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Abstract 

 
We observe that daily highs and lows of stock prices do not diverge over time and, hence, adopt the 

cointegration concept and the related vector error correction model (VECM) to model the daily high, 

the daily low, and the associated daily range data. The in-sample results attest the importance of 

incorporating high-low interactions in modeling the range variable. In evaluating the out-of-sample 

forecast performance using both mean-squared forecast error and direction of change criteria, it is 

found that the VECM-based low and high forecasts offer some advantages over some alternative 

forecasts. The VECM-based range forecasts, on the other hand, do not always dominate – the forecast 

rankings depend on the choice of evaluation criterion and the variables being forecasted.  
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1. Introduction 
 

Data on daily ranges of various financial prices are quite widely available. It is conceived that volatility is 

high (low) when the daily range is wide (narrow). Parkinson (1980) shows that, under certain assumptions, 

the price range is a more efficient volatility estimator than, say, the commonly used return-based 

estimator. Modifications and variations of the original Parkinson result are provided by, for example, 

Beckers (1983), Garman and Klass, (1980), Kunitomo (1992), Rogers and Satchell (1991), and Yang and 

Zhang (2000). Recently, a few studies have investigated the stochastic properties of financial price 

ranges and using the price range as an input in various GARCH and stochastic volatility models to exploit 

its information content (Alizadeh et al., 2002; Brandt and Diebold, 2003; Brunetti and Lildholdt 2005; Chou, 

2005; Engle and Gallo, 2003; Fernandes et al., 2005; Gallant et al., 1999). Usually, the price range is 

touted as an efficient proxy for volatility, which is a crucial element in the modern financial literature. An 

early example of using the price range in options pricing is provided by Parkinson (1977).  

 

The price range also occupies a unique role in technical analysis, which is quite widely used by traders in 

financial markets (Cheung and Wong, 2000; Cheung and Chinn, 2001; Taylor and Allen, 1992; Pring, 

2002). For instance, the price range is a key ingredient of the well-known technical indicator candlestick, 

which has been used by Japanese rice traders for a very long time. The stochastic oscillator is another 

technical indicator that is related to the price range. The “Notis %V” method separates price volatility into 

upward and downward components and compares them with the total volatility (Edwards and Magee, 

1997; Murphy, 1986; Pring, 2002). 

 

Most studies on range assert its role of being an efficient proxy for the underlying return volatility. The 

focus on daily range, nonetheless, may neglect the value of its two components, namely the daily high 

and the daily low, which contain some useful information about the price dynamics. The daily range is 

constructed from the highest and lowest price of the day. It is, however, not easy to reconstruct the high 

and the low from the range itself. For instance, the pricing of some exotic options such as the knock-out 

and knock-in options depends on, in addition to the underlying volatility, the high and the low.1 The 

interpretation of candlestick charts and the computation of stochastic oscillators also require the 

knowledge of the values of highs and lows. The high and the low are also the key components of trading 

strategies based on the notion of support and resistance levels and the price channel indicator.2  

 

                                                 
1  These options are also known as barrier options. A knock-out option will expire and become worthless when the 

price reaches a pre-specified level. 
 
2     Support and resistance levels are price levels at which there are a possible reverse of the trend. The price 

channel initiates a buy (sell) when the price closes above (below) the upper (lower) channel constructed from 
daily highs and lows. 
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In essence, the price range gives the width of the band within which the price fluctuates, and the high and 

the low identify the exact coverage of the price band. If the interest is only the volatility, then the price 

range is a good summary statistic. On the other hand, if the extreme levels are also relevant, then we 

have to consider the high and the low. Thus, it is of interest to study both the range and its two 

components (the high and the low) simultaneously. Moreover, the range is given by the difference of the 

high and the low – knowing the high and low should potentially enhance the modeling of the range 

variable. 

 

The current study exploits the following observation: for most active stock markets, daily highs and lows 

do not drift apart too far over time. An analogy is that stock return volatility does not trend upward all the 

time. The boundedness hints at the potential gain of incorporating the interaction of highs and lows in 

modeling the range variable. Specifically, using jargon in time series analysis, we anticipate daily highs 

and lows to be cointegrated such that they do not diverge over time and the range is the corresponding 

error correction term. If this is the case, we can exploit the interactions between the range and its two 

components and use the information to build an efficient model to describe the behavior and evolution of 

these variables. 

 

To explore the idea, we first examine eight daily stock indexes and formally test whether a) their highs 

and lows are cointegrated, and b) their ranges can be interpreted as a stationary error correction term. To 

anticipate the results, we find that the high and the low are cointegrated and the range is the error 

correction term. Then, we assess the potential gains of jointly analyzing the three price variables by 

comparing the range forecasts generated from the cointegration framework and from autoregressive-

moving-average models of ranges, highs, and lows. The mean-squared forecast error and direction of 

change criteria are used to compare these forecasts. We also break down the forecast errors and the 

forecast error variances of these range forecasts to gain further insight into their performance. As an 

illustration, we use these range forecasts to generate predictions of implied volatility for a few selected 

index options contracts. Both range and implied volatility forecasting exercises attest to the value of 

modeling highs, lows, and ranges simultaneously. 

 

2. Preliminary Analyses 
 
In this study we consider the following daily stock indexes: the British FTSE 100 (FTSE), French CAC 40 

(FCHI), the German DAX 30 (GDAX), the Japanese Nikkei 225 (N225), the Korean KOSPI (KS11), US 

Dow Jones Industrial Average (DJI), the US Nasdaq Composite (IXIC), and the Taiwanese TSEC 

Weighted index (TWII). The data are expressed in log scale. Daily ranges are constructed from the 

corresponding daily highs and lows for the period January 3, 1991 to June 1, 2004. The first twelve years 

of data (from January 3, 1991 to January 15, 2003) are used to generate the estimation results reported 
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in this and the next section. The remaining data are reserved for the forecasting exercise discussed in 

section 4. The data were downloaded from the DataStream database. 

 

Figure 1 gives the plots of the high and low series and their corresponding ranges. For these stock 

indexes, the highs and lows display different variation patterns during the sample period. However, for 

each stock index, it is quite transparent that highs and lows move in tandem. The gap between the high 

and low curves is quite stable. The range variable appears quite stationary, with some occasional spikes, 

in all these graphs. 

 

To formally assess the dynamic properties of these series, we use the augmented Dickey-Fuller (ADF) 

test to determine their order of integration property. The ADF test is based on the regression equation,  

 

1 1
p

t t j j t j tY t Y Yδ β γ β ε− = −∆ = + + + Σ ∆ +     (1) 

 

where tY  is a generic notation of a stock index daily high ( tH ), or daily low ( tL ) series, in logarithms. ∆  

is the first-difference operator, δ  and t  are, respectively, an intercept and time trend, and tε  is the error 

term. Under the unit-root hypothesis, 0γ = . The Schwarz-Bayesian information criterion (SBC) is used to 

determine p, the lag parameter. 

 

The test results are given in Table 1. The Q-statistics indicate that the lag specifications used to conduct 

these tests adequately capture the intertemporal dynamics. All the daily high and daily low series do not 

reject the unit-root null hypothesis. The test results from first-differences of these data series tell a 

different story. In this case, only a constant term was included in the ADF regression equation. The ADF 

test indicates that all the first-differenced daily high and daily low series reject the unit root null hypothesis; 

that is, the first-differenced data are I(0) . Hence, in the following analyses, we assume individual daily 

high and daily low series are I(1) processes. 

 

Table 1 also gives the unit root test results for individual range series. The range variable is given by tR  

= tH  - tL . In contrast to the daily high and daily low series, all the range series reject the unit root 

hypothesis and, hence, are stationary. The stationarity result indicates that, even though the daily high 

and daily low are nonstationary, their I(1) behavior offsets each other over time, and the range (which is 

the difference of these two variables) is stationary. A formal analysis of the cointegrating property of high 

and low data is presented in the next section. 

 

Some descriptive statistics of the ranges and their components in first differences are presented in Table 

2. The first differences of tH  and tL  are considered because tH  and tL  themselves are I(1). For all the 
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stock indexes under consideration, the intra-day variation given by the sample mean of daily ranges is 30 

times (DJI) to over 1000 times (KS11) larger than the day-to-day change measured by the sample 

average of either changes in daily highs or daily lows. The dispersion of daily ranges, on the other hand, 

is much smaller than that of changes in the highs and lows – the coefficients of variation computed from 

daily range data are at least 30 times less than those from daily highs and daily lows. The range and its 

two components in first differences appear to have different skewness properties. The stock index range 

series are skewed to the right while their two components are all skewed to the left. On the peakedness 

or the so-called fat-tail property, all the series are leptokurtic and have an excess kurtosis coefficient 

larger than that of a normal series. In general, the range series has a larger kurtosis coefficient and is 

more leptokurtic than its two components. 

 

These descriptive statistics suggest that the behavior of the range tR  and ∆ tH , and ∆ tL  can be quite 

different. In fact, the properties of ∆ tH  are different from those of  ∆ tL  even though their differences 

are less striking than those between them and the range. Thus, despite the three series tR , ∆ tH , and 

∆ tL  being derived from the same underlying stock index, their information contents are not identical. A 

joint analysis of these variables may offer incremental information about the behavior of these variables. 
 

3. A Joint Analysis of Highs and Lows 
 
3.1 Cointegration Test 
 

The unit root test results in the previous section are suggestive of the cointegration between daily highs 

and daily lows. In this subsection, the Johansen procedure is used to formally test for cointegration. Let Xt 

be a 2x1 vector containing a national stock daily high and low series (that is, Xt  ≡ ( tH , tL )’) and has a 

(p+1)-th order autoregressive representation: 

 
1
1

p
t j j t j tµ γ ε+

= −= + Σ +X X      (2) 

 

where µ is an intercept term, jγ  is a coefficient matrix, and εt is an innovation vector. To test whether the 

elements in Xt are cointegrated, the Johansen procedure tests for significant canonical correlations 

between ∆ Xt and Xt-p-1, after adjusting for all intervening lags. Johansen (1991) and Johansen and 

Juselius (1990) give a detailed description of the test.  

 

The cointegration test results are reported in Table 3. Again, the SBC is used to provide the initial 

estimate of the lag parameter (p), and if necessary p is then increased to eradicate serial correlation in 
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residuals. Both the maximum eigenvalue and trace statistics reject the null hypothesis of no cointegration 

in favor of the presence of one cointegrating vector. Further, there is no evidence that there exists more 

than one cointegrating vector. These results suggest that, for a given stock index, its daily high and daily 

low series are cointegrated. That is, the high and low series have the same stochastic trend that drives 

them individually to wander randomly over time, and an appropriate linear combination of highs and lows 

can eliminate the effects of the common stochastic trend. 

 

The estimated cointegrating vectors with the coefficient of the daily high series tH  normalized to one are 

also reported in Table 3. The estimated vectors, which capture the empirical long-run relationship, 

suggest the daily high and the daily low tend to move almost on a one-to-one basis. Recall that the range 

is defined by tR  = tH  - tL . When we impose the restriction that the cointegrating vector is (1, -1), the 

cointegrating relationship is given by tH  - tL , and thus, the range tR  is the stationary error correction 

term. Indeed, the unit root test results in Table 1 already showed that tR  is stationary. Thus, in the 

balance of this paper, we impose the (1, -1) restriction and treat tR  as the stationary error correction term. 

It is noted that imposing the (1, -1) restriction reduces the computing burden in conducting the forecasting 

exercise reported in Section 4. For brevity, we do not report in the text the results pertaining to the case in 

which the (1, -1) restriction is not imposed.3 

 

3.2 Vector Error Correction Model 
 
Given the daily high and daily low series are cointegrated, a vector error correction model (VECM) is used 

to examine their long-run and short-run interactions. Imposing the (1, -1) cointegrating vector restriction, 

the VECM can be written as 

 

1 1
p
it i t i t tRµ α ε= − −∆ = + Γ ∆ + +∑X X      (3) 

 

The VECM results are presented in Table 4.4 The Q-statistics are not significant and, thus, affirm that the 

selected VECM models adequately capture the data dynamics, and the resulting disturbance terms 

display no statistically significant serial correlation. Since we do not have a theoretical model 

underpinning the VECM (3), we do not want to over-interpret the estimation results. Nonetheless, there 

are a few interesting observations. 

                                                 
3  The results pertaining to models without the (1, -1) restriction are available upon request. See also Cheung 

(2007). These results are very similar to those reported in the text. Moreover, the forecast performance of 
models with the (1, -1) restriction is, in general, better than those without the restriction. 

 
4  One technical issue specific to the current application is the non-negativity of the range variable. We checked 

and confirmed that all the estimated ranges and range forecasts reported in the rest of the paper are positive. 
Thus, it is not necessary to impose the non-negativity constraint on, say, the VECM specification. 
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First, for each stock index series, the range variable is significant in either the daily high or the daily low 

equation. The result is consistent with the cointegration result and indicates that the range variable is not 

an unreasonable proxy for the error correct term. Indeed, in most cases, the range variable is significant. 

When the range variable is significant, it has a negative coefficient in the daily high equation and a 

positive coefficient in the daily low equation. An increase in the daily range tends to bring down the next 

daily high and push up the next daily low and, hence, reduces the next daily range. Thus, the estimated 

dynamics implies the range variable is regressive and is in accordance with its stationary property.5 For 

the five insignificant cases, four of them involve the daily high equation. For some reason, daily lows are 

more likely to respond to the range. 

 

Second, for all the stock indexes under consideration, the coefficient estimates are mostly negative for 

lagged dependent variables and positive for other lagged variables. For instance, consider the daily high 

equation, where the coefficient estimates of the lagged daily high differences are mostly negative and 

those of the lagged daily low differences are mostly positive. The negative coefficients are indicative of 

the presence of regressive behavior. Higher daily highs tend to regress to a lower level, and lower daily 

highs tend to regress back to a higher level. On the other hand, the positive coefficients of the lagged 

daily low differences suggest certain spillover effects. Higher (lower) daily lows lead to higher (lower) daily 

highs. 

 

Third, the explanatory power of the VECM specification is quite reasonable. The GDAX daily low equation 

gives the smallest adjusted R-squared statistic of 6.0% and the DJI daily low equation has the largest of 

17.5%. The others are mostly in the neighborhood of 10%. These adjusted R-squared statistics are not 

small for a typical equation explaining changes in financial prices. The evidence that the daily high 

equation has a higher adjusted R-squared statistic than the daily low equation is not very strong – in five 

out of eight cases, the model explains changes in highs better than it explains changes in lows. 

 

4. Forecast Performance 
 
The preceding results are in accordance with the intuition that daily highs and lows do not drift apart over 

time and, hence, the range is a stationary variable. The cointegration framework and the associated 

VECM are the empirical constructs to exploit the interaction between daily highs, daily lows, and daily 

ranges. In the current section, we assess the performance of the VECM in generating range forecasts. 

For comparison purposes, we consider range forecasts generated from a) forecasts of daily high and low 

from their respective autoregressive-moving-average (ARMA) specifications, and b) an ARMA 

specification of the range. A naïve forecast based on a random walk specification was also considered 

                                                 
5  Note that the regressive property is not inconsistent with the volatility clustering phenomenon. A stationary 

ARCH model, for example, has regressive behavior and, at the same time, can capture volatility clustering. 
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but not reported for brevity. The performance of the naїve forecast was consistently worse than those 

considered in the text. These results are available upon request. 

 
4.1 Forecasting Models and Evaluation Criteria 
 
Out-of-sample forecasts are used to assess the forecast performance. The forecasting period is from 

January 16, 2003 to June 1, 2004. Let ˆ
t hR +  be the generic notation of a h-days ahead range forecast 

available at time t. The forecast horizons considered are h = 1, 2, and 4.6 Using the VECM specification, 

the forecasts ˆ
t hH +  and ˆ

t hL +  derived from ˆ
t h+∆X  are used to compute the range forecast ˆ

t hR + , where 

ˆ
t h+∆X  is given by  

 

1 1
? �p

it h i t h i t hRµ α=+ + − + −∆ = + Γ ∆ +∑X X      (4) 

 

The right-hand-side variable ˆ
t h i+ −∆X  is replaced by t h i+ −∆X  if h-i ≤ 0 and 1

ˆ
t hR + −  is replaced by 1t hR + −  if 

h-1 ≤ 0. Two types of VECM ˆ
t hR +  forecast are considered. The first range forecast is based only on 

parameter estimates reported in Section 3 and these estimates were not updated during the forecast 

exercise. We label this range forecast the simple VECM forecast ,
ˆ

t h SVR + . The second VECM range 

forecast is generated with coefficients in (4) updated recursively every day and is called recursive VECM 

forecast ,
ˆ

t h RVR + . 

 

The performance of ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  is compared against two other range forecasts. The first 

alternative range forecast is based on ARMA specifications of the ∆ tH  and ∆ tL  series. Specifically, for 

a given stock index series, we determine the ARMA models for ∆ tH  and ∆ tL  using SBC, generate 

forecasts from the selected ∆ tH  and ∆ tL  models, and construct the range forecast from the ∆ tH  

and ∆ tL  forecasts. The selected ARMA models were updated daily. We denote this forecast , 1
ˆ

t h AR + . 

Since ∆ tH  and ∆ tL  are modeled separately, the resulting range forecast does not exploit the dynamic 

linkage between daily highs and daily lows. The inclusion of , 1
ˆ

t h AR +  in the comparison offers some 

evidence on the advantage and usefulness of incorporating daily high and daily low interactions in 

generating range forecasts. 

                                                 
6  Christoffersen and Diebold (1998) show that, when using the conventional mean-squared forecast error 

measure, imposing the cointegration relationship is likely to improve near-horizon rather than long-horizon 
forecast performance. Also, most financial market participants are interested in short-term forecasting. 
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The second alternative range forecast is based on ARMA specifications of ranges. The ARMA 

specifications were updated daily. We label it , 2
ˆ

t h AR + . The forecast , 2
ˆ

t h AR +  focuses only on the dynamics 

of the error correction term in the VECM specification, which represents the long-term relationship 

between the components of the range. The choice of , 2
ˆ

t h AR +  is motivated by some extant forecasting 

studies using the cointegration equation. Mark (1995) and Chinn and Meese (1995), for instance, are 

concerned with the stability and complexity of short-run dynamics and use only the error correction term 

instead of the entire error correction model to generate exchange rate forecasts. Thus, the , 2
ˆ

t h AR + is used 

to assess the potential loss/benefit in stripping short-term dynamics from forecasting the range. However, 

it should be noted that, unlike the other three range forecasts, , 2
ˆ

t h AR +  does not give information about 

highs and lows, which can be useful for some applications. 

 

Two criteria are used to evaluate the four range forecasts. One criterion is based on the ubiquitous mean-

squared forecast error measure. The usual rule-of-the thumb is that a better forecast gives a smaller 

mean-squared forecast error. In the current exercise, a modified Diebold-Mariano statistic, which is 

appropriate for one-step and multi-steps ahead forecasts, is used to compare mean-squared forecast 

errors of these range forecasts (Diebold and Mariano, 1995; Harvey et al., 1997). The test statistic is 

based on the difference between the squared forecast errors of the two forecasts under comparison. The 

other evaluation criterion is based on the direction of change statistic, which is given by the percentage of 

forecasts that correctly predict the direction of change. A value above (below) 50 percent indicates a 

better (worse) forecast performance than a naїve model that predicts the range has an equal chance to 

go up or down. Not only does the direction of the change statistic constitute an alternative metric, Leitch 

and Tanner (1991), for instance, argue that a direction of change criterion may be more relevant for 

profitability and economic concerns, and hence a more appropriate metric than others based on purely 

statistical motivations. Again, we construct modified Diebold-Mariano statistics to test a) whether the 

observed percentage of correct predictions is different from 50 percent and b) whether two forecast 

procedures display similar performance. A technical discussion of the two evaluation techniques is given 

in the Appendix.  

 

Since the two evaluation criteria have different foci, it is difficult to say one is better than the other. Both 

criteria offer some useful information about forecasts and alternative perspectives to evaluate their 

performance. While someone may prefer one criterion to the other depending on the purpose of the 

forecasting exercise, we view the two criteria as complementary in this exercise. 7 
 

 

                                                 
7  Recently, a utility-based evaluation metric based on a portfolio allocation problem was proposed by Abhyankar 

et al. (2005). 
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4.2 Forecast Comparison 
 

A comparison of the mean-squared forecast errors generated by , 1
ˆ

t h AR + , , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  is 

presented in Table 5. The modified Diebold and Mariano statistics are computed for each pair of forecast 

series.8,9 A clear picture emerges from these statistics. The , 1
ˆ

t h AR + , which ignores the interaction between 

highs and lows, always yields a mean-squared forecast error that is significantly larger than those of the 

other three range forecasts. The result attests to the importance of incorporating the high-low link in 

forecasting ranges.  

 

The , 2
ˆ

t h AR + , on the other hand, performs quite well. For the British and Taiwanese stock indexes, the 

mean-squared forecast error of , 2
ˆ

t h AR +  is higher than those of ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  but the performance 

deterioration is not statistically significant. On the other hand, , 2
ˆ

t h AR +  has a mean-squared forecast error 

better than the other two forecasts in the remaining six cases and the improvement is significant in almost 

half of these cases.10  

 

The modified Diebold and Mariano statistics reported in the last column of Table 5 compare the forecast 

performance of the two range forecasts generated from VECM models. In three out of eight cases, the 

recursive VECM forecast ,
ˆ

t h RVR +  yields a significantly smaller mean-squared forecast error than the 

simple VECM forecast ,
ˆ

t h SVR + . In the remaining cases, the performance of ,
ˆ

t h RVR + relative to ,
ˆ

t h SVR +  can 

be better or worse, though the differences are not significant. The results offer a qualified support for 

revising the VECM model to obtain range forecasts. 

 

The results in Table 5 can be summarized as follows. The information about short-term and long-term 

interactions between highs and lows helps predict daily ranges. Echoing the concern about the stability 

and complexity of short-run dynamics (Mark, 1995; Chinn and Meese, 1995), the VECM does not forecast 

                                                 
8  In the forecast comparison exercise, the inferences are based on the asymptotic behavior of the modified 

Diebold-Mariano test. The forecasting period is quite long and has over 300 observations. It is also noted that 
the generation of finite sample critical values for the large number of cases we deal with would be 
computationally infeasible. The most likely outcome of such an exercise would be that the performance ranking 
of , 1

ˆ
t h AR +  is unchanged, and it makes the detection of the performance difference between , 2

ˆ
t h AR + , ,

ˆ
t h SVR + , 

and ,
ˆ

t h RVR +  more rare, and, thus,  leaves our basic interpretation intact. 

 
9  The results pertaining to the original Diebold and Mariano statistics are qualitatively similar to the modified 

statistics reported in the text. These results are available upon request. 
 
10  Strictly speaking, the results do not necessarily imply that the short-run dynamics are not useful. An alternative 

interpretation is that, in this case, the model with coefficient restrictions implying short-run dynamics are 
captured by the first differences of the high and low past values, on average, forecasts better. 
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better than the ARMA range model, which is a stripped version of the VECM, and periodic updating the 

VECM estimates can lead to better forecasts.11  

 

Table 6 presents the direction of change statistics and the percentages of correct directional prediction. 

Similar to the mean-squared forecast error results, the forecast , 1
ˆ

t h AR +  offers the worst performance. In 

all cases under consideration, , 1
ˆ

t h AR +  has less than a 50% chance of predicting the correct directional 

variation. The other three forecasts , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and ,
ˆ

t h RVR + , on the other hand, correctly predict the 

movement of the range over 50 percent of the time and the improvement over the 50% mark is quite 

significant. In fact, in most cases, the percentage of correct prediction scored by these three forecasts is 

between 70% to 80%. Thus, with the exception of , 1
ˆ

t h AR + , these range forecasts contain useful 

information about the movement in the range variable. 

 

A natural question to ask is: “Is there a forecast that predicts the direction of change better than the 

others?” The answer is provided in Table 7, which reports the modified Diebold and Mariano statistics for 

performance comparison. Among the four forecasts, the range forecast , 1
ˆ

t h AR +  derived from individual 

high and low forecasts has the weakest performance. The abilities of the other three forecasts are quite 

comparable. While the actual percentages of correct forecasts are quite similar, , 2
ˆ

t h AR +  is marginally 

better than the other two VECM-based forecasts. The recursively generated ,
ˆ

t h RVR +  usually has a 

percentage of correct predictions better than ,
ˆ

t h SVR +  even though their differences are mostly not 

statistically significant. Thus, if the objective is to predict the direction of change, the more complicated 

VECM forecasts do not deliver results that are significantly better than the range forecast , 2
ˆ

t h AR + , which 

requires only the univariate ARMA technique and incurs a low computing cost.  

 

4.3 Decomposition of Forecast Error Variance  
 

Three of the four range forecasts , 1
ˆ

t h AR + , , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  are derived from their 

corresponding high and low forecasts. This allows us to evaluate the performance of these three range 

forecasts in terms of their components. Since tR  = tH  - tL , the range forecast error and its variance can 

be written as 

 

                                                 
11  Indeed, we found that, for stock index series, all the coefficient estimates of the error correction term in the 

forecasting period are all within a one-standard error band of their respective estimates reported in Table 3. The 
short-run dynamics, on the other hand, display much larger variations. 
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ˆ
t hR + - t hR +  = ( ˆ

t hH + - t hH + ) - ( ˆ
t hL + - t hL + )    (5) 

 

and 

 

V( ˆ
t hR + - t hR + ) = V( ˆ

t hH + - t hH + ) + V( ˆ
t hL + - t hL + ) – 2COV( ˆ

t hH + - t hH + , ˆ
t hL + - t hL + ) (6) 

 

Equation (5) breaks down the error in forecasting the range into errors in forecasting the high and the low.  

The variance decomposition of V( ˆ
t hR + - t hR + ), on the other hand, gives the sources of range forecast 

uncertainty.  

 

Because , 2
ˆ

t h AR +  does not directly involve forecasts of the high and the low, the decomposition results are 

only reported for the remaining three range forecasts. The results are summarized in Tables 8 to 10. 

 

The errors displayed by the three forecasts are quite small and, in most cases, are not statistically 

different from zero. The magnitude of forecast errors is, in general, increasing with the forecasting horizon. 

Even though these forecast errors are not statistically significant, the three forecasts tend to under-predict 

highs and lows such that the averages of ( ˆ
t hH + - t hH + ) and ( ˆ

t hL + - t hL + ) are all negative. For , 1
ˆ

t h AR + , the 

under-prediction of lows is more substantial than that of highs and, thus, the resulting range forecast 

errors are positive. Indeed, in six of the eight stock indexes, the averages of ˆ
t hR + - t hR +  computed for 

, 1
ˆ

t h AR +  are positive. In the cases of ,
ˆ

t h SVR +  and ,
ˆ

t h RVR + , the averages of ˆ
t hR + - t hR +  are positive in five 

out of eight cases.  

 

The sample forecast error variances reported in these tables are in accordance with the results that the 

range forecast , 1
ˆ

t h AR +  yields a more variable forecast error than ,
ˆ

t h SVR +  and ,
ˆ

t h RVR + . That is, the 

inclusion of high and low dynamics in formulating range forecasts reduces forecast uncertainty. Further, 

the forecast error variance of ,
ˆ

t h RVR +  is slightly better than that of ,
ˆ

t h SVR + , indicating some marginal value 

in updating the short-term dynamics in generating range forecasts. Comparing V( ˆ
t hH + - t hH + ) and 

V( ˆ
t hL + - t hL + ) across the three tables, it is observed that the use of the VECM specification also 

enhances the quality of high and low forecasts by reducing their forecast error variations. The French 

CAC 40 and German DAX indexes (FCHI and GDAX) are the only two exceptional cases in which the 

forecast error variance of highs associated with , 1
ˆ

t h AR +  is slightly smaller than those associated with the 

two VECM-based forecasts. Another observation is that, for the three range forecasts, V( ˆ
t hH + - t hH + ) 
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tends to be smaller than V( ˆ
t hL + - t hL + ); there are only seven out of 72 cases in which V( ˆ

t hH + - t hH + ) is 

larger than V( ˆ
t hL + - t hL + ). We do not have a good reason to explain the relative size of the two variances. 

However, we speculate that the variance differential is related to the observation that stock prices are 

more volatile in a down market than in an up one. 

 

For all the three range forecasts, COV( ˆ
t hH + - t hH + , ˆ

t hL + - t hL + ) is positive. That is, the forecast errors of 

highs and lows tend to move in the same direction – an over-prediction (under-prediction) of the high is 

likely to be accompanied by an over-prediction (under-prediction) of the low, and vice versa. The 

comovement of high and low forecast errors helps bring the variance of range forecast errors down to a 

level lower than those of ˆ
t hH + - t hH +  and ˆ

t hL + - t hL + . The comovement of ˆ
t hH + - t hH +  and ˆ

t hL + - t hL +  

from the VECM, which explicitly links the high and the low together, is in general stronger than that from 

estimating the high and the low separately. It is only in the cases of the British and French indexes that 

the COV( ˆ
t hH + - t hH + , ˆ

t hL + - t hL + ) associated with , 1
ˆ

t h AR +  is slightly less than those associated with the 

other two range forecasts. Further, the comovement of ˆ
t hH + - t hH +  and ˆ

t hL + - t hL +  that derived from 

,
ˆ

t h RVR +  is, on average, stronger than that from ,
ˆ

t h SVR + .  

 

The decomposition results corroborate the notion that, comparing with , 1
ˆ

t h AR + , the  joint estimation of the 

high and the low offers incremental information for range forecasting. The information gain ameliorates 

range forecasts by reducing the variability of errors in forecasting highs and lows and increasing the 

comovement of these two forecast errors. The improvement in forecasting highs and lows is relevant for 

exercises that require information on extreme values of the underlying financial price – for example, for 

pricing of knock-out options and implementing trading rules such as the Channel rule, the resistant and 

support levels, and the Candlestick chart. 

 

5. An Illustration 
 
As mentioned in the introduction, range is an efficient estimator of volatility. In this section, we assess the 

ability of range forecasts examined in the previous section to predict volatility. Volatility forecasting is an 

active research area and has significant implications for financial market practitioners. Andersen et al. 

(2005) and Poon and Granger (2003) are two recent extensive surveys on the subject.12 Strictly speaking, 

the volatility of a stock index is an unobservable parameter that determines the index’s observed 

                                                 
12  Poon and Granger (2005) review some practical issues in forecasting volatilities. 
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variations. In this exercise, we consider implied volatility, which is commonly regarded as a market 

expectation of the unobservable volatility as the forecast object.  

 

For a given options contract, implied volatility is a volatility estimate recovered from an options pricing 

equation with information on the premium and other pricing variables including the strike, price of the 

underlying asset, interest rate, and time to maturity. The reported implied volatility value is typically 

compiled from the average of a few nearest-the-money calls and nearest-the-money puts, which are used 

as a proxy for at-the-money contracts.13 It is a common denominator of option prices that practitioners use 

to compare options of different types. 

 

The implied volatilities under consideration are those of the European FTSE and DJI options contracts. 

The one-month and three-months calls and puts are included. The FTSE contract is traded on the 

Euronext.liffe London exchange and the DJI one is on the Chicago Board Options Exchange. Contract 

specifications are available on the exchanges’ official websites.  The implied volatility data were 

downloaded from the database Datastream.14 The forecasting period is from January 16, 2003 to June 1, 

2004 – the same as the one examined in Section 4. The volatility forecast derived from the range forecast 

is given by 

 
2 1/ 2

,
ˆ[ /(4 2)]t h jR ln+      (7) 

 

where j = A1, A2, SV, and RV. Since the implied volatility is annualized, we scale (7) accordingly and 

consider the scaled forecast15 

 

,t̂ h jV +  = 2 1/ 2
,

ˆ[365 /(4 2)]t h jR ln+      (8) 

 

The comparison of the performance of the scaled forecasts based on the mean-squared forecast error 

criterion is presented in Table 11. The modified Diebold-Mariano statistic clearly indicates that, among the 

four scaled forecasts, , 1t̂ h AV +  is the worst predictor of implied volatility. For the two puts and two calls of 

                                                 
13  The number of individual nearest-the-money calls and nearest-the-money puts used in the industry to construct 

implied volatility varies from two to four. The use of at-the-money contracts is to alleviate issues related to 
volatility smile – which refers to the observation that at-the-money options have implied volatilities lower than 
other (out-of-money and in-the-money) options. 

 
14  We were informed that DataStream uses a variant of the Black and Scholes model to construct implied volatility. 
 
15  Usually, a n  factor is used to get an n-days ahead forecast from an implied volatility estimate. According to 

the specification of implied volatility, the day-adjustment factor to obtain the annualized volatility is 365, which is 
different from the 250 or 252 factor used in, say, the historical volatility calculation. We also conducted the 
forecast exercise using the factors 250 and 360. The relative performance of these forecasts is qualitatively 
similar to those reported in the text and is available upon request. 
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the FTSE and DJI options, the mean-squared forecast errors of  , 1t̂ h AV +  are significantly larger than those 

of the other three scaled forecasts. The results reiterate those reported in the previous section – the 

forecast , 1t̂ h AV +  that ignores the interaction between highs and lows do not perform well in the forecast 

competition. 

 

Compared with the VECM-based scaled forecasts, the scaled forecast , 2t̂ h AV +  based on the ARMA 

structure of range performs slightly worse for the FTSE contracts but slightly better for the DJI ones. With 

the exception of two cases (DJIP6 and DJIC6 at h =1), the differences between , 2t̂ h AV +  and two VECM-

based forecasts are not statistically significant. Again, the results suggest that the VECM short-run 

dynamics may not be stable over time and the forecast , 2t̂ h AV +  which incorporates only the empirical long-

run relationship between highs and lows is not totally dominated by the VECM-based ,t̂ h RVV +  and ,t̂ h SVV + . 

Nonetheless, the relative performance of , 2t̂ h AV +  is not as good as the relative performance of , 2
ˆ

t h AR +  

reported in Table 5. There are differences in forecasting ranges and forecasting implied volatilities such 

that these forecasts perform differently in these two cases. 

 

Between the two VECM-based forecasts, the recursive ,t̂ h RVV +  forecast dominates the simple ,t̂ h SVV +  one 

for the DJI options and has a significantly smaller mean-squared forecast error for both one-period and 

two-period ahead forecasts. However, the abilities of these two VECM-based predictors are quite similar 

and their mean-squared forecast errors are not significantly different from each other for the FTSE options.  

 

The ability of the scaled forecasts to predict the change in the direction of implied volatility is reported in 

Table 12. The statistics show that, in general, the four scaled forecasts can predict the change in the 

direction of implied volatility. The proportion of cases in which the forecasts can make a correct directional 

prediction with more than a 50% chance is between two thirds ( , 1t̂ h AV + ) and five sixths ( ,t̂ h SVV + ). 

Comparing the results in Table 6, , 1t̂ h AV +  gives a higher percentage of correct directional forecasts than 

, 1
ˆ

t h AR + . Indeed, , 1t̂ h AV +  is significantly better than the 50% mark in two-thirds of the cases and , 1
ˆ

t h AR +  is 

worse than the 50% mark in more than two-thirds of the cases. On the other hand, the correct directional 

forecast percentages of , 2t̂ h AV + , ,t̂ h SVV + , and ,t̂ h RVV +  are much lower than those of , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and 

,
ˆ

t h RVR + . The percentages of these scaled forecasts to predict changes in the direction of implied volatility 

are no higher than 60% while those of the corresponding range forecasts are usually no lower than 70%. 

Thus, the range forecast performance cannot be directly used to infer the performance of forecasting 

implied volatility. 
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A statistical comparison of the scaled forecasts’ abilities to predict the change in the direction of implied 

volatility is presented in Table 13. In this case, the performance of , 1
ˆ

t h AR +  is not substantially worse than 

that of other scaled forecasts. The result is in contrast to its relative performance reported in the cases 

considered so far. Only in a few instances – two cases against , 2t̂ h AV + , five against ,t̂ h SVV + , and two 

against ,t̂ h RVV + , that the implied volatility forecast derived from individual high and low forecasts has a 

significant deterioration in the chance to make a correct directional prediction. In this round of comparison, 

,t̂ h SVV + fares the best. It performs better than , 2t̂ h AV +  and ,t̂ h RVV +  in a good numbers of cases. The other 

VECM-based forecast ,t̂ h RVV +  also delivers a stronger performance than , 2t̂ h AV + . In contract to the mean-

squared forecast error results, the VECM-based forecasts of implied volatility are better than , 2t̂ h AV + , 

which does not incorporate short-run high and low dynamics. Thus, in predicting the change in the 

direction of implied volatility, it pays to consider the short-run dynamics in VECM, though recursively 

updating the dynamics does not improve the forecast performance. 

 

6. Concluding Remarks 
 
In this exercise we observe that daily highs and lows of stock prices do not diverge over time and, hence, 

adopt the cointegration framework to model the daily high, the daily low, and the associated daily range 

data. Most of the existing studies focus on the price range variable itself and its capacity to extract the 

unobservable return volatility. By examining the variables simultaneously, the current study yields 

information on not just the range itself but also information about its components – the daily high and the 

daily low. Thus, our results are relevant to a wide class of applications that require information beyond the 

range variable. 

 

Our empirical results attest to the importance of incorporating high-low interactions in modeling the range 

variable. The in-sample performance of the high-low VECM is quite good.  The out-of-sample forecast 

performance, however, deserves some discussion. The decomposition exercise indicates that the joint 

estimation improves the performance of the high and low forecasts. Thus, the VECM is a good candidate 

to consider whether the application requires information on highs and lows.   

 

However, the VECM-based range forecast does not always dominate other alternative forecasts. Indeed, 

there are instances in which forecasts from simple ARMA range models perform better. One observation 

is that forecast rankings depend on evaluation criteria and the variables being forecasted. For instance, 

even if a forecast is a good predictor of range, it may not be automatically a good predictor of implied 

volatility. Putting all these together, the in-sample results are more supportive of the VECM specification 

than the out-of-sample results. 
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How should we interpret the disparate in-sample and out-of-sample performance? One possibility is that 

the high-low model is not stable over time and the instability makes it difficult to translate good in-sample 

performance to good out-of-sample results. A more relevant question is how much weight one has to put 

on out-of-sample evidence. Inoue and Kilian (2004) assess the relative usefulness of out-of-sample 

versus in-sample tests. These authors observe a widely known result that significant in-sample evidence 

does not guarantee significant out-of-sample predictability. They argue that in-sample tests have higher 

power and show that in-sample results are typically more credible than out-of-sample results. Another 

difficulty in interpreting forecast performance is pointed out by Clements and Hendry (2001) – they show 

that an incorrect but simple model may outperform a correct model in forecasting. 

 

We do not mean to overplay the relevance of the high-low VECM and, hence, downplay the out-of-sample 

results. Indeed, the VECM delivers reasonable out-of-sample range forecasts and it offers even better 

high and low forecasts. In this respect, further work on interactions between highs, lows, and ranges is 

warranted. Further, we consider neither structural models nor nonlinear specifications. These alternative 

modeling strategies may offer additional information on the dynamics of highs, lows, and ranges.  

 

While we used range forecasts to predict implied volatility, we neither examine the link between range 

and return volatility in detail nor the practical relevancy of using high and low forecasts in the context of, 

say, exotic options pricing and technical trading. Conceivably, additional insights can be gained from 

extending the current exercise to analyze return volatility, options pricing, and technical trading. 
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Table 1. Unit Root Test Results for Daily Highs, Daily Lows, and Daily Ranges 
 

 Levels First Differences 
 ADF (p) Q-Stat(6) Q-Stat(12) ADF (p) Q-Stat(6) Q-Stat(12) 

FTSE: High -0.12 (2) 9.66 
(0.1396)

14.73 
(0.2567) -40.26 (1) 9.74 

(0.1362) 
14.76 

(0.2549) 

           Low -0.26 (8) 0.09 
(1.0000)

13.02 
(0.3677) -19.67 (7) 0.09 

(1.0000) 
13.06 

(0.3647) 

           Range -8.05 (7) 0.93 
(0.9880)

18.00 
(0.1156)    

FCHI: High -0.71 (2) 10.62 
(0.1007)

13.40 
(0.3406) -32.66 (2) 6.84 

(0.3356) 
9.80 

(0.6333) 

           Low -0.61 (6) 0.03 
(1.0000)

14.09 
(0.2949) -24.67 (5) 0.03 

(1.0000) 
14.05 

(0.2973) 

           Range -8.97 (7) 2.67 
(0.8487)

14.97 
(0.2433)    

GDAX: High 0.20 (4) 5.68 
(0.4604)

17.35 
(0.1369) -26.52 (3) 5.60 

(0.4698) 
17.29 

(0.1390) 

             Low 0.06 (9) 0.05 
(1.0000)

18.24 
(0.1086) -18.06 (8) 0.05 

(1.0000) 
18.23 

(0.1090) 

             Range -6.17 (8) 0.18 
(0.9999)

11.33 
(0.5008)    

N225: High -1.74 (2) 6.54 
(0.3656)

11.30 
(0.5034) -39.02 (1) 6.33 

(0.3872) 
10.63 

(0.5610) 

          Low -1.99 (2) 5.10 
(0.5313)

9.43 
(0.6654) -38.00 (1) 5.70 

(0.4571) 
9.34 

(0.6734) 

          Range -10.48 (6) 3.02 
(0.8065)

6.96 
(0.8605)    

KS11: High -2.15 (2) 8.37 
(0.2124)

12.22 
(0.4279) -37.39 (1) 8.77 

(0.1871) 
12.27 

(0.4244) 

           Low -2.11 (4) 4.77 
(0.5736)

11.11 
(0.5199) -28.27 (3) 5.01 

(0.5426) 
10.85 

(0.5418) 

           Range -8.57 (7) 2.69 
(0.8468)

12.78 
(0.3849)    

DJI: High -0.74 (1) 3.00 
(0.8083)

7.09 
(0.8516) -48.42 (0) 3.25 

(0.7763) 
7.22 

(0.8426) 

        Low -1.00 (2) 7.96 
(0.2413)

14.43 
(0.2738) -38.91 (1) 8.40 

(0.2104) 
14.80 

(0.2524) 

        Range -9.85 (7) 1.22 
(0.9761)

4.10 
(0.9815)    

IXIC: High -0.58 (7) 0.01 
(1.0000)

16.91 
(0.1529) -20.19 (6) 0.01 

(1.0000) 
16.79 

(0.1577) 

          Low -0.60 (6) 0.11 
(1.0000)

15.15 
(0.2334) -24.55 (5) 0.11 

(1.0000) 
14.92 

(0.2458) 

          Range -10.03 (7) 4.16 
(0.6549)

16.12 
(0.1857)    

TWII: High -2.03 (9) 1.40 
(0.9656)

14.65 
(0.2609) -19.18 (8) 1.43 

(0.9640) 
13.87 

(0.3089) 

           Low -2.09 (1) 6.63 
(0.3565)

17.62 
(0.1278) -45.70 (0) 7.27 

(0.2967) 
17.74 

(0.1238) 

           Range    -10.06 (10) 1.00 
(0.9857)

11.12 
(0.5182)    

 



 

 21

Hong Kong Institute for Monetary Research       Working Paper No.03/2009 

Note: The results of applying augmented Dickey-Fuller tests to individual daily high, low, and range series are 
reported. The stock indexes considered are the British FTSE 100 (FTSE), French CAC 40 (FCHI), the 
German DAX 30 (GDAX), the Japanese Nikkei 225 (N225), the Korean KOSPI (KS11), US Dow Jones 
Industrial Average (DJI), the US Nasdaq Composite (IXIC), and the Taiwanese TSEC Weighted index (TWII). 
The Box-Ljung statistics based on the first six and first twelve serial correlations of the estimated residuals 
are given under the heading “Q-Stat” and their p-values are given in parentheses underneath. For all the 
daily high and daily low series, the unit root null hypothesis is not rejected by the data themselves but is 
rejected by their first differences. All the range series reject the unit root null hypothesis. Critical values are 
from Cheung and Lai (1995). 
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Table 2. Descriptive Statistics 
 

 Mean Variance Coefficient of 
Variation Skewness Kurtosis 

FTSE: ∆High 0.0205 0.0090 46.3001 -0.0955 2.9911 

           ∆Low 0.0201 0.0114 53.0264 -0.4021 7.6419 

           Range 1.2693 0.0074 0.6784 2.4296 11.3541 

FCHI: ∆High 0.0244 0.0155 51.1345 -0.3266 2.7638 

           ∆Low 0.0243 0.0200 58.1231 -0.1914 4.2217 

           Range 1.6247 0.0086 0.5705 2.3404 9.1265 

GDAX: ∆High 0.0274 0.0164 46.6936 -0.4003 4.7836 

              ∆Low 0.0265 0.0204 53.9929 -0.6592 5.5948 

              Range 1.3916 0.0161 0.9112 2.4801 10.2045 

N225: ∆High -0.0347 0.0154 -35.6901 0.5631 2.5137 

           ∆Low -0.0348 0.0181 -38.5950 -0.0785 3.0672 

           Range 1.7307 0.0088 0.5430 1.9087 6.0185 

KS11: ∆High -0.0017 0.0355 -1080.1908 0.1095 3.4777 

            ∆Low -0.0018 0.0375 -1068.1495 -0.0658 3.9044 

            Range 2.0925 0.0160 0.6049 1.4384 2.5557 

DJI: ∆High 0.0402 0.0074 21.3094 -0.0374 3.7671 

        ∆Low  0.0402 0.0099 24.7507 -0.4818 6.0939 

        Range 1.3292 0.0063 0.5991 2.4591 10.9923 

IXIC: ∆High 0.0451 0.0223 33.1070 -0.3748 12.5609 

           ∆Low 0.0449 0.0318 39.7227 -0.1099 6.4246 

           Range 1.7482 0.0215 0.8390 2.7642 14.8014 

TWII: ∆High 0.0036 0.0282 463.8801 -0.1514 2.8460 

            ∆Low 0.0053 0.0302 329.3805 -0.0755 3.7417 

            Range 1.9247 0.0129 0.5898 1.8788 5.8040 

 
Note: The mean and variance are scaled by a factor of 100. Kurtosis is normalized so that the normal distribution has 

a value of 0. Also, see Note to Table 1. 
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Table 3. Cointegration Test Results 
 

 EIGENV TRACE C. Vector LAG 

FTSE   (1, -1.00899) 8 

r = 1 4.28 4.28   

r = 0 63.09* 67.38*   

FCHI (1, -1.00607) 7 

r =1 2.11 2.11  

r = 0 90.68* 92.79*  

GDAX (1, -1.01124) 11 

r =1 2.45 2.45  

r = 0 48.11* 50.56*  

N225   (1, -0.99195) 4 

r =1 0.22 0.22  

r = 0 227.34* 227.56*  

KS11   (1, -0.98571) 6 

r =1 4.00 4.00  

r = 0 83.23* 87.23*  

DJI   (1, -1.00630) 8 

r =1 3.53 3.53  

r = 0 100.97* 104.50*  

IXIC   (1, -1.01276) 8 

r =1 4.63 4.63   

r = 0 118.72* 123.35*   

TWII   (1, -0.99721) 13 

r =1 4.80 4.80   

r = 0 76.37* 81.16*   
 

Note: The results of testing for cointegration between highs and lows of individual stock series are reported. 
Eigenvalue and trace statistics are given under the columns “EIGENV” and “TRACE.” “r=0” corresponds to the 
null hypothesis of no cointegration and “r=1” corresponds to the hypothesis of one cointegration vector. All the 
Q-statistics (reported in Table 4) are insignificant. The rows labeled “C. Vector” give cointegrating vectors with 
the coefficient of the high normalized to one.  “LAG” gives the lag parameters used to conduct the test. “*” 
indicates significance at the 5% level. 
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Table 4. Vector Error Correction Models 

 

 FTSE FCHI GDAX N225 
 ∆High ∆Low ∆High ∆Low ∆High ∆Low ∆High ∆Low 
Constant 0.0010** -0.0005 0.0014** -0.0012* 0.0012** 0.0003 0.0005 -0.0043**
 (2.86) (-1.17) (2.53) (-1.89) (3.32) (0.80) (0.90) (-6.80) 
Z1 -0.0597** 0.0499* -0.0721** 0.0870** -0.0649** -0.0073 -0.0480 0.2318**
 (-2.52) (1.84) (-2.27) (2.42) (-3.17) (-0.31) (-1.50) (6.88) 
∆High(-1) -0.2649** 0.4957** -0.2135** 0.4776** -0.3833** 0.4489** -0.0855** 0.4565**
 (-7.30) (11.88) (-4.92) (9.71) (-9.57) (9.68) (-2.24) (11.37) 
∆Low(-1) 0.4565** -0.2261** 0.3442** -0.2650** 0.4884** -0.2532** 0.3653** -0.1293**
 (13.64) (-5.88) (8.52) (-5.78) (13.50) (-6.04) (9.97) (-3.36) 
∆High(-2) -0.3424** 0.2209** -0.1720** 0.4125** -0.3363** 0.3511** -0.2756** 0.1274**
 (-8.31) (4.67) (-3.64) (7.69) (-6.94) (6.25) (-7.06) (3.11) 
∆Low(-2) 0.1996** -0.3329** 0.1079** -0.4339** 0.2772** -0.3698** 0.0965** -0.2389**
 (5.24) (-7.61) (2.47) (-8.77) (6.28) (-7.24) (2.61) (-6.16) 
∆High(-3) -0.1196** 0.3085** -0.0856* 0.3341** -0.1897** 0.3465** -0.0399 0.1694**
 (-2.78) (6.23) (-1.76) (6.06) (-3.56) (5.61) (-1.10) (4.43) 
∆Low(-3) 0.1066** -0.3036** 0.0246 -0.3678** 0.1441** -0.3645** 0.0797** -0.1162**
 (2.69) (-6.68) (0.55) (-7.22) (2.95) (-6.45) (2.33) (-3.23) 
∆High(-4) -0.0616 0.2938** -0.0430 0.2752** -0.2059** 0.1994** -0.0839** 0.0350 
 (-1.43) (5.93) (-0.91) (5.11) (-3.70) (3.10) (-2.81) (1.12) 
∆Low(-4) 0.0556 -0.2675** 0.0791* -0.2101** 0.2423** -0.1486** 0.0654** -0.0271 
 (1.41) (-5.88) (1.82) (-4.26) (4.75) (-2.51) (2.40) (-0.95) 
∆High(-5) -0.1108** 0.1734** -0.0109 0.1778** -0.2062** 0.0988   
 (-2.65) (3.61) (-0.25) (3.65) (-3.66) (1.51)   
∆Low(-5) 0.0732* -0.1974** -0.0122 -0.2063** 0.1778** -0.1489**   
 (1.91) (-4.48) (-0.31) (-4.65) (3.43) (-2.48)   
∆High(-6) -0.1402** 0.0369 -0.0473 0.0476 -0.2265** -0.0076   
 (-3.67) (0.84) (-1.39) (1.23) (-4.06) (-0.12)   
∆Low(-6) 0.0816** -0.0933** 0.0160 -0.1042** 0.1782** -0.0444   
 (2.32) (-2.31) (0.51) (-2.90) (3.46) (-0.75)   
∆High(-7) -0.0678** 0.0672**   -0.2369** -0.0969   
 (-2.28) (1.96)   (-4.40) (-1.55)   
∆Low(-7) 0.1024** -0.0385   0.2526** 0.0925   
 (3.66) (-1.20)   (5.05) (1.60)   
∆High(-8)     -0.2650** -0.1863**   
     (-5.20) (-3.16)   
∆Low(-8)     0.2530** 0.1741**   
     (5.38) (3.20)   
∆High(-9)     -0.1613** -0.1283**   
     (-3.57) (-2.45)   
∆Low(-9)     0.1295** 0.1237**   
     (3.08) (2.54)   
∆High(-10)     0.0296 0.0449   
     (0.85) (1.12)   
∆Low(-10)     -0.0257 -0.0474   
     (-0.77) (-1.23)   

Adj R-2 0.1374 0.0962 0.0766 0.0776 0.1182 0.0597 0.1092 0.1626 
Q-stat(6) 0.40 0.24 0.37 0.16 0.15 0.11 0.42 1.51 
Q-stat(12) 7.20 14.54 5.83 11.27 10.97 10.60 5.25 12.52 
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 KS11 DJI IXIC TWII 
 ∆High ∆Low ∆High ∆Low ∆High ∆Low ∆High ∆Low 
Constant 0.0007 -0.0021** 0.0009** -0.0015** 0.0017** -0.0007 0.0002 -0.0035**
 (1.00) (-2.73) (2.38) (-3.50) (3.42) (-1.18) (0.30) (-4.13) 
Z1 -0.0350 0.1002** -0.0366 0.1314** -0.0712** 0.0601** -0.0119 0.1880** 
 (-1.10) (3.03) (-1.44) (4.49) (-2.98) (2.09) (-0.30) (4.52) 
∆High(-1) -0.2610** 0.3120** -0.2502** 0.5825** -0.2748** 0.5015** -0.3578** 0.2683** 
 (-5.67) (6.53) (-7.25) (14.61) (-7.88) (11.94) (-7.40) (5.28) 
∆Low(-1) 0.5142** -0.0222 0.4989** -0.1411** 0.3629** -0.2764** 0.5461** -0.0309 
 (11.49) (-0.48) (15.76) (-3.86) (11.54) (-7.30) (11.68) (-0.63) 
∆High(-2) -0.1953** 0.2159** -0.3647** 0.2330** -0.2885** 0.3077** -0.2306** 0.2205** 
 (-3.94) (4.19) (-9.42) (5.21) (-7.42) (6.57) (-4.46) (4.07) 
∆Low(-2) 0.0570 -0.3262** 0.1888** -0.3553** 0.2077** -0.3493** 0.1974** -0.2170**
 (1.19) (-6.56) (5.45) (-8.87) (6.03) (-8.42) (3.96) (-4.15) 
∆High(-3) -0.0901* 0.1564** -0.2115** 0.2584** -0.1876** 0.3243** -0.2409** 0.0917* 
 (-1.82) (3.05) (-5.30) (5.60) (-4.69) (6.74) (-4.54) (1.65) 
∆Low(-3) 0.1348** -0.1349** 0.2340** -0.2129** 0.1739** -0.2794** 0.2432** -0.0724 
 (2.81) (-2.71) (6.56) (-5.17) (4.89) (-6.53) (4.77) (-1.35) 
∆High(-4) 0.0497 0.2141** -0.1993** 0.2056** -0.1006** 0.3282** -0.2040** 0.0621 
 (1.07) (4.45) (-5.08) (4.53) (-2.54) (6.88) (-3.81) (1.10) 
∆Low(-4) -0.0684 -0.2332** 0.1879** -0.1874** 0.1198** -0.2680** 0.2083** -0.0861 
 (-1.53) (-5.02) (5.32) (-4.59) (3.40) (-6.32) (4.05) (-1.59) 
∆High(-5) -0.0583 0.0177 -0.1138** 0.1878** -0.0672* 0.2250** -0.1455** 0.0753 
 (-1.52) (0.44) (-3.04) (4.34) (-1.77) (4.91) (-2.71) (1.34) 
∆Low(-5) 0.0220 -0.0792** 0.0970** -0.1962** 0.0562* -0.2627** 0.1537** -0.0649 
 (0.58) (-2.00) (2.87) (-5.03) (1.66) (-6.45) (2.98) (-1.20) 
∆High(-6)   -0.0534 0.1799** 0.0265 0.2250** -0.1817** 0.0215 
   (-1.57) (4.58) (0.77) (5.42) (-3.43) (0.39) 
∆Low(-6)   0.0377 -0.1779** -0.0226 -0.2467** 0.1454** -0.0582 
   (1.25) (-5.10) (-0.74) (-6.69) (2.84) (-1.08) 
∆High(-7)   -0.0232 0.0864** 0.0491* 0.1359** -0.1492** -0.0028 
   (-0.89) (2.86) (1.80) (4.13) (-2.87) (-0.05) 
∆Low(-7)   0.0385 -0.0841** -0.0034 -0.1287** 0.1606** 0.0112 
   (1.61) (-3.03) (-0.14) (-4.29) (3.20) (0.21) 
∆High(-8)       -0.0221 0.0711 
       (-0.43) (1.33) 
∆Low(-8)       0.0615 -0.0461 
       (1.26) (-0.90) 
∆High(-9)       -0.0712 0.0106 
       (-1.47) (0.21) 
∆Low(-9)       0.0185 -0.0552 
       (0.39) (-1.12) 
∆High(-10)       0.0253 0.0873* 
       (0.55) (1.81) 
∆Low(-10)       0.0189 -0.0379 
       (0.43) (-0.82) 
∆High(-11)       -0.0395 0.0179 
       (-0.94) (0.41) 
∆Low(-11)       0.0549 -0.0210 
       (1.38) (-0.50) 
∆High(-12)       -0.0135 -0.0125 
       (-0.41) (-0.36) 
∆Low(-12)       0.0711** 0.0464 
       (2.19) (1.36) 

Adj R-2 0.1114 0.0937 0.1683 0.1748 0.1012 0.0858 0.1161 0.0811 
Q-stat(6) 1.44  0.78  0.14 0.03  0.35  0.45  0.33  0.41  
Q-stat(12) 4.09  4.42  4.96  2.14  11.97  15.13  1.16  1.38  
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Note: The estimates of the vector error correction model are reported. Results pertaining to the high and the low 
equations are reported under the headings “∆High” and “∆ Low.” Robust t-statistics are given in parentheses 
underneath the parameter estimates. The error correction term Z1 is given by the difference of high and low 
(that is, range). “**” and “*” indicate significance at the 5% and 10% level, respectively. The adjusted R-squared 
statistics are reported in the row labeled “Adj R-2.”  Q-stat(6) and Q-stat(12) give the Q-statistics calculated from 
the first 6 and 12 sample autocorrelations, respectively. All the Q-statistics are insignificant.  
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Table 5. Modified Diebold Mariano Statistics: Mean-Squared Forecast Errors  
 

 , 1
ˆ

t h AR + / , 2
ˆ

t h AR +  , 1
ˆ

t h AR + / ,
ˆ

t h SVR + , 1
ˆ

t h AR + / ,
ˆ

t h RVR + , 2
ˆ

t h AR + / ,
ˆ

t h SVR + , 2
ˆ

t h AR + / ,
ˆ

t h RVR +  ,
ˆ

t h SVR + / ,
ˆ

t h RVR +

FTSE:h=1 3.4977** 3.4683** 3.4817** 0.9187 0.8560 -0.9197 
h=2 4.1230** 3.9984** 4.0066** 1.6249 1.5156 -0.0179 
h=4 3.4272** 3.3673** 3.3490** 1.5863 1.4928 0.7530 

FCHI:h=1 3.4396** 2.7238** 2.7761** -1.4393 -1.3726 1.6054 
h=2 2.2571** 2.0965** 2.1130** -1.3198 -1.3052 0.7059 
h=4 3.2906** 3.3136** 3.2988** -0.9941 -1.0863 -0.5713 

GDAX:h=1 6.9791** 6.4182** 6.5098** -0.6535 -0.2770 2.6765** 
h=2 3.9817** 3.6727** 3.7640** -2.2541** -1.8886* 1.8913* 
h=4 5.9353** 5.7752** 5.7800** -2.1844** -1.7200* 1.8951* 

N225: h=1 5.5244** 5.1941** 5.2182** -2.2768** -2.2327** 2.1868** 
h=2 5.0599** 4.9498** 4.9647** -2.5999** -2.5860** 2.1933** 
h=4 5.1786** 5.0305** 5.0371** -2.5854** -2.5741** 2.0297** 

KS11: h=1 4.0559** 4.2214** 4.2150** -0.2120 -0.2004 0.3545 
h=2 3.6009** 3.7115** 3.7123** -0.2687 -0.2556 0.3467 
h=4 4.9158** 4.5233** 4.5362** -0.4792 -0.4675 0.3808 

DJI: h=1 7.5330** 6.9994** 7.0111** -0.1244 -0.0758 1.2970 
h=2 4.3960** 4.0566** 4.0601** -1.2122 -1.1905 0.4513 
h=4 4.5721** 4.5656** 4.5643** -0.4856 -0.5205 -0.4485 

IXIC: h=1 8.2042** 7.2709** 7.3001** -0.6863 -0.5734 2.8570** 
h=2 3.9922** 3.3087** 3.3446** -2.1005** -2.0216** 2.4670** 
h=4 4.2748** 4.0626** 4.0743** -2.1259** -2.0923** 1.7989* 

TWII: h=1 6.0946** 6.2100** 6.1919** 0.8348 0.7227 -1.2039 
h=2 4.3654** 4.5115** 4.5031** 0.5424 0.4703 -0.9132 
h=4 5.7969** 5.6604** 5.6746** 1.1277 1.0978 -0.4376 

 
Note: The modified Diebold Mariano statistics that compare the performance of two forecasts based on the mean-

squared forecast error criterion are presented. A positive test statistic indicates that the first one of the forecast 
pair has a mean-squared forecast error larger than the second one. “**” and “*” indicate significance at the 5% and 
10% level respectively.  
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Table 6. Direction of Change Statistics 
 

 
Note: The direction of change statistics for testing the hypothesis of the proportion of correct directional forecasts is 

50% are reported. “**” and “*” indicate significance at the 5% and 10% level respectively. The observed 
proportions of correct directional forecasts are presented in columns labeled (correct %). 

 , 1
ˆ

t h AR +  (Correct 
%) , 2

ˆ
t h AR +  (Correct 

%) ,
ˆ

t h SVR +  (Correct 
%) ,

ˆ
t h RVR +  (Correct 

%) 

FTSE: h=1 -3.0019** (41.95) 8.8985** (73.85) 7.9336** (71.26) 7.9336** (71.26) 
h=2 -2.4157** (43.52) 8.9650** (74.06) 9.7166** (76.08) 9.8240** (76.37) 
h=4 -0.5922 (48.41) 7.6989** (70.72) 7.2682** (69.57) 7.3758** (69.86) 

FCHI: h=1 -2.7222** (42.74) 9.0206** (74.07) 8.5935** (72.93) 8.9138** (73.79) 
h=2 -0.9621 (47.43) 6.4143** (67.14) 5.9867** (66.00) 5.7728** (65.43) 
h=4 -0.6433 (48.28) 7.2904** (69.54) 7.7192** (70.69) 7.6120** (70.40) 

GDAX:h=1 -3.8005** (39.83) 9.7958** (76.22) 10.2240** (77.36) 10.4381** (77.94) 
h=2 -0.8577 (47.70) 7.1832** (69.25) 6.5399** (67.53) 6.3255** (66.95) 
h=4 -1.1827 (46.82) 7.5264** (70.23) 7.9565** (71.39) 7.8490** (71.10) 

N225: h=1 -3.8562** (39.53) 7.8753** (71.39) 8.2012** (72.27) 8.5271** (73.16) 
h=2 -3.9163** (39.35) 6.0920** (66.57) 5.8744** (65.98) 5.9832** (66.27) 
h=4 -3.1642** (41.37) 7.5285** (70.54) 7.5285** (70.54) 7.5285** (70.54) 

KS11: h=1 -3.7587** (39.76) 8.2255** (72.40) 8.1165** (72.11) 8.1165** (72.11) 
h=2 -3.4915** (40.48) 8.2923** (72.62) 7.3103** (69.94) 7.4194** (70.24) 
h=4 -1.9698** (44.61) 7.1133** (69.46) 7.2227** (69.76) 7.1133** (69.46) 

DJI: h=1 -8.0641** (28.32) 11.8273** (81.79) 11.7198** (81.50) 11.6122** (81.21) 
h=2 -5.1146** (36.23) 7.2682** (69.57) 7.9142** (71.30) 8.0219** (71.59) 
h=4 -5.9934** (33.82) 9.1251** (74.64) 9.0172** (74.34) 9.0172** (74.34) 

IXIC: h=1 -3.9783** (39.31) 10.2145** (77.46) 9.7844** (76.30) 9.7844** (76.30) 
h=2 0.4845 (51.30) 7.4835** (70.14) 6.4067** (67.25) 6.2991** (66.96) 
h=4 0.9179 (52.48) 7.6133** (70.55) 7.7213** (70.85) 7.7213** (70.85) 

TWII: h=1 -5.0362** (36.36) 8.0688** (71.85) 8.5020** (73.02) 8.6103** (73.31) 
h=2 -6.1825** (33.24) 7.8095** (71.18) 7.1587** (69.41) 7.1587** (69.41) 
h=4 -5.5481** (34.91) 8.5941** (73.37) 8.3765** (72.78) 8.4853** (73.08) 
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Table 7. Modified Diebold Mariano Statistics: Direction of Change 
 

 
Note: The modified Diebold Mariano statistics that compare the performance of two forecasts based on the direction of 

change criterion are presented. A positive test statistic indicates that the second one of the forecast pair has a 
proportion of correct directional predictions larger than the first one. “**” and “*” indicate significance at the 5% and 
10% level respectively. 

 , 1
ˆ

t h AR + / , 2
ˆ

t h AR +  , 1
ˆ

t h AR + / ,
ˆ

t h SVR +  , 1
ˆ

t h AR + / ,
ˆ

t h RVR + , 2
ˆ

t h AR + / ,
ˆ

t h SVR + , 2
ˆ

t h AR + / ,
ˆ

t h RVR +  ,
ˆ

t h SVR + / ,
ˆ

t h RVR +

FTSE: h=1 8.1803** 7.2003** 7.2365** -2.0745** -2.0745** 0.0000 
h=2 8.6786** 9.0169** 9.1247** 1.6171 1.7200* 0.5757 
h=4 5.8171** 5.1650** 5.1567** -1.1588 -0.8295 0.5734 

FCHI: h=1 8.5377** 7.9789** 8.3689** -0.7066 -0.1922 1.0000 
h=2 5.6076** 5.0429** 4.8554** -0.8518 -1.2828 -1.4204 
h=4 6.0072** 6.2506** 5.9761** 1.0001 0.7242 -0.5735 

GDAX:h=1 9.5380** 9.9217** 10.1174** 0.8161 1.1773 0.8161 
h=2 5.4694** 4.7881** 4.6231** -1.3464 -1.8063* -1.4204 
h=4 5.7625** 6.2011** 5.9924** 1.0707 0.6509 -0.4436 

N225: h=1 7.9159** 8.2463** 8.5401** 0.5994 1.2804 1.7372* 
h=2 6.5061** 6.4759** 6.5931** -0.4067 -0.2173 0.5756 
h=4 6.2451** 6.5548** 6.5548** 0.0000 0.0000 . 

KS11: h=1 7.8839** 7.8193** 7.7792** -0.1997 -0.2082 0.0000 
h=2 8.9089** 8.0656** 8.1684** -1.7479* -1.5794 0.4456 
h=4 6.6755** 6.7119** 6.6208** 0.1674 0.0000 -1.0001 

DJI: h=1 14.5102** 14.4288** 14.2601** -0.1642 -0.3329 -1.0000 
h=2 8.3409** 8.5009** 8.5948** 1.1346 1.3510 1.0000 
h=4 10.5001** 9.7571** 9.8568** -0.2402 -0.2402 0.0000 

IXIC: h=1 10.5653** 9.3059** 9.3059** -0.6319 -0.6319 0.0000 
h=2 5.1073** 4.2897** 4.2385** -1.9116* -2.0718** -1.0000 
h=4 4.7110** 4.7300** 4.7300** 0.1906 0.1906 0.0000 

TWII: h=1 8.1079** 8.5487** 8.6118** 0.9427 1.2135 1.0000 
2=2 9.2236** 8.9016** 8.9972** -1.2829 -1.3465 0.0000 
h=4 8.4904** 8.0721** 8.2072** -0.5734 -0.3303 1.0001 
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Table 8. Forecast Error Decomposition for , 1

ˆ
t h AR +  

 
Note: (.)A , (.)V , and cov(.)  give the average, variance, and covariance of the variables inside parentheses 

and are scaled by a factor of 104. The robust t-statistics for the hypothesis of (.)A  = 0 are given underneath 

the associated (.)A  estimates. “**” and “*” indicate significance at the 5% and 10% level. 

 ˆ( )A r r−  ˆ( )A h h−  
ˆ( )A l l−  )ˆ( rrV − )ˆ( hhV − )ˆ( llV −  

?2cov( , )h h l l− −  
FTSE: h=1 0.9095 -3.0897 -3.9992 0.5855 0.6740 0.8716 0.9601 

 (0.22) (-0.70) (-0.80)     
h=2 1.3176 -7.2928 -8.6105 0.5705 1.6573 2.0308 3.1176 

 (0.32) (-1.06) (-1.13)     
h=4 2.5824 -15.7615 -18.3439 0.7293 3.5706 4.3851 7.2265 

 (0.56) (-1.55) (-1.63)     
FCHI: h=1 0.9731 -3.3355 -4.3086 0.7677 1.4622 1.8578 2.5522 

 (0.21) (-0.52) (-0.59)     
h=2 1.7589 -7.5882 -9.3472 0.7745 3.4636 3.8710 6.5601 

 (0.37) (-0.76) (-0.89)     
h=4 2.6599 -17.7059 -20.3658 1.0327 7.3897 7.7018 14.0588 

 (0.49) (-1.22) (-1.37)     
GDAX: h=1 0.7396 -5.7683 -6.5079 1.3863 1.7605 2.4613 2.8355 

 (0.12) (-0.81) (-0.77)     
h=2 1.4017 -12.7598 -14.1616 1.0127 4.2172 5.2447 8.4492 

 (0.26) (-1.16) (-1.15)     
h=4 2.7183 -28.3923* -31.1106* 1.2900 10.0933 11.4298 20.2332 

 (0.45) (-1.66) (-1.71)     
N225: h=1 -0.1553 -7.3324 -7.1770 0.9000 1.3841 1.6982 2.1823 

 (-0.03) (-1.15) (-1.01)     
h=2 -0.9638 -15.8702 -14.9064 0.9267 3.4422 3.9232 6.4388 

 (-0.18) (-1.57) (-1.38)     
h=4 -0.2788 -31.4777** -31.1989** 1.0001 7.7543 8.4517 15.2060 

 (-0.05) (-2.07) (-1.97)     
KS11: h=1 0.5093 -5.4459 -5.9552 1.1216 2.0155 2.5357 3.4295 

 (0.09) (-0.70) (-0.69)     
h=2 0.8902 -12.0567 -12.9469 1.1695 4.4161 5.5597 8.8063 

 (0.15) (-1.05) (-1.01)     
h=4 1.1116 -26.4722 -27.5837 1.2830 9.7038 12.2432 20.6640 

 (0.18) (-1.55) (-1.44)     
DJI: h=1 0.2356 -0.1192 -0.3548 0.6559 0.6389 0.6920 0.6750 

 (0.05) (-0.03) (-0.08)     
h=2 0.5659 -0.4341 -1.0000 0.4792 1.3170 1.4338 2.2715 

 (0.15) (-0.07) (-0.16)     
h=4 1.1643 -1.9222 -3.0865 0.5301 2.9040 3.2190 5.5929 

 (0.30) (-0.21) (-0.32)     
IXIC: h=1 1.0236 -8.3923 -9.4159 0.8130 1.3757 1.2658 1.8286 

 (0.21) (-1.33) (-1.56)     
h=2 1.8977 -17.6201* -19.5178** 0.5777 2.8864 2.9036 5.2123 

 (0.46) (-1.93) (-2.13)     
h=4 2.2108 -38.3213** -40.5321** 0.6575 5.9760 6.3535 11.6721 

 (0.50) (-2.90) (-2.98)     
TWII: h=1 -0.3063 -4.5170 -4.2107 1.6008 1.6475 1.7408 1.7875 

 (-0.04) (-0.65) (-0.59)     
h=2 -0.4091 -10.0144 -9.6053 1.6336 3.7887 4.4175 6.5726 

 (-0.06) (-0.95) (-0.84)     
h=4 -0.2645 -22.2882 -22.0238 1.7670 8.3639 9.5243 16.1212 

 (-0.04) (-1.42) (-1.31)     
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Table 9. Forecast Error Decomposition for ,

ˆ
t h SVR +  

 
 ˆ( )A r r−  ˆ( )A h h−  ˆ( )A l l−  )ˆ( rrV − )ˆ( hhV − )ˆ( llV −  ?2cov( , )h h l l− −  

FTSE: h=1 -0.3860 -1.6362 -1.2502 0.3168 0.6185 0.7294 1.0310 
 (-0.13) (-0.39) (-0.27)     

h=2 -0.6158 -3.9995 -3.3837 0.3308 1.6100 1.7996 3.0787 
 (-0.20) (-0.59) (-0.47)     

h=4 -0.6229 -9.0348 -8.4119 0.3775 3.5326 4.0070 7.1621 
 (-0.19) (-0.89) (-0.78)     

FCHI: h=1 -0.2798 -1.6527 -1.3730 0.4811 1.4890 1.6333 2.6411 
 (-0.08) (-0.25) (-0.20)     

h=2 -0.3126 -3.9318 -3.6192 0.4957 3.4958 3.4251 6.4252 
 (-0.08) (-0.39) (-0.37)     

h=4 -0.1383 -9.8918 -9.7535 0.5456 7.2417 7.1433 13.8394 
 (-0.03) (-0.69) (-0.68)     

GDAX: h=1 -3.3516 -8.4101 -5.0586 0.6786 1.7655 2.1718 3.2587 
 (-0.76) (-1.18) (-0.64)     

h=2 -3.5449 -16.6925 -13.1476 0.6737 4.3208 5.0020 8.6491 
 (-0.81) (-1.50) (-1.10)     

h=4 -3.6877 -35.1977** -31.5100* 0.7517 10.0979 11.2931 20.6392 
 (-0.79) (-2.06) (-1.74)     

N225: h=1 3.1128 -9.2531 -12.3659* 0.4619 1.2702 1.5892 2.3975 
 (0.84) (-1.51) (-1.81)     

h=2 4.0741 -22.0845** -26.1586** 0.4816 3.2957 3.8456 6.6597 
 (1.08) (-2.24) (-2.45)     

h=4 7.2458* -45.4804** -52.7263** 0.4880 7.6270 8.3320 15.4710 
 (1.90) (-3.02) (-3.35)     

KS11: h=1 4.7382 -4.4851 -9.2234 0.5825 1.8881 2.4797 3.7853 
 (1.14) (-0.60) (-1.08)     

h=2 6.3402 -12.7467 -19.0869 0.6348 4.2969 5.4547 9.1168 
 (1.46) (-1.13) (-1.50)     

h=4 8.6184* -28.7195* -37.3379** 0.7074 9.6246 11.9962 20.9134 
 (1.87) (-1.69) (-1.97)     

DJI: h=1 1.3614 0.4153 -0.9461 0.2491 0.5684 0.5845 0.9038 
 (0.51) (0.10) (-0.23)     

h=2 1.5332 -0.0360 -1.5692 0.2411 1.2715 1.3800 2.4103 
 (0.58) (-0.01) (-0.25)     

h=4 2.1568 -1.5486 -3.7054 0.2413 2.8530 3.0618 5.6735 
 (0.81) (-0.17) (-0.39)     

IXIC: h=1 2.3422 -2.6272 -4.9694 0.3858 1.2185 1.1706 2.0032 
 (0.70) (-0.44) (-0.85)     

h=2 3.2522 -6.8614 -10.1135 0.3725 2.7717 2.8859 5.2850 
 (0.99) (-0.77) (-1.11)     

h=4 4.4012 -17.4055 -21.8067 0.3897 5.9297 6.2339 11.7739 
 (1.31) (-1.32) (-1.62)     

TWII: h=1 1.0549 -3.6091 -4.6639 0.8059 1.2634 1.6302 2.0877 
 (0.22) (-0.59) (-0.67)     

h=2 1.7541 -8.6197 -10.3738 0.8295 3.5049 4.2909 6.9662 
 (0.36) (-0.85) (-0.92)     

h=4 2.4209 -20.7162 -23.1371 0.8730 8.1324 9.5921 16.8515 
 (0.48) (-1.34) (-1.37)     

 
Note: See the Note to Table 8. 
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Table 10. Forecast Error Decomposition for ,

ˆ
t h RVR +  

 
 ˆ( )A r r−  ˆ( )A h h−  ˆ( )A l l−  )ˆ( rrV − )ˆ( hhV − )ˆ( llV −  ?2cov( , )h h l l− −  

FTSE: h=1 -0.2685 -1.6806 -1.4121 0.3177 0.6191 0.7316 1.0330 
 (-0.09) (-0.40) (-0.31)     

h=2 -0.4859 -4.1829 -3.6970 0.3309 1.6181 1.8036 3.0909 
 (-0.16) (-0.61) (-0.51)     

h=4 -0.3896 -9.4081 -9.0185 0.3764 3.5539 4.0248 7.2023 
 (-0.12) (-0.93) (-0.83)     

FCHI: h=1 0.0171 -1.7175 -1.7346 0.4771 1.4875 1.6394 2.6499 
 (0.00) (-0.26) (-0.25)     

h=2 -0.0142 -4.2090 -4.1948 0.4946 3.4997 3.4393 6.4444 
 (-0.00) (-0.42) (-0.42)     

h=4 0.2639 -10.4906 -10.7545 0.5464 7.2626 7.1669 13.8831 
 (0.07) (-0.73) (-0.75)     

GDAX: h=1 -3.3809 -8.0996 -4.7187 0.6693 1.7617 2.1630 3.2554 
 (-0.77) (-1.14) (-0.60)     

h=2 -3.6604 -16.2622 -12.6018 0.6681 4.3255 5.0261 8.6835 
 (-0.84) (-1.46) (-1.05)     

h=4 -3.9472 -34.9288** -30.9816* 0.7465 10.2060 11.3883 20.8479 
 (-0.85) (-2.03) (-1.71)     

N225: h=1 3.2215 -8.5359 -11.7575* 0.4597 1.2701 1.5924 2.4028 
 (0.87) (-1.39) (-1.72)     

h=2 4.1575 -20.5103** -24.6679** 0.4786 3.2964 3.8522 6.6699 
 (1.10) (-2.08) (-2.31)     

h=4 7.1822* -42.5050** -49.6872** 0.4856 7.6392 8.3527 15.5062 
 (1.89) (-2.82) (-3.15)     

KS11: h=1 4.5069 -4.3297 -8.8366 0.5825 1.8874 2.4806 3.7855 
 (1.08) (-0.58) (-1.03)     

h=2 6.0083 -12.2117 -18.2200 0.6348 4.3042 5.4602 9.1296 
 (1.38) (-1.08) (-1.43)     

h=4 8.2113* -27.5904 -35.8017* 0.7076 9.6462 12.0192 20.9579 
 (1.78) (-1.62) (-1.89)     

DJI: h=1 1.4408 0.4259 -1.0149 0.2484 0.5677 0.5830 0.9023 
 (0.54) (0.11) (-0.25)     

h=2 1.5788 -0.0641 -1.6428 0.2409 1.2709 1.3770 2.4070 
 (0.60) (-0.01) (-0.26)     

h=4 2.1974 -1.6305 -3.8279 0.2415 2.8565 3.0653 5.6804 
 (0.83) (-0.18) (-0.40)     

IXIC: h=1 2.3028 -2.3546 -4.6574 0.3842 1.2148 1.1702 2.0009 
 (0.69) (-0.40) (-0.80)     

h=2 3.1429 -6.3071 -9.4500 0.3712 2.7674 2.8824 5.2786 
 (0.96) (-0.70) (-1.03)     

h=4 4.2222 -16.3015 -20.5237 0.3891 5.9260 6.2296 11.7665 
 (1.25) (-1.24) (-1.52)     

TWII: h=1 1.0080 -3.3765 -4.3845 0.8078 1.2635 1.6367 2.0924 
 (0.21) (-0.55) (-0.63)     

h=2 1.6888 -8.1182 -9.8071 0.8308 3.5153 4.3106 6.9951 
 (0.34) (-0.80) (-0.87)     

h=4 2.3018 -19.6353 -21.9370 0.8735 8.1621 9.6308 16.9193 
 (0.45) (-1.26) (-1.30)     

 
Note: See the Note to Table 8.
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Table 11. Predicting Implied Volatility: Mean-Squared Forecast Errors  
 

 , 1t̂ h AV + / , 2t̂ h AV +  , 1t̂ h AV + / ,t̂ h SVV +  , 1t̂ h AV + / ,t̂ h RVV + , 2t̂ h AV + / ,t̂ h SVV + , 2t̂ h AV + / ,t̂ h RVV +  ,t̂ h SVV + / ,t̂ h RVV +

FTSEP3:       
h=1 4.8186** 4.7184** 4.7273** 0.5523 0.4195 -1.4077 
h=2 4.2703** 4.0965** 4.0992** 0.0190 -0.0084 -0.2737 
h=4 2.9861** 2.8921** 2.8869** -0.4286 -0.2224 1.3858 

FTSEP6:       
h=1 4.7154** 4.6019** 4.6138** 0.4926 0.3741 -1.1501 
h=2 4.2386** 4.0619** 4.0660** 0.1311 0.1056 -0.1788 
h=4 2.9083** 2.8172** 2.8126** -0.3390 -0.1265 1.3518 

FTSEC3:       
h=1 4.3422** 4.2324** 4.2595** 1.1484 1.1318 -0.3968 
h=2 4.0608** 3.8179** 3.8316** 0.3700 0.4047 0.4258 
h=4 2.5977** 2.4800** 2.4762** -0.1410 0.0646 1.5065 

FTSEC6:       
h=1 4.1818** 4.0552** 4.0866** 0.9430 0.9376 -0.2651 
h=2 3.9579** 3.6551** 3.6724** 0.2177 0.2649 0.4316 
h=4 2.5282** 2.4091** 2.4053** 0.0063 0.2110 1.4574 

DJIP3:       
h=1 8.2075** 7.9874** 8.0209** -1.1143 -0.9547 3.9752** 
h=2 7.8096** 8.1987** 8.2150** -0.6593 -0.5309 3.2355** 
h=4 6.9058** 7.3453** 7.3443** 0.0086 0.0643 1.2953 

DJIP6:       
h=1 8.3260** 7.9700** 8.0071** -1.7472* -1.5646 4.2421** 
h=2 8.1255** 8.4366** 8.4571** -0.9293 -0.7980 3.2367** 
h=4 7.0019** 7.3448** 7.3444** 0.1651 0.1997 0.7237 

DJIC3:       
h=1 8.8118** 8.5227** 8.5643** -1.4942 -1.2862 5.2420** 
h=2 7.9323** 8.2438** 8.2643** -0.7965 -0.6479 4.0445** 
h=4 6.7896** 6.9931** 6.9905** -0.1955 -0.1535 0.9790 

DJIC6:       
h=1 8.4690** 8.0698** 8.1122** -1.8464* -1.6153 5.1834** 
h=2 7.7821** 7.9092** 7.9345** -1.0226 -0.8728 3.8064** 
h=4 6.7773** 6.9368** 6.9348** 0.0293 0.0602 0.6002 

 
Note: The results of using range forecasts to predict implied volatility are reported. P3, P6, C3, and C6 given after the 

index labels FTSE and DJI denote puts and calls with maturities of 3 and 6 months. The modified Diebold Mariano 
statistics that compare the performance of two forecasts based on the mean-squared forecast error criterion are 
presented. A positive test statistic indicates that the first one of the forecast pair has a mean-squared forecast 
error larger than the second one. “**” and “*” indicate significance at the 5% and 10% level respectively. 
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Table 12. Predicting Implied Volatility: Direction of Change Statistics 
 

 
Note: The direction of change statistics for testing the hypothesis of the proportion of forecasts that correctly predict the 

implied volatility directional change is 50% are reported. P3, P6, C3, and C6 given after the index labels FTSE 
and DJI denote puts and calls with maturities of 3 and 6 months. “**” and “*” indicate significance at the 5% and 
10% level respectively. The observed proportions of correct directional forecasts are presented in columns labeled 
(correct %). 

 , 1t̂ h AV +  (Correct 
%) , 2t̂ h AV +  (Correct 

%) ,t̂ h SVV +  (Correct 
%) ,t̂ h RVV +  (Correct 

%) 
FTSEP3:         

h=1 1.1793 53.16% 2.3586** 56.32% 3.0019** 58.05% 2.3586** 56.32% 
h=2 2.6305** 57.06% 2.2010** 55.91% 3.1673** 58.50% 2.9526** 57.93% 
h=4 1.1306 53.04% 2.5304** 56.81% 3.1765** 58.55% 2.7457** 57.39% 

FTSEP6:         
h=1 2.3586** 56.32% 2.1442** 55.75% 3.2163** 58.62% 2.7875** 57.47% 
h=2 1.6642** 54.47% 1.7715** 54.76% 2.2010** 55.91% 1.7715** 54.76% 
h=4 1.0229 52.75% 1.9920** 55.36% 2.7457** 57.39% 2.5304** 56.81% 

FTSEC3:         
h=1 1.7154** 54.60% 1.8226** 54.89% 3.0019** 58.05% 2.0370** 55.46% 
h=2 2.5231** 56.77% 2.8452** 57.64% 3.5967** 59.65% 3.3820** 59.08% 
h=4 1.5613* 54.20% 2.9611** 57.97% 3.1765** 58.55% 3.2841** 58.84% 

FTSEC6:         
h=1 1.5010* 54.02% 1.8226** 54.89% 2.8947** 57.76% 2.4659** 56.61% 
h=2 1.9863** 55.33% 1.9863** 55.33% 2.5231** 56.77% 2.4157** 56.48% 
h=4 0.4845 51.30% 2.3150** 56.23% 2.9611** 57.97% 2.7457** 57.39% 

DJIP3:         
h=1 1.0752 52.89% -0.4301 48.84% 0.2150 50.58% -0.3226 49.13% 
h=2 2.4227** 56.52% 1.5613* 54.20% 1.8843** 55.07% 1.6690** 54.49% 
h=4 1.8898** 55.10% 2.6458** 57.14% 2.7537** 57.43% 2.7537** 57.43% 

DJIP6:         
h=1 1.3978* 53.76% 0.4301 51.16% 0.7526 52.02% 0.2150 50.58% 
h=2 2.5304** 56.81% 1.5613* 54.20% 1.7767** 54.78% 1.6690** 54.49% 
h=4 1.4579* 53.94% 2.3218** 56.27% 2.9697** 58.02% 2.8617** 57.73% 

DJIC3:         
h=1 0.2150 50.58% 0.6451 51.73% 0.8602 52.31% 0.6451 51.73% 
h=2 3.0688** 58.26% 2.4227** 56.52% 2.6381** 57.10% 2.6381** 57.10% 
h=4 1.9978** 55.39% 2.4298** 56.56% 2.5378** 56.85% 2.5378** 56.85% 

DJIC6:         
h=1 -0.1075 49.71% -0.2150 49.42% 1.2902* 53.47% 0.7526 52.02% 
h=2 2.3150** 56.23% 0.8076 52.17% 1.2383 53.33% 1.1306 53.04% 
h=4 0.8099 52.19% 1.4579* 53.94% 2.2138** 55.98% 1.8898** 55.10% 
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Table 13. Predicting Implied Volatility: Comparing Direction of Change Statistics 
 

 
Note: The modified Diebold Mariano statistics that compare the directional forecast performance of two scaled 

forecasts of implied volatility are presented. A positive test statistic indicates that the second one of the forecast 
pair has a proportion of correct directional predictions larger than the first one. “**” and “*” indicate significance at 
the 5% and 10% level respectively. 

 , 1t̂ h AV + / , 2t̂ h AV +  , 1t̂ h AV + / ,t̂ h SVV +  , 1t̂ h AV + / ,t̂ h RVV + , 2t̂ h AV + / ,t̂ h SVV + , 2t̂ h AV + / ,t̂ h RVV +  ,t̂ h SVV + / ,t̂ h RVV +

FTSEP3:       
h=1 1.2385 1.8287* 1.2385 1.2256 0.0000 -2.1321** 
h=2 -0.4514 0.5681 0.3498 2.3698** 1.7119* -1.0000 
h=4 1.4249 1.8298* 1.4817 1.0622 0.3619 -2.0657** 

FTSEP6:       
h=1 -0.2459 0.9298 0.4845 2.2491** 1.5027 -1.6369 
h=2 0.1216 0.6185 0.1296 0.9424 0.0000 -1.4205 
h=4 1.1020 1.7201* 1.5493 1.7322* 1.5281 -1.4293 

FTSEC3:       
h=1 0.1169 1.3432 0.3507 2.6917** 0.6319 -3.0352** 
h=2 0.3451 1.1805 0.9558 2.3800** 1.6798* -1.0000 
h=4 1.4804 1.5791 1.7407* 0.5734 1.0001 1.0001

FTSEC6:       
h=1 0.3661 1.5683 1.1167 2.6966** 1.9045* -2.0087** 
h=2 0.0000 0.6493 0.5236 1.2152 0.9424 -0.5757 
h=4 2.1183** 2.5743** 2.3535** 2.2033** 1.6622* -1.4293

DJIP3:       
h=1 -1.5887 -0.9056 -1.5038 1.5027 0.3011 -2.2491** 
h=2 -0.8717 -0.5608 -0.8069 0.9038 0.3320 -1.0000 
h=4 0.7076 0.7819 0.7819 0.5734 0.5734 . 

DJIP6:       
h=1 -1.0837 -0.6877 -1.3068 0.7271 -0.5768 -2.2491** 
h=2 -1.1006 -0.8673 -1.0162 0.5329 0.3003 -1.0000 
h=4 0.9034 1.4923 1.3895 2.5890** 2.3363** -1.0001 

DJIC3:       
h=1 0.4583 0.6541 0.4467 0.3775 0.0000 -0.8161 
h=2 -0.6776 -0.4697 -0.4633 0.5757 0.5757 0.0000 
h=4 0.4383 0.5324 0.5324 0.3747 0.3747 . 

DJIC6:       
h=1 -0.1153 1.4291 0.9056 2.7720** 1.9721** -2.2491** 
h=2 -1.5753 -1.1975 -1.3287 0.8937 0.6867 -1.0000 
h=4 0.6220 1.4449 1.1371 1.6333 1.0708 -1.7697* 
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Figure 1. Highs (H), Lows (L), and Ranges (R) 
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Note: H is the daily high series. To improve visibility, L is the daily low series minus 0.5, and R is the daily range. 
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Appendix. Evaluating Forecast Accuracy 

The original Diebold-Mariano statistic (Diebold and Mariano, 1995) is constructed as follows. Let ite  and 

jte  be the forecast errors of the forecasts generated from models i and j, respectively. The squared 

forecast error is defined as 

 

  2( )it it   L e  e= , and 2( )jt jt  L e  e=      (A1) 

 

Let  

 

  )()( ttt zLyLd −=       (A2) 

 

be the loss differential series. Testing whether the performance of the forecast series from model i is 

different from that of model j, it is equivalent to testing whether the population mean of the loss differential 

series td  is zero; that is E 0td = .  

 

Under the assumptions of covariance stationarity and short-memory for td , the null hypothesis of equal 

forecast performance can be evaluated using the statistic  

 

  1/ 2ˆ/ ( )d V d       (A3) 

 

where ˆ( )V d  = 
( 1)

( 1) 1
2 ( / ( )) ( )( )

T T

t t
T t

l S T d d d dτ
τ τ

π τ
−

−
=− − = +

− −∑ ∑ , ))(/( TSl τ  is the lag window, )(TS  is the 

truncation lag, and T is the number of observations. Different lag-window specifications can be applied, 

such as the Barlett or the quadratic spectral kernels, in combination with a data-dependent lag-selection 

procedure (Andrews, 1991). It can be shown that the statistic has an asymptotic standard normal 

distribution. 

 

For comparing multiple-step ahead forecasts, Harvey et al. (1997) propose a modified Dieold-Mariano 

statistic  

 

  
1/ 211 2 ( 1)T h T h h

T

−⎡ ⎤+ − + −
⎢ ⎥
⎣ ⎦

1/ 2ˆ/ ( )hd V d     (A4) 
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where ˆ( )hV d = 
1

1

1
2

h

o k
k

T γ γ
−

−

=

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∑ , kγ is the kth autocovariance of ,td  and h is the forecast horizon. The 

modified statistic has an asymptotic 1Tt −  distribution.  

 

For the direction of change statistic, the loss differential series is defined as follows: td  takes a value of 

one if the forecast series correctly predicts the direction of change, otherwise it will take a value of zero. 

Hence, a value of d  significantly larger than 0.5 indicates that the forecast has the ability to predict the 

direction of change; on the other hand, if the statistic is significantly less than 0.5, the forecast tends to 

give the wrong direction of change. In large samples, the studentized version of the test statistic, 

 

  Td   /25.0/)5.0( −       (A5) 

 

is distributed as a standard normal. Further, the statistics (A3) and (A4) can be modified to compare the 

abilities of different procedures to predict the direction of change. 


