 95 percent confidence, the true growth

rate  lies in the range between 1.6 and 5 percent per month. Under the assumption of constant discount

rate, this provides sufficient conditions for the presence of a bubble.

To understand the implication of the estimated explosive rate for stock price, suppose that the Nasdaq

index were over-valued by around 10 percent when Greenspan made his “irrational exuberance” comment

in December 1996. Then the initial size of the log bubble would be  =  = (1.10) = 0.0953 in

December 1996. Using the indirect inference estimate of the growth rate  = 0.033, we may calculate

that, by March 2000 when the Nasdaq index reached its historic high (39 months later), the expected log

level of the price bubble would have risen to  = (1 + 0.033)39 X 0.0953 = 0.338, and the ratio of the

expected Nasdaq price to its fundamental value would have been  = exp(  ) = exp(0.338) = 1.40. In

other words, after 39 months, the expected Nasdaq index would have become around 40 percent

over-valued relative to its fundamental.

Notice that  = 1.033 reported in Panel A of Table 2 gives an unbiased estimate of the explosive root

for the stock price process , which can be considered a lower bound of the explosive root of the

unobservable bubble process . The reason is as follows. From (2), we know that the actual stock price

consists of the fundamental component and the bubble component. Under the assumption that the

fundamental component is either I(1) or I(0) and the bubble component is explosive, if a bubble lasts for

a sufficiently long period of time, the bubble component will dominate the fundamental component and

the actual stock price will grow at around the same speed as the bubble component does. However,

within a limited time period when a bubble is first developing, the magnitude of the bubble component

may be small relative to the fundamental component even though the process is explosive, and therefore

employing the stock price series for estimation will under-estimate the true growth rate of the bubble.

To provide a more realistic estimate of the growth rate of the bubble, since the Nasdaq index kept rising

after December 1999, we implement the  test by extending the first sub-sample to June 2000

when the test detects explosive price behavior with the most significant ADF test statistic. Panel B of

Table 2 reports the least squares estimate for this sample,  = 1.036, which yields the indirect inference

estimate  = 1.040. This implies a growth rate g = 4 percent per month. While this is still a lower bound

estimate of the growth rate of the bubble process, it is plausible to think of it as the closest to the

true growth rate.

Suppose that the Nasdaq index were over-valued by 10 percent when our test first detected the bubble

to start in June 1995, then the initial size of the bubble is  =  = (1.10)= 0.0953. Using the

above unbiased estimate of the speed of the bubble, by June 2000 (60 months later) when our test
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detected the bubble to be the strongest, the expected size of the bubble would have become

 = (1 + 0.04)60X 0.0953 =1.0025. This implies that the ratio of the expected Nasdaq price to its

fundamental value would have been  = exp(  ) = exp(1.0025) = 2.73. In other words, the expected

value of the Nasdaq index would have been 173 percent over-priced relative to its fundamental value

after 60 months. The actual Nasdaq index peaked at 5,048.62 points on March 10, 2000, then dropped

to 1,950.4 by December 31, 2001 and to 1,335.31 by December 31, 2002. If the year 2001 end value is

considered close to the “fundamental” value, then the Nasdaq index would be 159 percent over-priced

at the peak (5049/1950 = 2.59). On the other hand, if the year 2002 end value is considered the

“fundamental” value, the peak value would be 278 percent over-priced (5049/1335 = 3.78). Therefore,

the above estimate of the growth rate of the bubble matches the actual Nasdaq price dynamics

reasonably well.

6. Finite Sample Properties

6.1 Unit Root Tests for an Explosive Bubble

While standard unit root tests have been applied to test for unit roots against explosiveness in the price

series  in Diba and Grossman (1988) and Evans (1991), both papers only examined the finite sample

performance of the standard unit root tests for the bubble  (see Section VI in Diba and Grossman and

Section III in Evans). Naturally, however, it is more informative to verify the finite sample performance of

the standard unit root tests in the price series itself  because in practice the price series is observed

but the bubble series is not.

Consider the following data generating process, where the fundamental price follows a random walk

with drift and the bubble process is a linear explosive process without collapsing:

(17)

(18)

where  NID(0,  ) and  NID(0,  ). We use Nasdaq price index data from February 1973

to December 1989 (i.e., before the 1990s explosive price period started) to estimate the fundamental

process, assuming that there was no bubble during this period so that  =  . This estimation yields

the values  = 0.00227 and  = 0.05403. We then use these two parameter values along with  = 0.04

(based on the indirect inference estimate of   in Panel B of Table 2) to obtain the estimate of the bubble

innovation  = 0.0324 by employing data for the explosive period January 1990 to June 2000 via the

Kalman filter, as in Wu (1997). These parameters  ,  , and  are used to conduct simulations under

different assumptions about the speed parameter  and the initial level of the bubble  with 120

observations and 10,000 replications. The simulation results are reported in Panel A of Table 3. Panel B

displays the results for different values for the bubble innovation standard deviation , while the speed

parameter  is set to 0.04, which is the indirect inference estimate of  – 1 reported in Panel B of Table 2.
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It is known from Diba and Grossman (1988) that standard unit tests can detect explosive characteristics

in . Our simulation results suggest that the standard unit root tests can also detect the explosive

characteristics in  when bubbles appear in the empirically realistic settings as long as the bubbles are

not periodically collapsing. Panel A of Table 3 clearly demonstrates that the test power is higher, the

larger is the growth rate  and/or the larger is the initialization . When the growth rate  is larger than

0.01, the test has substantial power against the explosive alternative and when  = 0.04 (the indirect

inference estimate using the Nasdaq stock index during the bubble period), the test has nearly perfect

power against the explosiveness alternative regardless of the initial level of the bubble . Panel B of

Table 3 shows that smaller values of the standard deviation  lead to greater test power provided the

initial value  is not too small (here  > 0.03). Overall, the power is not very sensitive to the innovation

standard deviation  or to the initial value of t he bubble  and is quite high with the growth rate  = 0.04.

6.2 Recursive Unit Root Tests and Periodically Collapsing Bubbles

The above simulation design does not allow for the possibility of periodically collapsing bubbles, an

important class of bubbles that seem more relevant in practical economic and financial applications.

Evans (1991) proposed a model to simulate such collapsing bubble and showed that standard unit root

tests had little power to detect this type of bubble. In this section, we first design a simulation experiment

to assess the capacity of our recursive regression tests to detect this type of periodically collapsing

bubble. We show that although the tests are inconsistent in the context, in finite samples the tests have

good power. We further validate the consistency of the tests by introducing an alternative model for

periodically collapsing bubbles.

Evans’s (1991) Periodically Collapsing Bubble Model

Evans (1991) suggested the following model for a bubble process  that collapses periodically:9

(19)

(20)

where  > 0,  = exp (  – /2) with  NID(0, ),  is an exogenous Bernoulli process which takes

the value 1 with probability  and 0 with probability 1–  . Evans (1991) specifies his model in levels and

so price, dividend and bubble are in levels and are expressed in upper-case letters. This model has the

property that +1 satisfies ( +1) = (1 + ) , analogous to (4). The model generates bubbles that

survive as long as the initial bounding condition     applies (say  ) and thereafter only as long

as the succession of identical realizations  = 1,  = 1, 2, . . . hold. The bubble bursts when  = 0.

9 Blanchard (1979), Flood and Garber (1980), and Blanchard and Watson (1982) first propose stochastic bubbles that can burst
with a fixed probability. Burmeister, Flood and Garber (1983) show the equivalence of a class of different-looking stochastic
bubble processes.
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To facilitate comparisons between our simulation results with those of Evans (1991), we use the same

simulation design and parameter settings as his. In particular, a bubble process  of 100 observations

is simulated from the model (19) and (20) with the parameter settings  = 0.05,  = 1, = 0.5,  = 0.5,

and = 0.05, and  is a Bernoulli process which takes the value 1 with probability  and 0 with probability

1– . When  = 0, the bubble bursts. We choose the value  =0.999, 0.99, 0.95, 0.85, 0.75, 0.5, 0.25. In

addition, a dividend series (in levels) of 100 observations is simulated from the following random walk

model with drift:

where  = 0.0373,  = 0.1574,  = 1.3. Consequently, the fundamental price is generated from

and the simulated price series follows as . In the simulations reported,  is scaled upwards

by a factor of 20, as suggested in Evans (1991).

Table 4 reports the empirical power of the  and sup   statistics for testing an explosive

bubble based on the 5 percent critical value reported in Table 1 and 10,000 replications. We should

emphasize that, unlike Evans (1991) who assumed that  is observed and tested the explosiveness

in , we apply the  test to the price series itself . Several interesting results emerge from the

table. First, the power of the  test depends critically on . When  = 0.999 or 0.99, the  test

has considerably good power (0.914 and 0.460 respectively). When   0.95, the   test has

essentially no power. These results are consistent with those reported in Evans (1991, Table 1). Second,

the power of the sup   statistic also depends on , but in a much less drastic way. For example,

when = 0.25, it still has considerable power (0.340). For empirically more relevant cases, say when

 = 0.95, the power of sup   becomes much higher (0.714).

Clearly the performance of the tests is determined by the time span of a bubble. In Appendix A, we

formally show that the maximum time span of a collapsing bubble in Evans’s (1991) model is  (log ) ,

which is very short relative to the full sample size , so that standard unit root tests cannot be expected

to perform well. This Appendix A further shows that in a regression of  +1 on  with  (log )

observations from an explosive period, the signal in the regression has the maximum order of 

(  ). When log ( ) < 1+   , this  signal is smaller than that of an integrated process,

whose  signal is  ( ), and significantly less than that of an explosive process. These findings explain

the failure of conventional unit root tests to detect bubbles of this type, confirming the simulations in

Evans (1991) and in our Table 4.

In recursive regressions, the signal will be comparatively stronger because the data set is shorter and it

will be emphasized when the end point in the recursion occurs toward the end of a bubble. This argument

suggests that there will be some statistical advantage to the use of recursive regression techniques and

the use of a sup test in assessing the evidence for periodically collapsing bubbles, as confirmed in Table

4. However, in a recursive regression using samples of size  = [ ] for  > 0, the maximum length of the

bubble is still  (log ) and this is still not long enough relative to  for a recursive test to be consistent
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essentially because the signal is not strong enough. This limitation shows up in the simulations as the

test performs worse when  gets smaller, although the power for the sup test is clearly non trivial and

substantially better than that of conventional tests. We might expect some additional gain from the use

of a rolling regression in conducting the test, where the sample size (N) used for the regression has

smaller order than , for instance, N = [  ] for some  < 1, or even N = O (log ). When N = [  ] , for

instance, the signal from the explosive part of the data, which still has the time span of  (log ), will

dominate provided that  < 2 log (  )–  . However, in the case of rolling regressions of this type, tests

generally have different limit distributions from those studied already in the unit root and structural break

literature, for example by Banerjee et al. (1993), where rolling regressions of length proportional to the

sample size  are used.

An Alternative Model of Periodically Collapsing Bubbles

In Evans’s (1991) periodically collapsing bubble model, whether a bubble collapses or not depends

entirely on a Bernoulli process. In this simple setup, the bubble collapses with a constant probability ,

regardless of the state of the economy, such as the strength of the cognitive bias. We next develop a

model in which the duration of the periodically collapsing bubble depends on the strength of the cognitive

bias underlying herd behavior in the market. While this quantity is obviously unobserved, there may be

proxy or determining variables for it that could be used in empirical modeling, as in the approach taken

by Hu and Phillips (2004) in modeling Federal funds rate target decisions by the Federal Open Market

Committee, where certain relevant observable macroeconomic variables were used to capture the

determining fundamentals used by the Fed in assessing prevailing economic conditions and the need

for market intervention.

The model of Hu and Phillips was formulated as an ordered discrete choice model where the determining

variables involved some integrated processes. In the present case, the mechanism may be assumed to

be governed by an unobserved stochastic process representing an index of herd market thinking. Suppose

that this index follows an integrated process  =  , where  is a zero mean, stationary process

with continuous spectral density ( ) , representing the latest contribution to cognitive bias in the

market. When  > 0 there will be a positive cognitive bias that supports the bubble phenomenon, and

when  < 0 the cognitive bias is negative. Assume that there is some level  < 0 of this index that

represents a degree of negative cognitive bias that is sufficient to end the bubble phenomena. Then,

bubble conditions will be sustained while the index  remains above . If the bubble begins at t = 0 at

level  as in (19) and reaches the level  >  at time , bubble conditions will last as long as they are

sustained by herd market thinking. So our model for a bubble process  that collapses periodically can

be written as

(21)

(22)

where  > 0,  = exp(  –  /2) with  NID(0, ), +1 takes the value 1 when +1 >  and 0

when +1 ≤  and is independent of , and  = Pr( +1 >  |   > ). We again have

 ( +1) = (1 + ) , consistent with (4).
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In Appendix B, we show that if  ~ NID(0, ) and  =   for some  < 0, the duration of the bubble

is measured by [  ]+  (1) where =  is the first passage time of a standard

Brownian motion ( ) to the level  . For this model, we can expect recursive tests to be consistent

because the length of the explosive component is of order  ( ) and therefore long enough to ensure

that the signal is exponentially large with positive probability at some point in the recursion.

To facilitate comparisons with the simulation results reported in the previous section, we use the same

simulation design and parameter settings. As to the simulation of cognitive bias, we chose the value

 =-0.3, -0.2, -0.15, -0.1. Table 5 reports the empirical power of the  and  statistics

for testing an explosive bubble based on the 5 percent critical value reported in Table 1 and 10,000

replications. Several interesting results emerge from the table. First, the  test performs better in

our model than in the Evans model. So the standard unit root tests are more likely to pick up bubbles in

our model than in the Evans model. However, the power remains low. For example, when  =-0.3,

the power of the  test is 0.346; when  =-0.1, the power of the  test becomes 0.350.

Second, the power of the  test is considerably higher than that of  in all cases and also

higher than that of the  test under the Evans model. For example, when    =-0.1, the

power of the  test under the new bubble model is 0.730.

To further investigate the consistency of the tests, we examine the power of the tests when the sample

size increases to 400. Table 6 reports the empirical power of the  and  statistics for

testing an explosive bubble based on the 5 percent critical value. As with the case of the sample size of

100, the power of  remains low. Indeed, when  =-0.1, the power of  becomes even

smaller, confirming our theoretical argument about the inconsistency of the test. On the other hand, the

power of  increases in all cases. These results confirm our theoretical argument about the

consistency of the tests.

7. Conclusion

This paper has proposed a new approach to testing for explosive behavior in stock prices that makes

use of recursive regression, right-sided unit root tests and a new method of confidence interval

construction for the growth parameter in stock market exuberance. Simulations reveal that the approach

works well in finite samples and has discriminatory power to detect explosive processes and periodically

collapsing bubbles when the discount rate is time invariant.

The empirical application of these methods to the Nasdaq experience in the 1990s confirms the existence

of exuberance and date stamps its origination and collapse. As the second quotation that heads this

article indicates, the existence of exuberance or “bubble” activity may be self evident to some economists

in view of the sheer size of the wealth created and subsequently destroyed in the Nasdaq market. Of

primary interest, therefore, are its particular characteristics such as the origination date, which we find

to be June 1995, the peak in February 2000, and the conclusion in August 2001. Comparison of this

statistical origination to the timing of the famous remark by Greenspan in December 1996 affirms that

Greenspan’s perceptions were actually supported by empirical evidence of exuberance in the data

at that time.
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Greenspan’s remarks are often taken to indicate foresight concerning the subsequent path of Nasdaq

stocks. The present findings indicate that his remarks were also supported in some measure by the

track record of empirical experience up to that time. Thus, Greenspan’s perspective concerning irrational

exuberance in stock prices and future profitability in December 1996 showed hindsight as well as foresight

concerning the impending escalation in technology asset values.

This paper has not attempted to identify explicit sources of the 1990s exuberance in internet stocks.

Several possibilities exist, including the presence of a rational bubble, herd behavior, or explosive effects

on economic fundamentals arising from time variation in discount rates. Identification of the explicit

economic source or sources will involve more explicit formulation of the alternative models and suitable

model determination techniques to empirically distinguish between such models. The present econometric

methodology shows how the data may be studied as a mildly explosive propagating mechanism. The

results confirm strong empirical support for such activity in the Nasdaq data over the 1990s.
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Table 1. Testing for Explosive Behavior in the Nasdaq Index from February 1973 to June 2005

This table reports  and sup   tests of the null hypothesis of a unit root against the

alternative of an explosive root, where  = 0.10. The optimal lag length for the ADF test is selected

according to top-down sequential significance testing, as suggested by Campbell and Perron (1991),

with the maximum lag set to 12 and the significance level set to 5 percent. The series are the log real

Nasdaq price index and log real Nasdaq dividend. The sample period is February 1973 to June 2005

with 389 monthly observations. The critical values for the ADF statistic are obtained from Fuller (1996,

Table 10.A.2) and the critical values for sup   are obtained by Monte-Carlo simulation with

10,000 replications.

sup  

log price -0.826 2.894

log dividend -1.348 -1.018

Critical Values for the Explosive Alternative

1 percent 0.60 2.094

 5 percent -0.08 1.468

10 percent -0.44 1.184
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Table 2. Testing for Explosive Behavior in the Nasdaq Index in the 1990s

This table reports  and sup    tests of the null hypothesis of a unit root against the

alternative of an explosive root, where  = 0.10. The optimal lag length for the ADF test is selected

according to top-down sequential significance testing, as suggested by Campbell and Perron (1991),

with the maximum lag set to 12 and the significance level set to 5 percent. The series are the log real

Nasdaq price index and log real Nasdaq dividend. Panel A reports the results for the period January

1990 to December 1999; Panel B reports the results for the period January 1990 to June 2000 when

explosive behavior is detected to be the strongest. The critical values for the ADF statistic are obtained

from Fuller (1996, Table 10.A.2) and the critical values for sup    are obtained by Monte-

Carlo simulation with 10,000 replications.

sup  95% Confidence Interval

Panel A. Sample Period: January 1990 to December 1999

log price 2.309 2.894 1.025 1.033 [1.016,1.050]

log dividend -8.140 -1.626 0.258

Panel B. Sample Period: January 1990 to June 2000

log price 2.975 2.975 1.036 1.040 [1.033,1.047]

log dividend -8.600 -1.626 0.204

Critical Values for the Explosive Alternative

1 percent 0.60 2.094

5 percent -0.08 1.468

10 percent -0.44 1.184
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Table 3. Power of the  Test

This table reports the empirical power of the ADF test for an explosive stock market bubble at the 5

percent nominal size level with 120 observations and 10,000 Monte-Carlo replications. The model used

for the experiment is  = + ,  =  + + ,  = (1+ )  + , with parameter values  = 0.00227,

 = 0.05403,  = 0.0324, estimated based on the Nasdaq price index data as described in the text.

These parameter values are used to conduct simulations under different assumptions about the speed

parameter  and the initial level of the bubble process . Results are reported in Panel A. Panel B

displays results with different values assigned to  and the bubble innovation standard deviation 

when the speed parameter  is set to its empirically fitted value of 0.04.

Panel A

Initial Value  = 0.00 (size)  = 0.01  = 0.02  = 0.03  =0.04

0.00 0.049 0.107 0.458 0.806 0.934

0.02 0.049 0.111 0.464 0.810 0.937

0.04 0.049 0.115 0.476 0.818 0.935

0.06 0.049 0.119 0.495 0.828 0.951

0.08 0.049 0.125 0.522 0.848 0.954

0.10 0.049 0.134 0.550 0.866 0.961

Panel B

Initial Value   = 0.005   = 0.01   = 0.02   = 0.03   = 0.04

0.00 0.652 0.817 0.901 0.930 0.942

0.02 0.822 0.851 0.905 0.933 0.944

0.04 0.972 0.911 0.924 0.934 0.948

0.06 0.999 0.962 0.936 0.945 0.950

0.08 1.000 0.988 0.953 0.952 0.955

0.10 1.000 0.998 0.968 0.961 0.961
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Table 4. Power of the  and sup   Tests under the Evans (1991) Model

This table reports the empirical power of the ADF test for an explosive bubble at the 5 percent nominal

size level with 100 observations and 10,000 Monte-Carlo replications. The model used for

the experiment is   where  with ,

 and  collapses periodically according to

with  > 0,  = exp(  – /2),  NID (0, ),  being a Bernoulli process which takes the value 1 with

probability  and 0 with probability 1 –  . We set  = 0.05,  = 1,  = 0.5,   = 0.5, = 0.05,  = 0.0373,

 = 0.1574,  = 1.3. We choose different values for .

 0.999 0.99 0.95 0.85 0.75 0.50 0.25

0.914 0.460 0.069 0.022 0.016 0.026 0.044

sup  0.992 0.927 0.714 0.432 0.351 0.342 0.340

Table 5. Power of the  and sup   Tests under the Alternative Bubble Model

This table reports the empirical power of the ADF test for an explosive bubble at the 5 percent nominal

size level with 100 observations and 10,000 Monte-Carlo replications. The model used for

the experiment is  where  with ,

 and  collapses periodically according to

with  > 0,  = exp(  – /2),  NID (0, ),  taking the value 1 when  >  and 0 when

  ,  , . We set  = 0.05,  = 1,  = 0.5,  = 0.5,  = 0.05,

 = 0.0373,   = 0.1574,  = 1.3. We choose different values for  .

-0.3 -0.2 -0.15 -0.1

0.346 0.305 0.339 0.350

sup  0.672 0.595 0.638 0.730
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Table 6. Power of the  and sup   Tests under the Alternative Bubble Model

This table reports the empirical power of the ADF test for an explosive bubble at the 5 percent nominal

size level with 400 observations and 10,000 Monte-Carlo replications. The model used for the experiment

is  where  with , 

and  collapses periodically according to

with  > 0,  = exp(  – /2),  NID (0, ),  taking the value 1 when  >  and 0 when

  ,  , . We set  = 0.05,  = 1,  = 0.5,  = 0.5,  = 0.05,

 = 0.0373,  = 0.1574,  = 1.3. We choose different values for  .

-0.3 -0.2 -0.15 -0.1

0.416 0.390 0.376 0.322

sup  0.847 0.794 0.807 0.826
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Figure 1. Time Series Plots of Real Nasdaq Price and Real Nasdaq Dividend from February 1973

to June 2005. Both series are normalized to 100 at the beginning of the sample.

Figure 2. Typical Stationary, Random Walk and Explosive Autoregressive Trajectories

Simulated AR(1) with =0.9

Simulated AR(1) with =1

Simulated AR(1) with =1.02

Time
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Figure 3. Time Path of the Discount Rate  in (12)
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Figure 4. Time Series of  t-statistic for the Logarithmic Real Nasdaq Price and the Logarithmic

Real Nasdaq Dividend (  = 0.1) from May 1976 to June 2005. The  t-statistic is obtained

from the forward recursive regression with the first observation in February 1973.

Figure 5. Time Series of  t -statistic for the Logarithmic Real Nasdaq Price and the Logarithmic

Real Nasdaq Dividend (  = 0.1) from June 1991 to June 2005. The  t -statistic is obtained

from the forward recursive regression with the first observation in January 1990.
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Appendix A. Properties of Evans’s (1991) Model

We may write the initial stopping time  for which the boundary value  is attained as

Subsequent stopping times are determined in the same way after the initial bubble collapses. The

duration of each of the bubbles depends on these stopping times plus the number of repeated subsequent

draws of  = 1. It is known (e.g, Schilling, 1990) that the maximum run time, , for a sequence of

i d e n t i c a l  B e r n o u l l i  d r a w s  i n  a  s a m p l e  o f  s i z e   h a s  m e a n  E  ( )  =

 and variance Var (  ) =  . It follows that = 

(log ) . Hence, the maximum time span of a collapsing bubble over the full sample will be  +  = 

+  (log ). To determine the length of the stopping time , observe that the condition in (19) requires

which holds if

or

Writing    where  is a standard Brownian motion, this condition can be rewritten as

(23)

where
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The time span  of the first component in the bubble (19) is therefore the passage time until a standard

Brownian motion ( ) with drift  hits the boundary value . That is

(24)

It is well known (e.g. Borodin and Salminen, 1996, p.223) that this passage time satisfies

and, since for small values of  and with  < 1 we have , A > 0, it follows that P (  = ) = 0. Also, 

has moment generating function (Borodin and Salminen, 1996, p.223)

so that the expected hitting time

is finite, as is the variance. It follows that the maximum time span of a collapsing bubble generated by

(19) and (20) over the full sample is  +  =  (log ) and, in general, the time span will be shorter

than  +  because the maximum run time  will not usually be attained.

This finding explains the failure of conventional unit root tests to detect bubbles of this type, confirming

the simulations in Evans (1991). In effect, even the maximum time span of  (log ) for these collapsing

bubbles is so short relative to the full sample size  that full sample tests for explosive behavior are

inconsistent. Heuristically, this is because the signal from the explosive part of the trajectory is generally

not strong enough to dominate the regression before the bubble collapses. In particular, if data 

were available, the signal from an explosive period initialized at  and of duration  +  in the

regression of +1 on  has order
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    (25)

since  =  (log ) . The signal from a stationary autoregression is  ( ) and from a unit root

autoregression is  so that the signal from the explosive component above will be of maximal

order , which is still a power law in  and no greater than that of an integrated

process, whose signal is , when

and no greater than that of a polynomial in an integrated process in general, thereby excluding explosive

behavior.
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Appendix B. Properties of the Alternative Bubble Model

Define the initial stopping time  for which the boundary value  is attained as

and the stopping time  of the bubble that follows time  as

(26)

Suppose  for some  < 0, and let  for some  > 0. Then the condition 

is asymptotically equivalent to    , or      in the limit where the Brownian

motion  is the weak limit of  given the initialization at . We can then write

 , where  is the first passage time of a standard Brownian

motion to the level . The duration of the bubble is then measured by 

and the probability density of  is the passage time distribution (e.g. Borodin and Salminen, 1996, p.223)

Hence,

In this framework,  is formally a triangular array process and generates bubbles whose duration

depends on the distribution of .

An alternative possibility for duration determination that is convenient in practice is to use an arc sine

law for the probability distribution of . This distribution is motivated by the fact that it represents the

distribution of the amount of time that a Brownian motion spends above (or below) the origin.

If  0 in (26) then  is asymptotically equivalent to   0 and the proportion

of time  that this condition holds in the unit interval has an arc sine distribution with density

as in Park and Phillips (2000). Again, the duration of the bubble is measured by   (1) .
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