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Abstract

This paper proposes a new test for structural stability in panels by extending the testing procedure

proposed in the seminal work of Andrews (2003) originally developed for time series. The test is robust

to non-normal, heteroskedastic and serially correlated errors, and, importantly, allows for the number

of post break observations to be small. Moreover, the test accommodates the possibility of a break

affecting only some - and not all - individuals of the panel. Under mild assumptions the test statistic

is shown to be asymptotically normal, thanks to the cross sectional dimension of panel data. This

greatly facilitates the calculation of critical values with respect to the test’s time series counterpart.

Monte Carlo experiments show that the test has good size and power under a wide range

of circumstances. Finally, the test is illustrated in practice, in a brief study of the euro’s effect on trade.
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1. Introduction

This paper proposes a new test for structural instability among only some individuals in a panel

regression model, and allows for this instability to occur at the very end of a sample. Most tests for

structural breaks were developed specifically for time-series, like the popular Chow (1960) tests, and

those for unknown or multiple break dates in Andrews (1993), Andrews and Ploberger (1994) and Bai

and Perron (1998). The distribution of the corresponding test statistic is suitably found using asymptotics

in which the number of observations before and after the break point go to infinity. However, it is often

at the end of a sample that researchers and policy-makers alike are interested in testing for instability.

Andrews (2003) proposes a test for structural break specifically designed for few post-break observations.

Monte Carlo results suggest that the test has reasonable size and power even when the number of

post-break observation is 1. Unlike the well known Predictive Failure test of Chow (1960), the critical

values of Andrews’ (2003) test statistic are calculated using parametric sub-sampling methods making

the test robust to non-normal, heteroskedastic and serially correlated errors. The extension of the test

to panel data, under the assumption of cross sectional independence, is relatively straightforward as

shown in Mancini-Griffoli and Pauwels (2006). This extension assumes the alternative hypothesis that

all individuals exhibit a break, as in other relevant tests in the panel literature, like in Han and Park (1989)

which extends the CUSUM tests, or Emerson and Kao (2001, 2002), Kao et al. (2005) and De Wachter

and Tzavalis (2004) which build on Andrews (1993) and Andrews and Ploberger (1994). Yet, this approach

does not address the interesting alternative that only some – and not all – individuals are affected

by a break. This is the more general question, but also likely to be the more prominent in applied work,

as shocks rarely affect all individuals equally, if at all. This is the question addressed by this paper.

This paper proposes a test for heterogeneous breaks in panels based on the Andrews (2003) end of

sample stability test. In particular, this paper introduces a standardized  statistic calculated by taking

a weighted average of Andrews’s (2003) statistics for each individual. Methodologically, this is similar to

the approach in Im et al. (2003) which, while focusing on the different question of unit root tests, also

considers an average of separate statistics. This paper derives the asymptotic distribution of the proposed

test statistic using the Lindeberg-Feller Central Limit Theorem (LF-CLT). The test statistic is shown to

follow a normal distribution as the number of individuals goes to infinity. This greatly simplifies the

computation of the critical values with respect to Andrews (2003). As in Andrews (2003), though, the

proposed statistic is robust to non-normal, heteroskedastic, serially correlated errors and when the

instability occurs at the end of a given sample. In addition, the test allows for parameter heterogeneity

pre- and post-instability.

Although the asymptotic results are derived under the assumption of cross sectional independence,

this does not severely restrict the applicability of the test. The asymptotic results still hold in the case of

cross sectional dependence as long as it can be “filtered out” using appropriate estimators. This paper

provides an example of how this can be accomplished by modifying the proposed test statistics using

the Common Correlated Effects (CCE) estimator proposed in Pesaran (2006).
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A series of Monte Carlo experiments show that the proposed structural break test performs very well in

finite samples. The experiments accommodate serial correlation in the errors with a mixture of different

distributions for the innovations. The results show that even under these circumstances the distribution

of the test is close to a standardised normal. Furthermore, Monte Carlo results indicate that the test has

good size and power with relatively few observations over time and moderate serial correlation within

cross sections. For high levels of serial correlation, the performance of the test improves as the sample

size increases. Lastly, the test has good power and size even when instabilities are of a small magnitude.

Finally, this paper considers an empirical application of the test, to demonstrate its usefulness in a

real-world setting: did the introduction of the euro increase intra-Eurozone trade? The question has

been at the center of lively debates in academic and policy circles alike. However, the papers that have

tackled the issue have not provided strong empirical evidence in support of the presumed effect. This is

largely due to two empirical issues: the few datapoints available after the euro’s introduction and the

heterogeneity of the trade effect over different countries. Given both of these characteristics, the test

introduced in this paper is particularly well suited. Results show a break at the 10% significance level in

Eurozone trade starting in 1999, thereby supporting the presumption commonly expressed in the literature.

The paper is organised as follows. Section 2 introduces the panel data stability test for

heterogeneous breaks. A solution to the issue of cross sectional dependence is also discussed. Section 3

follows with a derivation of relevant asymptotic results. Section 4 investigates the test’s finite sample

properties with Monte Carlo simulations. And finally, section 5 illustrates how the test can be put to use

to answer the question of the euro’s effect on intra-Eurozone trade.

2. Heterogeneous Panel Data Stability Tests

2.1 Setup

Consider the following baseline model for panel data,

(1)

(2)

where  is the dependent variable,  is the  x 1 vector of explanatory variables

including intercepts and/or seasonal dummies,  is the  x 1 vector of coefficients. Moreover,  are

the idiosyncratic shocks specific to each individual and assumed to be uncorrelated to  and have

zero mean,  is the  x 1 vector of unobserved common effects and  are the factor loadings associated

with . For the purposes of deriving the test statistics,  is assumed to be 0 for all  = 1, ..., . The more

practically relevant case in which  ≠ 0 is discussed in Section 2.4.
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Under equation (1) with  = 0, the hypothesis of structural instability implies,

(3)

for  = 1, … , , and where  are the presumed break dates, which can differ for each individual .

Thus, , the number of post-break observations, can be different for each .  is the parameter

vector before the break and  is the difference between the post- and pre-break coefficient vectors.

Thus, the hypothesis of structural stability is,

with  = 1, . . . , ,  + 1, . . . ,  + .  can be estimated heterogeneously for each individual  by OLS.

In this case, the consistency of  relies on large  only for all , whereas if  is homogeneous,

its consistency can rely on either large  or large , as is standard in the panel literature.

Let , where  is the number of individuals for whom  = 0 and  is the number of

individuals that exhibit a break (  ≠ 0). The null hypothesis states that there are no structural breaks

across all  individuals, whereas the alternative states that a proportion of individuals experience a

structural break. The alternative requires that the proportion of individuals who experience a break

relative to  tends to a non-zero positive constant as . Mathematically, this implies

lim , where 0 <  ≤ 1 as introduced in Choi (2001) and used again in Im et al. (2003). This

assumption ensures the asymptotic validity of the test.

When the null hypothesis of structural stability is rejected, the exact proportion of individuals who

experience a break can be found by conducting the Andrews (2003) test on each individual separately.

However, conducting multiple Andrews tests is not a good replacement for the panel test proposed in

this paper for at least two reasons: (i) the computation cost of conducting multiple Andrews (2003) tests

is extremely high relative to the panel test, especially when  is large. This is because critical values in

the Andrews (2003) test are calculated by constructing empirical distributions; (ii) if  =  for

all  = 1, ..,  prior to the break, that is, if the panel is homogeneous before the break, then a panel

estimation benefitting from cross sectional variation yields more precise estimation results. This is

particularly important if the panel has small  and large .

2.2 Motivating and Defining the Individual Statistics

The proposed statistic, to test for heterogeneous instability in panel data models, essentially amounts

to comparing two average statistics taken from both the pre-break and post-break samples.

These averages are based on test statistics for each individual in the panel, computed as in

Andrews (2003). The section below first motivates these statistics, then defines them explicitly.
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Let  vector and

be  matrix such that ,  with  > ,  = 1, ..., .  contains the values of the

endogenous variable, , and  contains the values of all the explanatory variables for the

individual  over the sample period spanning from  to . Therefore, equation (3) can be rewritten in

terms of the data as

(4)

where  is a  null matrix and  is a (  -  + 1) x 1 vector

containing the residuals for the individual, , over the sample period spanning from  to .

From equation (4), it is clear that the OLS estimator for  is

(5)

and therefore the estimated residual for the post-break observations can be calculated as

where  is the  x  identity matrix and

is the well known projection matrix. Therefore, the (unrestricted) sum squares residuals,

, can be written as

(6)

where  is the least squares estimate of  using the sample spanning over the pre-break sample

from 1 to  ,  = 1, ..., . Under the null hypothesis (  = 0), the (restricted) sum squares residuals for

the post-break period is defined to be

(7)
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Obviously, equation (6) collapses to equation (7) under the null hypothesis, as  = 0 for all . Therefore,

if the null is true, then the test statistics,

would be centered around 0. Thus, the further is  from 0, the more evidence there is to reject the

null of structural stability,  = 1, ..., . The power of the test can be increased by introducing a positive

definite weighting matrix, , such that . In this case, the  statistic can

be written as

(8)

where 

Following the intuition above, the fundamental test statistic for each individual  is defined, as in Andrews

(2003), to be

(9)

(10)

(11)

for all  = 1, ..., .

There are two specific variants of  that are used in calculating the standardised  statistic essential

to this paper:

(12)

(13)

Both sets of statistics are computed using  observations. The post-break sample statistics,  , are

computed for the sample spanning from  =  + 1 to  = , whereas the pre-break sample statistics, ,

are calculated over  observations anywhere in the pre-break sample so long as .

The estimated time-series covariance matrix derived in Andrews (2003) is used as a weight matrix for

each individual . The covariance matrix is
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and  is individual   x 1 estimated residual vector resulting from the  time-series regression

The coefficient vector  is the least square estimates of  for individual  over the full temporal sample.

If , the  statistic simplifies to the following:

(14)

where details are given in Andrews (2003).

2.3 The  Statistic

This paper defines the  statistic to test for heterogeneous breaks in panels as follows

(15)

where , 1 are the average statistics for the pre- and post-break sample

respectively. Intuitively, if the null hypothesis were true,  would be centered around 0. Therefore, the

further from 0 is the  statistics, the more evidence there is to reject the null hypothesis in favor of the

alternative. Since the variances of the individual statistics are unknown, we use the estimated variance

of the difference of the average statistics.1

A point of practical importance is waranted. It is recommended to use the first, or earliest

possible,  observations to estimate  in order to maximise the distance between the subsamples

and thereby minimise the potential impact of serial correlation in the errors. This is essentially an

empirical issue, and the problem of serial correlation should diminish as the gap between the two

subsamples increases, as implied by ergodicity. The computation of the  statistics can be simplified in

the case of a homogeneous panel where  can be estimated once to construct the test and does not

need to be estimated for each cross section.

1 Let  be the consistent estimate of  such that . The

estimated variance can be simplified to ,  under

, and  = 0, The  = 0 comes from the independence of the individual statistics. All that is

required for a consistent estimate of the variance is .
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2.4 Cross Sectional Dependence

The test derived in the previous sub-section, though robust to serial correlation and heteroskedasticity,

assumes cross sectional independence. If this assumption is not valid, appropriate estimators can be

used to “filter out” the cross sectional dependence. The recent panel data literature has proposed

several such solutions. Since the focus of the paper is not related to cross sectional dependence, this

sub-section only provides an illustration of how this paper’s results can be extended to allow for cross

sectional dependence. The bottom line is that the asymptotic results supporting this paper’s panel test

(presented in the next section) still hold if it is possible to obtain consistent estimates of  and .

The Common Correlated Effect (CCE) estimator proposed by Pesaran (2006) is particularly convenient

for this paper’s purposes and the asymptotic results derived in the following section continue to hold

with minimal modifications to the assumptions.2 Although this section provides the CCE estimator

as an example, other estimators such as the Principal Component Estimator proposed in Coakley

et al. (2002), Bai and Ng (2002) and Bai (2005) can also be used with suitable modifications.

The CCE estimator is defined to be

(16)

where , with  a 

matrix, such that  is a  vector containing the cross sectional averages of the

endogenous variable from the sample spanning  = , ...,  and  is

  matrix consisting of  columns of  vectors, with  containing the

cross sectional averages of the jth explanatory variable from the sample spanning  = , ..., .

The idea of the CCE estimator is to use the cross sectional averages of the endogenous and explanatory

variables as proxies for the common factors, . With this, the effect from the common factors can be

“filtered out” using the residual maker, . Pesaran (2006) shows that such a proxy is consistent under

certain regularity conditions. Therefore, it is possible to replace the OLS estimator with the CCE estimator

in the proposed test in the presence of cross sectional dependence. The asymptotic properties of the

modified test will be discussed more carefully in the next section. However, the additional assumption

that  =  for all  = 1, ...,  is required in order to adopt the CCE estimator in the proposed test statistic.

This assumption restricts all the individuals to share the same break date. This is necessary given the

construction of  which contains the cross sectional averages from both the pre-break sample and the

post-break sample. Without a common break date, it would be unclear how to compute these averages

across individuals and whether the consistency results from Pesaran (2006) would hold.

2  is defined to include both observable and unobservable common effects in this paper, whereas  is defined to be the

unobservable common effect only in Pesaran (2006).
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With the CCE estimator, as defined in equation (16), the basic test statistic can be rewritten as follows:

(17)

(18)

(19)

and

(20)

(21)

Likewise,  can be computed following the same procedure as  in section 2, that is,

with

Moreover, the average test statistics become,

(22)

(23)

Lastly, the test of structural stability using the CCE estimator can be defined as

(24)
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3. Asymptotic Results

3.1 Assumptions

This section provides the asymptotic properties of the proposed test. Define the data set as the outcomes

of a sequence of random variables  where . Under , the data are 

for  and ,while under  the data are  for  and

 for , where  are some random

variables with a joint distribution different from  . Assume also that the

distribution of   is independent of . Note that under  the data are from

a triangular array since the breakpoint is changing with .

Let  be a ball centered around  with radius  as in Andrews (2003). For , the

following assumptions underlying the asymptotic properties of , 1 are:

Assumption 1

, is stationary and ergodic.

Assumption 2

(a) , with  with  fixed under  and .

(b)  with  with  fixed under  and , for some

n o n s i n g u l a r  m a t r i x  ,  f o r  a l l  s e q u e n c e s  o f  c o n s t a n t  

and  as .

Assumption 3

(a) , , is continuously differentiable in a neigbourhood of  with probability

one under  and , where  is as in assumption 2(b).

(b) Let  denote the partial differentiation with respect to  and the non redundant

elements of .  is bounded as

for  and for some , where  is as in assumption 2(b).  denotes some

neighbourhood of .

(c) The distribution function of , , is continuous and increasing at its  quantile,

when .
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Assumption 4

(a) ,  and .

(b)  and  for some  and  and .

(c)  and  are positive definite,  and .

Assumptions (1), (3) and (4) are identical to that of Andrews (2003). The assumptions also hold for

 when . The first assumption allows for both weakly dependent processes and long

memory processes, as well as conditional variation in all moments, including conditional

heteroskedasticity. Assumption 3 is required to ensure that the empirical distribution of the  statistics

converge to the true distribution as derived in Andrews (2003). Furthermore, Assumption 3 ensures that

the distribution of the  statistics are differentiable and finite. Assumption 2 is required to ensure the

consistency of the estimators for both the coefficient vector and the variance-covariance matrix; it is a

panel extension to Assumption 2 in Andrews (2003). The assumption covers estimators whose consistency

properties rely on large  and , as is the case in the presence of cross sectional dependence. Obviously,

this assumption also covers estimators whose consistency properties rely on just a large  or  alone.

Assumptions (1) - (3) are sufficient for all the asymptotic results that follow. However, these assumptions

can be simplified further if the parameter vector is estimated by Ordinary Least Squares. In such a case,

assumptions (1) and (4) are sufficient for assumptions (2) and (3) to hold, as shown in Lemma (1) (see

also Andrews, 2003).

In the event of cross sectional dependence it is possible to use the Common Correlated Effect (CCE)

estimator as proposed by Pesaran (2006) and discussed in section 2.4. Such an estimator would require

slight modifications to the above assumptions for the asymptotic results to hold. These are:

Assumption CCE 1

(a) All individuals share the same break date, that is,  and  .

(b)  is covariance stationary with absolute summable autocovariance, distributed independently 

and .

(c) The unobservable factor loadings,  are independently and identically distributed across  and

independent to  and , with fixed mean , and finite variance.

(d) ,  ,   and

 are non-singular, where  is a  matrix

containing the values of common factors from the sample spanning .

(e) All other necessary assumptions required by Pesaran (2006) to ensure the consistency of the

CCE estimator.
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Assumptions CCE 1 (b) - (e) are sufficient for the consistency of the CCE estimator (see Lemma 5 and

Pesaran, 2006).

3.2 Results and Comments

This sub-section derives the asymptotic distribution for the  (and ) statistic and defines the properties

of the tests.

Lemma 1 Assumptions 1 and 4 imply that Assumptions 2 and 3 hold for the regression model estimated

using OLS.

Proof. See Appendix.

Remark 1 Lemma 1 is useful for reducing the number of assumptions. Assumption 4, in its current

formulation, is made strictly for the Least Squares estimation procedure. For other estimators, such as

IV or GMM, the conditions in Assumption 4 must be modified accordingly. These, however, need not

guarantee the result in Lemma 1. Therefore Assumptions 2 and 3 are still required for the remaining

results of this paper to hold when different estimators are used. For the appropriate modifications to

Assumption 4 for IV or GMM see Andrews (2003).

Lemma 2 Let  be a random variable with the same distribution as , . Under

Assumptions 1-3 and Theorem 1 in Andrews (2003), as :

(a)   and 

(b) Let  be the distribution of , then  is a well defined distribution with finite mean and variance.

Proof. See Appendix.

Lemma 3 Under Lemma 2,

where ,  and .

Proof. See Appendix.

Lemma 4 Under Lemma 3 the asymptotic distribution of the  statistic is

with , 
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Proof. See Appendix.

Theorem 1 Under Lemma 4, the  statistic as described in equation (15)

has an asymptotic distribution

Proof. See Appendix.

Remark 2 Lemma 2 shows that each  converges to a well defined distribution with finite mean

and variance. This is an important result as it is a necessary condition for Lemma 3 and 4 to hold, which

subsequently lead to the proof of asymptotic normality for the arithmetic average of  (namely, ).

The asymptotic normality of the proposed test statistics removes the need of using sub-sampling

techniques to calculate the critical values as proposed in Andrews (2003).

Remark 3 Lemma 3 shows that Assumptions 1 - 4 are sufficient to satisfy the Lindeberg condition

required by the LF-CLT. This is particularly important as the  statistic is the average of the  statistics

computed for every individual in the panel. The earlier assumptions imply that the variance of the 

statistics is not dominated by the variance of the  statistics from any particular individual.

Remark 4 Although  converges to a normal distribution asymptotically, the mean and the variance of

the statistics are still unknown. Hence, it is not possible to draw statistical inference on  alone. Under

the null hypothesis, however, the mean of  is the same for  and therefore the  statistic – which

is based on the difference between  and  – will have mean 0. Furthermore, the variance of 

can be estimated from  for  and  defined earlier. It ensues that the  statistic will

converge to a standard normal distribution in which valid inference can be obtained.

Remark 5 Theorem 1 and Lemmas 1 - 4 hold under Assumptions 1 - 4 for  as defined under

equation (14), when .

Lemma 5 Under Assumptions CCE (1) (a) - (e), the CCE estimator,  as defined in equation (16) is

consistent. Moreover, if  as , then  is asymptotically normal.

Proof. See Appendix.

Theorem 2 Under Assumptions (1), (4) and the Assumptions under Lemma 5
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Proof. See Appendix.

Remark 6 Lemma 5 is required to obtain consistency for the CCE estimator and Theorem 2 is homologous

to Theorem 1 when using a CCE estimator to tackle cross sectional dependence.

4. Simulations

4.1 Monte Carlo Design

This section aims to provide some benchmark Monte Carlo results in order to investigate the normality,

size and power of the proposed test for heterogeneous breaks in panels. The experiment uses the

following linear regression model

where the number of regressors in  is set to  = 5 including a constant. All regressors are calculated

as a trigonometric function of a set of random normal variables, which are independent and identical.

where  is the vector of the random normal  variables. The regression’s error term,  is generated

with an AR(1) process

with the following autoregressive parameters:  = 0.4 and 0.95 which is common to all individuals (in

other words, all individuals’ errors have the same ). Four different types of  distributions for the

innovation of the error term are considered: standard (0, 1), a recentered and rescaled  and  with

mean zero and variance one, and an uniform distribution with support [0, 1]. More formally,

Thus different individuals have different innovation processes, such that the four distributions are

intermixed evenly in the panel.3

3 Similar Monte Carlo experiments allowing cross sectional dependence have also been conducted using the CCE version of
the  test statistic as defined in equation (24). The results are comparable to those presented here. Since cross sectional
dependence is not the focus of the paper, the Monte Carlo results are not presented but are available upon request.
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The results from the simulation exercises are presented in two parts. Firstly, the set of Monte Carlo

experiments simulate the null in order to analyse the size of the test. Moreover, a discussion of the

properties of the distributions of the test under the LF-CLT is provided. The null hypothesis is simulated

over the full sample  using the coefficient vector . Secondly, the power properties of the

test are examined. The alternative hypothesis of partial instability is simulated, allowing only a limited

number  of individuals to experience a structural break. The ratio  is gradually changed

from 0.10, 0.50, 0.65, 0.80, to 1, in order to allow for a larger proportion of the individuals to experience

a structural break. The alternative hypothesis featuring a partial structural break is simulated using

 and , for some  and , for some . Moreover, all results use

, where  denotes the Euclidean norm for the vector . Note that when , the

coefficient vector is homogeneous across , implying that all individuals experience a structural break.

Moreover, Monte Carlo experiments are conducted with the following settings:  ,

= 30, 50, 100,  = 20, 40, 60, 80, 100, where, as earlier,  . For simplicity, the

break dates  and post-break observations  are known and identical for all individuals. The distribution

property, size and power of the test are also investigated when the number of post-break observations

are increased to  for  = 30, 50. The number of replications is 2000. All simulations are

carried out using  4.02.4

4.2  Monte Carlo Results

4.2.1 Size

The first results look at the probabilities of a type I error with significance level of 0.05. The main results

can be summarised as follows:

1. Overall the Monte Carlo experiments reveal that the test statistic is close to normal with 2000

replications showing that the LF-CLT holds with moderate serial correlation and both relatively

small time and cross-sectional dimensions. The Jarque-Bera test statistics show strong evidence

of normality at the 5% level of significance. The results are shown in Table 1 and 2, where Table 2

presents results when the number of post-break observations are increased to 20% of  instead

of 10%.

2. As shown in Table 3, the size of the test is relatively close to the desired value of 0.05 for 

with  = 100 and  = 10. These results hold even in the presence of moderate serial

correlation (  = 0.4). The test has reasonable size when the time horizon is decreased to  = 50

and  = 30, especially when   and 80 respectively. Size is relatively unaffected if the

number of post-break observations are increased to 20% of .

4 The programming code is available upon request.
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3. The normality of the distribution worsens in the presence of extreme serial correlation (  = 0.95)

as shown in Table 1. The Jarque-Bera test for normality is rejected at the 5% level of significance.

4. The size, on the other hand, deteriorates with extreme serial correlation especially as the number

of individuals increases. This result is expected as all individuals exhibit the same high degree of

serial correlation. Under these conditions, increasing  from 100 to 250 observations improves

the size, as implied by ergodicity.

In sum, the test has reasonable size even in small temporal and cross-sectional samples with moderate

serial correlation. However, under extreme serial correlation the size of the test deteriorates substantially,

especially as the cross-sectional dimension increases.

4.2.2 Power

Overall the test has good power. The power of the test is analysed for the significance level of 0.05.

Results are shown in Table 4. The most important results of the Monte Carlo experiments are as follows:

1. The power of the test remains satisfactory even with a relatively limited time dimension, except

when  is very small (  ). A larger , though, counterbalances the effect of diminishing ;

this underlines the advantage of working with a panel structure. When  = 50, for example, the

test remains powerful when  = 80 and  = 0.80 (power is 0.65). The power of the test improves

if the number of post-break observations are increased to 20% of . For example, when  =

50,  = 0.80 and  = 60, the power is 0.72, instead of 0.44 when  is 10% of .

2. The test gains power as either ,  or  increases. For instance, the power of the test is above 0.95

when   80 and   0.65, for  = 100. But even when both  and  are of medium size,

as when  = 0.65 and  = 60 (and  = 100), the power is 0.85. Moreover, the power of the test is

still good (0.70) when  is high (100) and   is low (0.50) with  = 100. The reverse is also true:

when  = 40 and   = 0.80, the power is 0.91.

3. The power of the test is quite robust to serial correlation, especially when  and  are large. Even

in extreme cases when serial correlation is 0.95, for instance, the test has power of 0.71 when

 = 100 and  = 0.80.

Overall, the power of the test is good given the data generating process. Power increases with ,  , 

and . Power is better when serial correlation is moderate, but remains robust even to very high levels

of serial correlation.



Working Paper No.9/2008

16

5. Empirical Example

This section provides an empirical application to demonstrate the usefulness of the proposed test,

focusing on the question of whether the euro has increased intra-Eurozone trade. The question has

recently been at the forefront of the empirical trade literature, revived after the seminal contribution of

Rose (2000), and has been discussed actively in policy circles. However, empirical evidence has been

clouded by econometric techniques somewhat ill-suited for the very few available data.

Most papers in the literature, of which the most prominent are Micco et al. (2003) and Flam and Nordström

(2003),5 introduce various flavors of dummy variables in their regressions to capture the new currency’s

introduction. Furthermore, the use of F-tests employed to evaluate the significance of the dummy

coefficients rest on highly restrictive assumptions in finite samples: normal, homoskedastic and iid

errors. These are particularly bold in light of the macro data typically used in these exercises, where

heteroskedasticity and autocorrelated errors are commonplace. Lastly, Andrews (2003) shows that F-tests

exhibit large size distortions when testing for parameter instability at the end of sample. Given these

limitations, some authors like Micco et al. (2003) avoid, in part, the use of explicit tests and rely on

eye-balling the size of the coefficients on the euro-dummies.

The test developed in this paper allows for a very different and more rigorous approach, better adapted

for the question of the euro’s effect on trade. First, the test is residual based and does not require the

estimation of coefficients on dummy variables to capture the effect of the euro. Second, the test requires

very few regularity conditions. It remains asymptotically valid despite non-normal, heteroskedastic and/or

autocorrelated errors. Third, the test is explicitly designed for few datapoints following a presumed

break and makes no distributional assumptions on any individual specific test-statistic; only the cross

sectional average statistic is shown to be asymptotically normal as warranted by the panel’s cross

sectional dimension. Fourth, the test explicitly allows for some individuals, and not all, to exhibit a break.

This last characteristic, allowing for heterogeneous instability, is particularly well suited for the example

at hand. For instance, while it was clear that Germany was going to play a central role in the euro from

its inception, uncertainty over whether Italy would meet the strict accession requirements loomed almost

until the euro’s introduction. It would therefore seem natural that each country’s trade pattern would

have responded differently, if at all, to the new currency’s introduction.

The test for the euro’s effect on trade is rooted in a standard trade gravity equation, used in various

flavors in all the above-mentioned papers, and whose microfoundations are discussed at some length

in Mancini-Griffoli and Pauwels (2006). The regression used here is:

(25)

5 See also Bun and Klaassen (2002), Nitsch (2002), De Sousa (2002), Barr et al. (2003), De Nardis and Vicarelli (2003), Piscitelli
(2003), Nitsch and Berger (2005), and Baldwin (2006) (which offers a particularly nice summary of the literature).
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where  is the value of imports from country  to country ,  and  are nominal GDP at time  for

country  and country , respectively, to control for demand and country size effects,  is the real

exchange rate between the two countries engaged in trade, capturing relative price effects as well as

changes in relative demand for tradables, and  is a pair-specific fixed effect to control for variables of

type common border, language, history, legal system, distance and others traditionally shown to matter

in gravity equations. Also,  includes observed and unobserved common effects, including time effects

(responsible for any cross sectional correlation of the errors). Finally,  is the individual specific

idiosyncratic shock.

Several modifications to the above regression are necessary, though, in order to carry out proper

estimation. First, all variables fail to reject the null of a unit root. Mancini-Griffoli and Pauwels (2006)

present these results along with a discussion. Here, the most straightforward solution is adopted: that

of taking all variables in first-differences. The test therefore becomes one for a break in the relation

between the growth of trade and the growth of its explanatory variables. Other solutions to the problem

of non-stationary data are considered in Mancini-Griffoli and Pauwels (2006), but are not adopted here,

as this section limits itself to a mere illustration of the new panel test for heterogeneous breaks.

Second, the errors of the model are found to be cross sectionally dependent. It is necessary, therefore,

to augment the proposed test in the fashion proposed in section 2.4, in order to “filter out” the common

factors causing cross sectional correlations. These unknown common factors can be proxied by the

cross sectional sample averages of the regressors and regressand, as proposed in Pesaran’s (2006)

common correlated effect (CCE) estimator.

Finally, quarterly data were obtained from Eurostat, IMF DOTS and IFS, as in most other relevant empirical

papers. The unilateral import values were obtained from IMF DOTS. All data were seasonally adjusted

using the standard X.12 smoothing algorithm.

Given these modifications, the equation serving as the baseline model for the panel stability test is

written as

(26)

where  indicates the first difference of the variable.

Results from this paper’s proposed panel test for heterogeneous breaks are presented below.6 For

simplicity – again because this section merely aims to be an illustration – only one potential break point

is considered, in 1998 Q1, one year prior to the actual adoption of the euro. This is to take into account

the extent to which agents are forward looking, as well as directly test the findings of Micco et al. (2003)

and Flam and Nordström (2003) who find a “euro effect” as early as 1998. Furthermore, results

6 All empirical results were generated using RATS 6.30. The programming code is available upon request. Estimation results
and other specifications of the regression equation are covered in Mancini-Griffoli and Pauwels (2006).
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are presented for  statistics found by sampling from different date ranges in the pre-break sample.

This is to gauge the sensitivity of the test to variations in data and to serial correlation in the errors: on

the one hand, the closer are the sampling dates in the  and  statistics, the greater are the chances

of disturbances due to serial correlation. On the other hand, the earlier is the pre-break sampling date,

the more disturbances could arise from less reliable data. Thus, results are presented for four “test

samples”, each including a different pre-break sampling date: 1980 Q2, 1985 Q1, 1987 Q1 and 1990

Q1. Results are presented in Table 5.

The first general pattern that emerges from glancing at the results across the various test samples,

is that there indeed appears to be a break in the relation between trade and its explanatory variables

in 1998 Q1. Indeed, most test samples have consistent periods over which the null of stability is rejected.

Second, and more specifically, the degree with which the null is rejected – if at all – is sensitive to the

number of quarters included in the post-break sample (the length of  in the earlier derivations). The

length of m is progressively increased from about 10% of the sample, which translates roughly to eight

post-break observations in the current sample. When eight to 10 quarters of post break observations

are included, the null is not rejected. The test results may be sensitive when the post-break observations

are few. But as the post-break sample grows to cover 11 - 14 quarters of data, most test samples reject

the null consistently with at least 10% significance. This is in line with the earlier Monte Carlo results

showing how the test’s power increases with . Note that as more than 14 quarters of post-break data

are considered, the null is no longer rejected. Thus, the break in trade due to the euro, although significant,

seems to be limited in duration, lasting only slightly more than three years. In itself, this is an

interesting finding, contradicting views sometimes expressed in political debates that common market

effects will grow with time. It seems that the Eurozone has already reaped the benefits of the euro,

at least in terms of gains in trade.

Third, results, although broadly consistent, can be somewhat sensitive to the choice of pre-break sampling

dates. Indeed, there are slight variations in results across the various test samples. First, only the 1990

test sample rejects the null with 1-5% significance for 11-14 quarters. The other samples reject with

1-10% significance for a subset of these quarters. Again, these slight differences are to be expected

given the noise in the data. Thus, testing for the robustness of results to the choice of pre-break sampling

can be important empirically. Secondly, results with the most recent 1990 test sample are consistent

and show strong significance. This highlights, once again, the relative robustness of the test to serial

correlation, as mentioned in the earlier Monte Carlo results.

On the whole, the above exercise has allowed for both rigor and flexibility in testing an important policy

question, and has delivered a statistically solid and relatively consistent answer; this is an improvement

over previous work which, although pioneering, was clouded by somewhat ill-adapted traditional

econometric techniques. What, exactly, in the new currency caused this rise in trade is another question

well worth considering in further research. But at least end of sample instability tests, like the one

presented here, lay solid and precise foundations for such research to continue its course.
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6. Concluding Remarks

This paper builds a stability test for panel data, robust to non-normal, heteroskedastic and serially

correlated errors, and, importantly, to very few datapoints after a break. Moreover, the test is specifically

designed for heterogeneous breaks, whereby only some – and not all – individuals in a panel exhibit

a break. The test statistic is constructed as a standardised average of independent test statistics

computed for each cross section. Asymptotic results show that the test is normally distributed as per

the Lindeberg-Feller central limit theorem.

Monte Carlo results show that the test performs well in terms of power and size, even when the time and

individual dimensions are small. Moreover, the test performs relatively well in the presence of serial

correlation in the errors, especially when the time dimension is large. These results should allow the test

to be used widely in finance and economics applications. This paper explores one such application,

testing for the effect of the euro’s introduction on intra-Eurozone trade.
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Table 1. Moments for the Distribution of the Test under the Null

N

Moments 20 40 60 80 100

Mean 30 3 0.4 -0.063 0.078 -0.122 -0.135 -0.112

50 5 0.4 -0.088 -0.086 -0.156 -0.150 -0.181

100 10 0.4 -0.057 -0.051 -0.112 -0.063 -0.061

100 10 0.95 -0.539 -0.746 -0.936 -1.06 -1.24

Variance 30 3 0.4 1.19 1.09 1.07 1.02 1.04

50 5 0.4 1.18 1.076 1.06 1.02 1.05

100 10 0.4 1.11 1.03 1.01 1.04 1.05

100 10 0.95 0.907 0.914 0.834 0.758 0.735

Skewness 30 3 0.4 0.033 -0.095 -0.041 -0.007 0.002

50 5 0.4 0.022 -0.005 0.011 0.036 -0.009

100 10 0.4 0.016 -0.020 -0.004 -0.040 0.025

100 10 0.95 0.471 0.397 0.288 0.394 0.262

Kurtosis 30 3 0.4 3.28 3.16 3.09 3.05 3.06

50 5 0.4 3.13 2.87 2.92 3.02 3.11

100 10 0.4 3.07 3.07 3.16 2.95 2.96

100 10 0.95 3.11 3.05 2.98 3.52 3.11

Jarque-Bera 30 3 0.4 6.90 5.14 1.24 0.22 0.30

50 5 0.4 1.57 1.42 0.57 0.47 1.04

100 10 0.4 0.49 0.54 2.14 0.74 0.36

100 10 0.95 75.08 52.71 27.62 74.39 23.97

Note:  is the autocorrelation coefficient,  are the total number of individuals and  where  is the time
dimension prior to the instability fixed for all individuals ,  is the number of observations post instability fixed for
all individuals  and  is set to equal 10% of . The Jarque-Bera normality test has an asymptotic  distribution and its
critical value is 5.99 at the 5% level of significance.
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Table 2. Moments under the Null When 

N

Moments 20 40 60 80 100

Mean 30 6 0.4 -0.042 -0.048 -0.048 -0.102 -0.096

50 10 0.4 -0.031 -0.059 -0.064 -0.052 -0.035

Variance 30 6 0.4 1.16 1.05 1.03 1.02 1.08

50 10 0.4 1.20 1.07 1.06 1.01 1.02

Skewness 30 6 0.4 -0.012 -0.05 0.003 0.023 -0.005

50 10 0.4 -0.006 0.012 -0.028 -0.038 0.008

Kurtosis 30 6 0.4 3.09 2.84 3.17 3.10 3.14

50 10 0.4 3.12 2.89 3.13 3.10 3.04

Jarque-Bera 30 6 0.4 0.72 2.97 2.41 1.01 1.64

50 10 0.4 1.12 1.06 1.67 1.31 2.35

Note:  is the autocorrelation coefficient,  are the total number of individuals and  where  is the time
dimension prior to the instability fixed for all individuals ,  is the number of observations post instability fixed for
all individuals  and  is set to equal 20% of . The Jarque-Bera normality test has an asymptotic  distribution and its
critical value is 5.99 at the 5% level of significance.

Table 3. Size of Normal Significance Level 0.05

N

20 40 60 80 100

30 3 0.4 0.069 0.061 0.064 0.054 0.053

50 5 0.4 0.070 0.056 0.055 0.057 0.058

100 10 0.4 0.065 0.047 0.055 0.053 0.054

10 0.95 0.055 0.092 0.130 0.142 0.199

30 6 0.4 0.071 0.055 0.058 0.049 0.060

50 10 0.4 0.075 0.061 0.062 0.048 0.053

Note:  is the autocorrelation coefficient,  are the total number of individuals and  where  is the time
dimension prior to the instability fixed for all individuals ,  is the number of observations post instability fixed for
all individuals  and  is set to equal 10% of  and also 20% of  for  = 30, 50.
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Table 4. Power of Normal Significance Level 0.05 for 

N

20 40 60 80 100

30 3 0.80 0.4 0.015 0.041 0.071 0.139 0.223

3 1 0.4 0.079 0.263 0.477 0.681 0.817

50 5 0.50 0.4 0.009 0.011 0.011 0.025 0.034

5 0.80 0.4 0.056 0.216 0.435 0.651 0.809

5 1 0.4 0.297 0.744 0.951 0.992 0.999

100 10 0.10 0.4 0.000 0.003 0.004 0.005 0.006

10 0.50 0.4 0.022 0.114 0.294 0.523 0.696

10 0.65 0.4 0.095 0.520 0.856 0.967 0.991

10 0.80 0.4 0.347 0.911 0.991 0.999 1.00

10 1 0.4 0.852 0.994 1.00 1.00 1.00

100 10 0.50 0.95 0.008 0.011 0.011 0.012 0.014

10 0.80 0.95 0.075 0.203 0.368 0.542 0.705

10 1 0.95 0.270 0.620 0.869 0.967 0.994

30 6 0.80 0.4 0.031 0.077 0.141 0.233 0.348

6 1 0.4 0.130 0.359 0.602 0.786 0.905

50 10 0.50 0.4 0.016 0.024 0.052 0.097 0.155

10 0.80 0.4 0.134 0.433 0.720 0.898 0.965

10 1 0.4 0.454 0.869 0.984 1.00 1.00

Note:  is the autocorrelation coefficient,  are the total number of individuals and  where  is the time
dimension prior to the instability fixed for all individuals ,  is the number of observations post instability fixed for
all individuals  and  is set to equal 10% of  and also 20% of  for  = 30, 50.
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Table 5. Empirical Example - Euro’s Trade Effect

Pre-break Presumed break Number of quarters Value of

sampling date date post-break Z-statistic p-value

1980 Q2 1998 Q1 8 (up to 2000Q1) 0.62 0.53

9 1.06 0.29

10 -0.84 0.40

11 1.81 0.07 *

12 ( up to 2001 Q1) 2.37 0.02 **

13 2.66 0.01 ***

14 0.39 0.70

27 1.55 0.12

1985 Q1 1998 Q1 8 (up to 2000 Q1) 1.45 0.15

9 0.71 0.48

10 -0.89 0.38

11 1.73 0.08 *

12 ( up to 2001 Q1) 1.38 0.17

13 1.34 0.18

14 0.70 0.49

27 1.10 0.27

1987 Q1 1998 Q1 8 (up to 2000 Q1) 1.1 0.27

9 1.94 0.05 **

10 -0.88 0.38

11 1.47 0.14

12 ( up to 2001 Q1) -0.34 0.73

13 2.55 0.01 ***

14 1.77 0.08 *

27 1.39 0.16

1990 Q1 1998 Q1 8 (up to 2000 Q1) 1.84 0.07 *

9 0.91 0.36

10 -0.87 0.38

11 2.10 0.04 **

12 ( up to 2001 Q1) 2.44 0.01 ***

13 2.31 0.02 **

14 2.17 0.03 **

27 0.66 0.51

Note: */**/*** indicate 10%/5%/1% level of significance.



Working Paper No.9/2008

26

Appendix

Proof of Lemma 1 Since  is calculated by treating each cross section as a univariate time-series,

the properties of  are identical to the properties of the S and P statistic derived in Andrews (2003) for

all i. This completes the proof. 

Proof of Lemma 2 The proof of part (a) is similar to the proof of Lemma 1. Using Theorem 1 in Andrews

(2003),  has a well defined distribution with finite mean and variance for all . Given part (a) 

converges to a well defined distribution with finite mean and variance for all . This completes the proof. 

Proof of Lemma 3 It is sufficient to show that the following Lindeberg condition holds under the

assumptions made in the paper:

(A-1)

The proof holds for both  = 0, 1 so the  is dropped for notation convenience. Let

 and  be the set such that  = .

Define

(A-2)

Since , it is obvious that

Notice that  and  as ,  = . Define

(A-3)

so that ,  as  and ,  and .

Given these definitions, equation (A-1) can be rewritten as

Since ,  such that ,  and  such that , . Therefore,
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where . Let

It is clear that . Therefore,  such that  . Hence,

Therefore,

This completes the proof. 

Proof of Lemma 4 Under Lemma 2, it is straightforward to show that  is independent of , for .

In addition,  satisfy the Lindeberg-Feller condition as shown in Lemma 3 for . As these satisfy

the conditions required by the Lindeberg-Feller CLT, then

This completes the proof. 

Proof of Theorem 1 Under Lemma 4,  and  converge to a normal distribution in probability. By

construction, the  statistic is the standardised difference between two random variables that are normally

distributed and therefore converge to a  (0, 1). Under the null hypothesis  and hence

 converges in probability to a  (0, 1) distribution. This completes the proof. 
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Proof of Lemma 5 Note that Assumption CCE 1 (a) is identical to Assumption 1 in Pesaran (2006).

Moreover, Assumption CCE 1 (b) is a special case of Assumption 2 in Pesaran (2006). Assumption CCE

1 (c) is equivalent to Assumption 3 in Pesaran (2006) where Assumption 4 in Pesaran (2006) is automatically

satisfied as  is assumed to be fixed under  and non-random under , for all . Finally, Assumption

CCE 1 (d) is equivalent to Assumption 5a in Pesaran (2006). Therefore, Theorem 1 in Pesaran (2006)

holds under Assumptions CCE (1) (a) to (d), and hence  is consistent and asymptotically normal. This

completes the proof. 

Proof of Theorem 2 It is straightforward to show that the result in Lemma 5 implies Assumptions 2 and

3 using Theorem 1 in Pesaran (2006). Moreover, since the independently distributed residuals,  can

be estimated consistently using the CCE estimator, the statistics, , are therefore also independently

distributed ,  = 0,1. Given Assumptions (1) - (3) and the requirement of independence for the

LF-CLT are satisfied, the proof then follows the same argument from the proof of Theorem 1. This

completes the Proof. 


	85069_Cover BW-p65.p1.pdf
	IFC02v2-p65.p1.pdf
	Binder1.pdf
	HIM.p01.pdf
	HIM.p02.pdf
	HIM.p03.pdf
	HIM.p04.pdf
	HIM.p05.pdf
	HIM.p06.pdf
	HIM.p07.pdf
	HIM.p08.pdf
	HIM.p09.pdf
	HIM.p10.pdf
	HIM.p11.pdf
	HIM.p12.pdf
	HIM.p13.pdf
	HIM.p14.pdf
	HIM.p15.pdf
	HIM.p16.pdf
	HIM.p17.pdf
	HIM.p18.pdf
	HIM.p19.pdf
	HIM.p20.pdf
	HIM.p21.pdf
	HIM.p22.pdf
	HIM.p23.pdf
	HIM.p24.pdf
	HIM.p25.pdf
	HIM.p26.pdf
	HIM.p27.pdf
	HIM.p28.pdf
	HIM.p29.pdf


