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Abstract

We propose a dynamic three-factor model of the term structure in which the factors partition

the yields into short-, medium- and long-maturity and model their dynamics in maturity- and in

calendar-time. We investigate the nature of the yield changes by modeling their calendar-time

dynamics as the joint response to 1) long-run forces producing enduring e�ects, 2) medium-run

forces generating e�ects waning within business-cycle horizons and 3) short-run forces giving rise

to very short-lived e�ects. These e�ects are tracked by the low-, medium- and high-frequency

component, respectively, of the factor time functions, which we extract with a dynamic �lter

working in real time, in the time domain, and correcting for model uncertainty. Similarly, we

decompose the evolution of the monetary policy rate, in�ation and a global monetary liquidity

index, we contrast the frequency components of the variables and test for (predictive) causality.

Investigating U.S. data for the last three decades, we �nd that in�ation is interrelated with all of

the yields at business-cycle frequencies, while at low-frequencies since the end of the disin�ation

of the 1980s it is interrelated only with the short-term rates. Moreover, we �nd that while

monetary policy exerts a limited e�ect on the long-rates at business-cycle horizons, it seems to

generate enduring e�ects on their underlying pattern in the long-run.
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1 Introduction

Over the last few years, the unexpected response of the term structure of interest rates, in particular

of the long-term rates, to the developments in the economic fundamentals of the most industrialized

economies has drawn a lot of attention on the identi�cation, and possibly the prediction, of the

factors driving the forward (and then the spot) rates as a function of their maturity. Knowing

the determinants of yield curve movements is especially relevant for central banks given that the

short-term interest rate � and the transmission of its changes to longer maturities � is the main tool

that monetary policy employs to maintain price and macroeconomic stability. From the viewpoint

of the policymaker it is also important to know how much persistent the action exerted by such

determinants is and if they a�ect in the same measure the entire maturity spectrum of the yield

curve.

In this paper, we examine the behavior of short-, medium- and long-term rates and we assess

how they respond to three types of determinants, namely short-, medium- and long-term forces.

Moreover, we evaluate how the same three types of determinants shape the evolution of some

macroeconomic variables which the economic theory suggests to be interrelated with the yield curve,

and we investigate their links with the yields across the maturity spectrum and the time horizons

testing, when possible, for predictive causality.

We focus on the last three decade developments using U.S. data. We model the yield curve

starting from end-month U.S. nominal zero-coupon bond yields and we investigate their interrelation

with U.S. headline consumer price in�ation and its core component excluding the prices of food and

energy. Moreover, we consider the target for the U.S. federal funds rate and, to account for the

long-run e�ects of the monetary policy stances prevailing in the most industrialized and �nancially

integrated economies, we consider a measure of global monetary liquidity.

To explain the movements of the yield curve we adopt the dynamic three-factor model proposed

by Donati and Donati (2007), whose main characteristics are, �rst, that the factors partition the

yield maturity spectrum into short-, medium- and long-term rates and model their dynamics in

maturity- and in calendar-time; second, that the calendar-time dynamics of the factors is jointly

determined by 1) long-run forces producing enduring e�ects, 2) medium-run forces generating e�ects

waning within business-cycle horizons and 3) short-run forces giving rise to very short-lived e�ects.

These e�ects are tracked by three frequency components partitioning the calendar-time functions of

the factors. Speci�cally, the action of the long-run forces is tracked by the low-frequency component

of these time-functions, the e�ect of the business-cycle forces is tracked by their medium-frequency

component, and the e�ect of the short-lived forces is reproduced by their high-frequency component.

We explicitly model the evolution of each frequency component of each variable of interest as the

output of a linear, time-invariant, discrete-time, dynamic system identi�ed starting from the data

and controlled by exogenous inputs lying within three pre-speci�ed frequency bandwidths. Such
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inputs are computed by a dynamic �lter, namely an input-output state observer, which acts as a

band-pass �lter and then permits to perform the required spectral decompositions. In particular, the

dynamic �lter through a feedback control ensures that each frequency component evolves within its

pre-speci�ed frequency bandwidth, and that the sum of the three frequency components accurately

reconstructs the actual history of the variable, thereby minimizing any information loss. We opted

for this �ltering approach because it has a number of advantages: 1) it works in the time domain

and it allows to �lter the data in real time, which means that the decomposition of a time function

at time t0 is performed without requiring the knowledge of the values that the time function will

take on at time t > t0 and without altering the outcomes of the decomposition already performed

at time t′ < t0; 2) it permits to decompose also nonstationary time series; 3) it permits to extract

all the selected frequency components jointly, and, �nally, 4) it corrects for model uncertainty, that

is for the deterioration in the empirical results stemming fromunavoidable model approximations

and, possibly, misspeci�cations as well as for equally unavoidable data measurement errors. As

a result, the proposed yield curve model is especially suitable to investigate the nature of the

dynamic components of the yields. In addition, it �ts the data with errors of mostly zero-mean and

minimal standard deviation, and its parameter and variable estimates are robust to various forms

of uncertainty.

The calendar-time dynamic models and the methodology to carry out the spectral decompo-

sitions have been designed to be applied to the time series of any economic variable. In particu-

lar, starting from the same frequency bandwidths, the decomposition of the time functions of the

macroeconomic variables of interest allows the comparison of the respective low-, medium-, and

high-frequency components thereby leading to a deeper understanding of the relationship between

the developments in the economic fundamentals and the movements of the forward rates and yields.

This paper is organized as follows. In Section 2 we review the links with the literature. In Section

3 we introduce the data, the notation and the maturity-time dynamic yield curve model. In Section

4 we provide an overview of the methodological approach used to perform the spectral decomposition

of the yield curve and the other macroeconomic variables and to model their calendar-time dynamics,

while in Section 5 we provide an overview of the statistical properties of the extracted frequency

components. In Section 6, we investigate the relationship between the yield curve and in�ation. We

show that over the last two decades U.S. in�ation has �uctuated around an essentially constant long-

run anchor with progressively smaller variability, as shown, using other approaches, also by Coley

and Sargent (2005), Cecchetti et al. (2007) and Stock and Watson (2007). We �nd that, displaying

a close interrelation with in�ation, the target for the federal funds rate and the short-term rates

have �uctuated around an essentially constant long-run level, but their variability has not decreased

with time. In contrast, the long-term rates have steadily trended downwards and have exhibited

progressively smaller �uctuations which have rendered their reactions to business-cycle �uctuations

less noticeable than in the 1980s. Yet, they have kept on reacting to actual and expected consumer
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price changes. In Section 7 we examine the relationship between the yield curve and monetary

policy. We �nd a close link between the policy rate and the short-term rates at all frequencies.

However, the low-frequency components (LF) of the rates at longer maturities appear to respond

to long-run forces other than those driving the LF of the policy rate and the short-end of the yield

curve. In addition, both at business-cycle frequencies and at high-frequencies we cannot reject the

hypothesis that the medium-frequency component (MF) of the policy rate does not Granger-cause

the MF of the medium-term rates and of the long-term rates. In Section 8, we show that the LF of

the in�ation-adjusted policy rate and of the in�ation-adjusted short-term rates have steadily trended

downwards since early 1983 and that, when contrasted with the LF of real GDP annual growth,

the latter has remained above the former two LF since early 1984. We speculate that this has

stimulated the growing of U.S. external indebtedness and that the concomitant steady U.S. capital

out�ows coupled with the emergence of highly saving exporting countries have contributed to the

build up of an �excessive� global monetary liquidity stock. We �nd evidence of a clear interrelation

between the steady decline displayed by the LF of the medium- and long-term rates and the steady

upturn displayed by global monetary liquidity thereby corroborating the argument put forth by

several observers, e.g. Baks and Kramer (1999), Borio and Lowe (2001), King (2006), Warnock

and Warnock (2006), Bollard (2007), Geithner (2007) and Bini Smaghi (2007) among others, that

higher global liquidity has propped up � and re�ected � rises in asset prices including those of

U.S. Treasury securities. We argue that such e�ect has been evident on the bonds and notes not

signi�cantly a�ected by the monetary policy operations carried out by the Federal Reserve. We

conclude by brie�y discussing the implications of our results.

2 The link with the literature

This paper is related to the recent macro-�nance literature (e.g. Ang and Piazzesi (2003), Rudebusch

and Wu (2004), Diebold, Rudebusch, and Aruoba (2006), among others) in its quest for a clearer

understanding of the macroeconomic determinants of the yield curve, but it builds on di�erent

assumptions. First, while the three non directly measurable, or latent, variables used to model

the yield curve in large part of the recent literature typically reproduce the long-term rate and

combinations of long-, intermediate- and short-term rates, and for such reason are labeled �level�

slope� and �curvature� following Litterman and Scheinkman (1991), our model is designed in such a

way that its three latent variables partition the maturity spectrum, thereby simplifying the exam of

the interrelation between the macroeconomy and the yields as a function of their maturity. Second,

we undertake that the three latent variables modeling the term structure reproduce the e�ects

exerted on the forward and the spot rates not by a speci�c variable, as for example in�ation or

output, but by a large number of macroeconomic forces altogether. Given that such e�ects are

virtually impossible to disentangle without a fully �edged dynamic model of the global economy,
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we treat them as an aggregate and divide the economic forces that move the yield curve according

to how persistent their in�uence on the interest rate is.

This paper is also related to the literature which attempts to explain the puzzling behavior

exhibited by U.S. long-term interest rates throughout 2004-05. When interpreted with the macro-

�nance empirical models of the literature this episode continues to appear a conundrum, as shown

by Rudebusch, Swanson, and Wu (2006). Here we argue that investigating the relationship of the

yield curve with the open, and not only with the domestic, macroeconomy and over di�erent time

horizons provides insight on the nature of the issue. To start with, the spectral decomposition

reveals that the MF of the long-term rates was turning up from mid-2001 to mid-2004 − thereby

anticipating the increase in the MF of headline in�ation which went on from mid-2002 to mid-

2006 − although due to the prevailing e�ect of their downward-trended LF, the 10-year-maturity

zero-coupon bonds actually decreased amid �uctuations from early 2000 to mid-2003. Second,

expanding on the analysis developed by Warnock and Warnock (2006), and considering international

capital �ows in conjunction with the concomitant slowly evolving, rising pattern, displayed by global

monetary liquidity appears to help understand the slowly declining pattern exhibited by the LF of

the long-term rates over the last two decades.

Finally, this paper is related to the literature studying the behavior of interest rates in the

frequency domain. Part of this literature, e.g. Assenwacher-Wesche and Gerlach (2007), Sarno,

Thortnon and Wen (2007), Granger and Rees (1968), examines the expectation theory of the term

structure, which posits that the slope of of the yield curve re�ects the market expectations of future

changes in interest rates. This paper is more closely related to the studies examining the e�ectiveness

of the �Bill Only� theory. Such literature started in the early 1950s after the decision by the Federal

Open Market Committee to con�ne open market operations to short-term securities, preferably

Treasury bills, against the assumption that changes in the availability of funds would �rst be re�ected

in the bill sector, and then would spread to other �nancial sectors (thereby a�ecting also longer-

maturity rates). Our �ndings are in line with with the results obtained by Fand (1966), Sargent

(1968), Dobell and Sargent (1969), Cargill and Meyer (1972), Pippenger (1974) and Brick and

Thompson (1978) who, resting on considerations related to the actual implementation of monetary

policy, provide evidence contradicting the hypothesis that long-term rates lag behind short-term

rates, and argue that in e�cient �nancial markets, long-term rates cannot depend on a distributed

lag of short-term rates.

3 Data, notation and the yield curve model

We consider monthly data from 31 January 1980 to 30 September 2007 (333 monthly observations)

and the following macroeconomic variables: 1) the annual growth rate of the U.S. consumer price

index, henceforth denoted in�ation or CPI, and the annual growth rate of the U.S. consumer price
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index excluding food and energy, henceforth denoted core in�ation or CCPI, both from the U.S.

Bureau of Labor Statistics; 2) the U.S. federal funds target rate from the Board of Governors of the

Federal Reserve System, henceforth denoted policy rate or FFR; 3) a measure of global monetary

liquidity obtained by dividing the sum of the nominal broad money stocks of the United States,

the United Kingdom, the euro area, Japan and Canada with the sum of the nominal GDP of the

same countries after having converted all these variables into U.S. dollars at current market exchange

rates;1 4) month-end U.S. zero coupon bond yields of maturities m = 6, 12, . . . , 120 months, regularly

spaced at 6-month maturity intervals (20 spot rates for each point in time t) collected by the Bank

for International Settlements.

3.1 The yield curve model

To model the yield curve we consider two time dimensions: calendar-time t∈ N and maturity-time

m ∈ R. For any given point t in calendar-time, the spot rate y(m, t), or continuously compounded

yield to maturity m, of a zero coupon bond providing a unit redemption payment at time t + m, is

de�ned by its relation with the price P (m, t) of the bond as follows: P (m, t) = e−y(m,t)m. We refer

to spot rates as a function of their maturity-time m as the (spot) yield curve, or the term structure

of interest rates. The spot rates are an average of the instantaneous forward rates. Speci�cally,

the instantaneous forward rate fw(m, t) is the marginal rate of return from the reinvestment of an

m-period zero-coupon bond in an (m+1)-period zero-coupon bonds, so that the spot rates and the

instantaneous forward rates are linked by the relation

y(m, t) =
1
m

∫ m

0
fw(u, t)du (1)

To model the term structure, we adopt the methodology proposed by Donati and Donati (2007),

which has the characteristic of not imposing any requirement on the statistical distribution of the

yields2 and of correcting for model uncertainty. In particular, its advantage is that it permits

to reduce the degradation in the quality of the empirical results which typically arises when the

restrictions imposed by a theoretical model are not entirely met by the data, for example because

the actual yields are not normally distributed and the data are a�ected by various measurement

errors (see, e.g. Diebold, Piazzesi and Rudebusch, (2005)).

This yield curve model builds on two di�erent dynamic processes acting simultaneously: one

1The nominal gross national product data and the money stock data are collected by the Bank for International
Settlements (BIS). The broad money aggregates we consider are: the money stock M3 of the euro area and Canada,
the money stck M2 plus the certi�cates of deposit of Japan, the money stock M4 of the United Kingdom and the
money stock M2 of the United States. The bilateral exchange rates are collected by the Board of Governors of the
Federal Reserve System.

2Being slightly asymmetric and increasingly �at with the lengthening of the maturity, the spot rates we consider
reject the hypothesis of having a Gaussian distribution.
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explains the evolution of the interest rates in maturity-time, while the other explains their behavior

in calendar-time. For any given point t in calendar-time, �rst we model the dynamics of the forward

rates in maturity-time, and then by applying eq. (1) we obtain the estimate of all the maturity

spectrum of the spot rates. By reiterating the same process for all t = 1, . . . , 333 we reconstruct

the calendar-time series of the yields.

We begin by introducing the maturity-time model of the forward rates. The evolution of the

forward rates in maturity-time is modeled in the state space with the following canonical, unforced,

linear, time-invariant, continuous-time, dynamic systems of the 3rd- order:

∣∣∣∣∣∣∣
ẋ0 (m, t)
ẋ1 (m, t)
ẋ2 (m, t)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 0 0
a −a 0
0 b −b

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

x0(m, t)
x1(m, t)
x2(m, t)

∣∣∣∣∣∣∣ (2)

fw(m, t) = x2(m, t) + e(m, t) (3)

where state equation(2) consists of 3 �rst-order di�erential equations, 3 state variables xi(m, t),
i = 0, 1, 2, a three−dimensional vector ẋ(m, t) ≡ dx(m, t)/dm of state derivatives with respect to

maturity-time, and a lower-triangular state transition matrix carrying in its principal diagonal the

eigenvalues of the system. Speci�cally, the �rst eigenvalue is equal to zero, therefore the forward

rates tend asymptotically to a constant value as m → ∞. The other two eigenvalues, a and b,

are time-invariant and coincide with the inverse of the time constants characterizing the impulse

response of the system: τ1 = 1/a and τ2 = 1/b. According to output equation (3), at point m in

maturity-time, the level of the forward rate is determined by the state variable x2 (m, t) plus an

unknown reconstruction error e(m, t) on whose distribution we make no assumptions.

The dynamic system of eqs. (2) and (3) has a unique solution,3 which, for any point in time t,

corresponds to the following forward rate curve:

fw(m, t) = x0(0, t) + [x1(0, t)− x0(0, t)] b
b−a e

−a m +
+ [(b− a) x2(0, t)− b x1(0, t) + a x0(0, t)] 1

b−a e
−b m + e(m, t)

(4)

Given the relationship between forward and spot rates de�ned in eq. (1), from the the forward rate

curve of eq. (4), for any point in time t, we obtain the following yield curve:

y(m, t) = x0(0, t) + b
b−a [x1(0, t)− x0(0, t)] 1−e−a m

a m +
+ 1

b−a [(b− a) x2(0, t)− b x1(0, t) + a x0(0, t)] 1−e−b m

b m + ε(m, t)
(5)

where xi(0, t), i = 0, 1, 2 are the values of the state variables at the shortest maturity m = 0,

3See, e.g., C.-T. Chen, (1999).
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i.e. the initial state values, and ε(m, t) are the unknown spot rate reconstruction errors on whose

distribution we make no assumptions.

3.2 Interpretation of the latent yield curve variables

The time-invariant parameter pair (a, b) and, for any point in time t, the initial state values fully

characterize the forward and the spot rate curves, because starting from x0(0, t), x1(0, t), and

x2(0, t), the forward rates (and thus the spot rates) for the entire maturity spectrum, are obtained

by solving eqs. (2) and (3) recursively. The model state variables are latent because even though they

compress and summarize all the information contained in yield data, they are not directly accessible

to measurement. Each initial state has its own economic meaning. Speci�cally, x0(0, t), which is

maturity time m - invariant, thus x0(0, t) = x0(∞, t), corresponds to the asymptotic �nal value that

both the forward and the spot interest rate curves take on at the longest maturity m = ∞. Then,

the initial states x0(0, t) for t = 1, . . . , 333, summarize the information contained in the long-end of

the yield curve (and thus in the long-term rates).

The initial state x2(0, t) de�nes the starting value of both the forward and the spot interest rate

curves because it sets the value which the forward and the spot rates take on at the shortest maturity

m = 0. Then, x2(0, t) for t = 1, . . . , 333, summarizes the information contained in the short-end of

the yield curve (and thus in the short-term rates). Note that eqs. (2) and (3) imply that in maturity-

time the state variable x2(m, t) tends asymptotically towards x0(m, t), hence x2(∞, t) = x0(∞, t),
according to a dynamic law characterized by the time constant τ2 = 1/b.

The initial state x1(0, t) links the starting value x2(0, t) to the asymptotic �nal value x0(0, t)
therefore it de�nes the shape of the forward and spot rate curves. For example, if x1(0, t) is smaller

than both x0(0, t) and x2(0, t) the yield curve exhibits an inverted hump, while if its level is included

between the starting and the asymptotic �nal values, x2(0, t) < x1(0, t) < x0(0, t), the yield curve is

positively and monotonically sloped. Then, x1(0, t) for t = 1, . . . , 333, summarizes the information

contained in the middle of the yield curve (and thus in medium-maturity yields). Note that eqs. (2)

and (3) imply that also the state variable x1(m, t) tends asymptotically towards x0(∞, t), hence,
x1(∞, t) = x2(∞, t) = x0(∞, t), according to an exponential law speci�ed by the function e−a m.

3.3 Estimate of the yield curve model

The dynamic system of eqs. (2) and (3) modeling the forward rates in maturity-time is designed

in such a way that the knowledge of fw(m, t) su�ces to uniquely estimate the latent initial state

values xi(0, t), i = 1, 2, 3, which are not directly accessible to measurement.4 Given that the

forward rate curve and the yield curve are both fully characterized by the same pair of parameters

and, for any time t, by the same initial state values, we estimate x0(0, t), x1(0, t), and x2(0, t), for
4In other words, the dynamic system modeling the forward rates is "observable," see, e.g., C.-T. Chen, (1999).
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t = 1, . . . , 333, and we identify the parameters a and b by �tting the yield curve of eq. (5) to the data.

Speci�cally, we start with an initial guess for the pair (a, b) − which we use to obtain the ordinary

least squares estimates of the initial state values xi(0, t), i = 1, 2, 3, by employing the Householder

transformations −and then we recursively apply the numerical algorithm based on the conjugate-

gradient method contained in the software suite EicasLab to minimize the quadratic loss functional

Fspe =
∑20

m=0

∑333
t=1 [ε(m, t)]2 , where ε(m, t) are the spot rate reconstruction errors. With the

data we consider, the loss functional Fspe is minimized by the unequal eigenvalues: a = −0.037
and b = −0.073, which correspond to the time constants τ1 = 26.79 months and τ2 = 13.68
months. This means that the yield curve of eq. (5) reconstructs the 6,660 yields characterizing the

movements of the U.S. yield curve over the last three decades with a root mean square error of 5.301

basis points. The overall yield �tting results are summarized in Table 1 where we report the mean,

standard deviation and the root mean squared error, expressed in basis points, of the reconstruction

errors ε(m, t).

Table 1: Summary statistics: the yield �tting errors

Maturity Mean Std. Dev. RMSE

(months ) (basis points ) (basis points ) (basis points ) Lag (1) Lag (12) Lag (30)

6 -0.644 3.945 3.997 0.749 0.102 0.056

12 0.120 2.513 2.516 0.731 0.117 -0.131

18 0.547 3.555 3.597 0.704 -0.015 0.013

24 0.404 3.111 3.137 0.722 0.041 -0.011

30 0.236 2.483 2.495 0.730 0.275 0.046

36 0.332 2.028 2.055 0.681 0.125 -0.108

42 0.565 1.960 2.040 0.550 0.023 -0.173

48 0.447 2.155 2.201 0.648 0.079 0.015

54 -0.056 2.274 2.275 0.736 -0.161 0.206

60 -0.675 2.502 2.592 0.601 -0.189 0.179

66 -0.979 2.867 3.030 0.535 0.212 0.007

72 -1.031 2.808 2.991 0.788 0.232 0.115

78 -0.791 2.602 2.719 0.817 0.094 -0.039

84 -0.409 2.553 2.586 0.758 -0.189 -0.127

90 -0.170 2.298 2.304 0.793 -0.235 -0.027

96 -0.207 2.014 2.025 0.852 0.014 -0.144

102 -0.387 2.051 2.087 0.887 0.014 0.011

108 -0.239 2.251 2.263 0.832 -0.131 0.136

114 0.674 2.826 2.906 0.755 0.084 0.068

120 2.261 4.168 4.742 0.855 0.336 0.147

Autocorrelations

This table reports the mean and the standard deviation of the �tting errors |ε(m, t)|= |ỹ(m, t) − y(m, t)| where
ỹ(m, t) are the actual zero-coupon bond yields of maturity m = 6, 12, . . . , 120 and t runs from 31 January 1980 to 30
September 2007, and y(m, t) are the model-based yields of eq. 5. The fourth column reports the root mean squared

�tting errors RMSE =
√

1
333

∑333
t=1 [ε(m, t)]2 and the last three columns show the autocorrelation of the �tting errors

at displacements of 1 month, 12 months and 30 months.

The model performs well in �tting all the maturities: the mean values of the �tting errors are
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negligible at all maturities, their standard deviations average 2.65 basis points and their root

mean squared errors range between 2.02 and 4.74 basis points. All maturities exhibit a high,

positive, �rst-order autocorrelation of the �tting errors which decreases, but not vanishes, with

the lengthening of the displacement. Despite such persistent, yet contained, autocorrelation, the

�tting performance of the model leaves virtually no room for any further reconstruction improve-

ment5 so that attempts to whiten the �tting errors completely would translate in an over�t of the

model and, thus, into parameter instability. This becomes evident when we measure the explana-

tory power of the model with the norm `2. Speci�cally, the 6, 660 yields in our sample measure

‖y‖ =
√∑20

i=0

∑333
t=1 [y(mi, t)]

2 = 625.29, their reconstructed counterparts measure ‖ŷ‖ = 625.27
and the �tting errors measure ‖ε̂‖ = 4.33. This means, �rst, that the model reconstructs the yields

optimally and the �tting errors ε̂(m, t) are orthogonal to the reconstructed yields ŷ(m, t), so that

by the Pythagorean theorem ‖y‖ =
√
‖ε̂‖2 + ‖ŷ‖2, because ‖ε̂‖2+‖ŷ‖2

‖y‖2 = 100%; and, second, that
the model explains as much as ‖ŷ‖ / ‖y‖ = 99.995% of the actual yields. Hence, what remains

unexplained is far too small to justify the employment of another state variable without incur-

ring in overstimation problems producing a too large sensitivity of the model parameters to small

computation numerical errors.

4 The yield curve and the macro variables in the frequency domain

In this section, we recall the approach proposed by Donati and Donati (2007) to model in the

frequency domain the yield curve and the other examined macroeconomic variables. We begin by

providing a brief overview of the methodology, then we go through some of its technical aspects.

With the objective of putting in evidence that the movements of the yields, as of any other

macroeconomic variable, are driven by a number of macroeconomic forces and that from the view-

point of the policymaker it is important to know how much persistent the action exerted by such

forces is, we distinguish between: 1) long-run forces producing enduring e�ects that may persist

up to in�nity, which in our model take at least 5.5 years to fully materialize; 2) medium-run forces

producing transitory e�ects waning within business-cycle horizons, which in our model take at least

2.5 months to become fully evident and less than 5.5 years to abate; 3) short-run forces producing

transitory and very short-lived e�ects which in our model get fully disclosed after minimum 1.2

months and die away within 2.5 months.

We identify the e�ects produced by these three types of forces by decomposing, at each point

in time t, the time function of each variable into three components lying within three pre-speci�ed

frequency bands. Speci�cally, we partition the time function of the variable of interest into a low-

frequency component, which tracks the action of the long-run forces, a medium-frequency component,

5On this issue see also Diebold, Rudebusch and Aruoba [2006], Bijörk and Christensen [1999], Bliss [1997] and
Dahlquist and Svensson [1996].
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which tracks the e�ect of the business-cycle forces, and a high-frequency component, which repro-

duces the e�ect of the short-lived forces. The frequency decomposition is carried out in such a

way that the arithmetic sum of the low-, medium- and high-frequency components reconstructs the

actual evolution of the variable.

In order to capture the cause-and-e�ect relationship between the economic forces and the evo-

lution of the variable of interest in the frequency domain, each frequency components is modeled

as the output of a linear, time-invariant, strictly causal, dynamic system subject to the action of

inputs, or external causes, lying within the pre-speci�ed frequency bandwidth. Of course, such

inputs are unknown and need to be estimated starting from the data. We make no assumption on

their statistical properties, and we reconstruct them by employing an input-output state observer

with an embedded closed-loop control, which has been designed to act as a band-pass �lter. In

particular, the input-output state observer performs three tasks simultaneously: 1) it ensures that

the frequency components of the variable of interest evolve within their speci�c bandwidth; 2) it

ensures that the reconstructed variable stemming from the sum of the three frequency components

tracks the patterns of actual variable; and �nally 3) it corrects for model uncertainty, that is for

the degradation in the model performance caused by unavoidable model simpli�cations and possible

misspeci�cations and by the equally unavoidable data measurement errors.

This �ltering approach, which works in the time domain, has been preferred to the techniques

working in the frequency domain primarily because it does not require to perform the Fourier

transformations of the signals. Moreover it has the advantage of working in real time. This means

that the decomposition of the time function z(·) of the variable of interest carried out at the current

time t0, is performed without requiring the knowledge of the future values of z(t), with t > t0, and

without altering the outcomes of the decomposition already performed at time t′ < t0. We opted for

this approach also because it permits to extract from the data more than one frequency component

at the same time, and in way that minimizes the information loss when switching from a frequency

bandwidth to the other. In fact, given that the sum of the three frequency components reconstructs

the actual pattern of the variable of interest, the oscillations whose period is neither signi�cantly

lower nor signi�cantly higher than the selected frequency cuts end up with being captured by one

of two neighboring frequency domains. In addition, we selected this approach because it can be

applied also to nonstationary signals, and �nally because it also corrects for model uncertainty.

Now we summarize the main technical aspects of the approach. Following Donati (1971), we

partition the frequency range [0÷ fmax] of the time function z(t) of the variable of interest in

the low-frequency domain [0 ÷ flf ], in the medium-frequency domain [flf ÷ fmf ] and in the high-

frequency domain [fmf ÷ fhf ] associating to each frequency domain the time intervals Tlf , Tmf and

Thf , respectively, which have been selected in such a way that Tlf · flf � 1, Tmf · (fmf − flf ) � 1
and Thf · (fhf − fmf ) � 1 (see the Appendix for the details). Accordingly, we decompose the

function z(t) into a low-frequency component zlf (t), a medium-frequency component zmf (t) and
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a high-frequency component zhf (t), which, with a reasonable approximation, correspond to the

partitions of the power spectrum Φ(f) of the signal z(t) in the three ranges above. As a result, we

obtain that

z(t) = zlf (t) + zmf (t) + zhf (t) + we(t) (6)

where we(t), which is the residual of the frequency decomposition, is the component of the function

z(t) lying within the highest, residual, frequency domain [fhf ÷ ffmax]. We are not going to

investigate we(t) because from the point of view of this study, which works with monthly data,

it is an unpredictable noise.

As mentioned above, the frequency components zlf (t), zmf (t) and zhf (t) are the outputs of three
linear, time-invariant, strictly causal, dynamic systems, denoted Mlf , Mmf and Mhf , which are of

the 2nd order and have the following canonical representation:∣∣∣∣∣ qj,1 (t + 1)
qj,2 (t + 1)

∣∣∣∣∣ =

∣∣∣∣∣ 1− aj −bj

1 1

∣∣∣∣∣
∣∣∣∣∣ qj,1 (t)

qj,2 (t)

∣∣∣∣∣ +

∣∣∣∣∣ uj (t)
0

∣∣∣∣∣
zj (t) =

∣∣∣ 0 1
∣∣∣ ∣∣∣∣∣ qj,1 (t)

qj,2 (t)

∣∣∣∣∣ j = lf,mf, hf

(7)

where qj,1(t), qj,2(t) are the two state variables of the system, uj is its single input, and aj , bj are the

system parameters which are in one-to-one correspondence with the system eigenvalues. In order

to reconstruct the inputs uj , for j=lf,mf, hf, steering the dynamics of the systems Mj , and thereby

governing the evolution of the frequency components of the variable of interest, and to estimate

the values taken by the state variables qj,1(t), qj,2(t) we use an input-output state observer. This

has been designed to ensure that each modeled frequency component evolves within its frequency

bandwidth, and that the sum of three frequency components tracks the actual time function z(t)
minimizing the residual we(t) of the spectral decomposition. The input-output state observer forms

a linear, time-invariant, strictly causal, discrete-time, dynamic system of a dimension as big as the

double of the order of the systems whose variables it estimates: since each Mj is of the 2nd order and

we use three frequency components to reconstruct the time function z(t) of the variable of interest,
the state observer is of the 12th order, that is it works with 12 state variables as follows:

q(t + 1) = Hq(t) + Bz (t) (8)

y(t + 1) = Gq(t + 1) (9)

As shown by eq. (8), at time t the state observer system receives as input the time function z(t)
of the variable of interest and through the 12 - dimensional vector of state variables q(t) and the
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real, time-invariant, (12× 12) - dimensional matrices H and B it computes the value of the state

vector q(t+1). As shown by eq. (9) through the real, time-invariant, (12× 12) - dimensional matrix

G the state vector q(t + 1) is turned into the output vector y(t + 1), which includes the one-step

ahead estimates carried out at time t of the three pairs (uj , zj) for j=lf,mf, hf, and thus of the

predicted value ẑ(t + 1) taken on by the time function at time t + 1. By solving recursively eq. (8),

and iteratively imposing that z(t+1) be strictly equal to the predicted value ẑ(t+1), we obtain the

out-of-sample forecasts of the frequency components zj up to the desired forecast horizon. We are

not going to elaborate further on this aspect here because the focus of this paper is on the spectral

decomposition of z(t) and not on its out-of-sample forecasting.

The 12 eigenvalues of the matrix H govern the behavior of the input-output state observer.

We use 4 eigenvalues to extract6 each of the three frequency components of z(t). The frequency

components are extracted by means of three successive loops as shown in Figure 1. To start with,

the estimate of the low-frequency component zlf (t) produced by the dynamic system Mlf as in eq.

(7), is contrasted with the actual value of z(t). The state observer, by means of the feedback control

system CClf embedded in it, reacts to the di�erence z(t)− zlf (t) = elf (t) and computes the input

ulf (t) which then forces the dynamics of system Mlf . We exogenously impose the value 0.985 to

the four eigenvalues of the input-output state observer that are used to extract the low-frequency

component. This is equivalent to impose that ulf (t) lies within a bandwidth of angular frequency

of 0.015 rad/month.7 In this way we guarantee that zlf (t) evolves within the low-frequency domain

[0 ÷ flf ]. Next, the residual elf (t) left after the low-frequency component has been extracted from

z(t), is contrasted with the medium-frequency component zmf (t). Through the input umf (t), the
feedback control system CCmf guarantees that zmf (t) tracks elf (t) within the selected medium-

frequency domain. This is achieved by setting the four corresponding eigenvalues of the input-output

state observer equal to 0.6, which is equivalent to impose that umf (t) lies within a bandwidth of

angular frequency [0.015÷ 0.5] rad/month. The residual elf (t)−zmf (t) = emf (t) belongs to a higher
frequency domain, which we contrast with the high-frequency component zhf (t). To compute the

input uhf (t) that guarantees that the system output zhf (t) tracks emf (t) within the pre-speci�ed

high-frequency bandwidth we use the feedback control system CCmhf and we assign the value 0.2
to the four related eigenvalues of the input-output state observer. As a result, the power spectrum

uhf (f) belongs to the angular frequency range [0.5÷ 1.6] rad/month. The residual emf (t)−zhf (t) =
we(t), which we do not investigate, receives the power of the time function z(t) that lies within the

angular frequency domain [1.6÷ 3.14] rad/month.

The parameters (aj , bj) for j = lf,mf, hf, characterizing the dynamics of the systems Mj are

6See Donati and Donati (2007) for further details.
7Given the eigenvalue λ, we have that e−ωT = 1−λ, where T is the sampling period, which in our case corresponds

to 1 month, and ω is the angular frequency. Moreover, ω = 1/τ = 2πf where τ is the time constant characterizing
the observer impulse response and f is the frequency at which the frequency bandwidth of the observer is cut o� as
an e�ect of the eigenvalue λ.
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Figure 1: Frequency decomposition of the time function z(t)
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identi�ed by minimizing a weighted quadratic loss functional de�ned on the out-of-sample forecast

errors. Such errors are obtained when the systems Mj produce the estimates of zlf (t), zmf (t),
zhf (t) without any feedback from the input-output state observer, that is when we impose that

elf (t) = emf (t) = ehf (t) = 0. We denote fe(t, τ) = z(t) − ẑ(t, τ) the out-of-sample forecast error,

where ẑ(t, τ) is the value of z(t) that was forecasted τ = 1, . . . , 24 months before. Then we consider

the weighted quadratic cost functional Fer(t) =
∑24

τ=1[fe(t, τ)]2w(τ) where w(τ) is a negative

exponential function that assigns to the forecast errors a weight decreasing with the lengthening of

the prediction horizon τ . The values of the parameters (aj , bj), j = lf,mf, hf, are then identi�ed

by minimizing the quadratic cost functional Ft =
∑333

t=48[Fer(t)]2 through an iterative numerical

minimization.

5 Estimate of the frequency components

In this section, we report some statistics on the frequency components extracted from the time

functions of the variables of interest. In Table 2 we report the mean and the standard deviation,

expressed in percentage points, of the residuals we(t) from the frequency decompositions of the

long-term rates (i.e. of x0(0, t)), the medium-maturity rates (i.e. of x1(0, t)), the short-term rates

(i.e. of x2(0, t)), the federal funds rate target (FFR), in�ation (CPI), core in�ation (CCPI) and the

global monetary liquidity index (LIQ). The mean values of the decomposition residuals are very

close to zero for all of the variables. This means that the data we consider do not contain any

systematic information at very high frequencies, possibly because monthly observations obscure a

substantial amount of very short-lived variations. The standard deviations of the decomposition

residuals are small, thereby con�rming that the information contained in such high frequencies is

negligible. Only the residuals for the medium-maturity rates exhibit a standard deviation (of 0.25

percentage points) suggesting that the very high-frequency component of these especially volatile

rates contains some, although modest, unpredictable information other than noise.

In Table 2 we report also the correlation coe�cients between the frequency components par-

titioning the time functions of the same variables of interest. Ideally, the frequency components

should be orthogonal to each other, and thus uncorrelated. Most of the presented correlation co-

e�cients are very close to zero. However, it is worth recalling that, in order to show how the

frequency components change over time, we perform the spectral decomposition over �nite time

intervals (see the Appendix) and that, by the Heisenberg uncertainty principle, this implies a nec-

essarily limited resolution of the boundaries of each frequency bandwidth. In particular, this means

that the frequency bandwidths overlap and that the oscillations of the variable of interest, whose

periodicity is neither signi�cantly lower nor signi�cantly higher than two neighboring pre-speci�ed

frequency cuts, is divided between such two frequency components, which then turn out typically

positively correlated. For this reason, we �nd that the correlation between the medium- and the
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high-frequency components of all variables but the medium-maturity rates, is small, but non-zero.

Comin and Gertler (2006) to emphasize the interrelation between high and medium-frequency com-

ponents combine them into a single �medium-term business cycle� frequency component. The high

correlation (of 68%) between the medium- and the high-frequency component of core in�ation in-

dicates that this variable is little volatile, so that it is di�cult to clearly disentangle between the

power it displays within its non-low frequency bandwidths.

Table 2: Summary statistics: the frequency decomposition

Variable

Mean  Std. Dev. LF & MF LF & HF MF & HF

Long-rates 0.023 0.053 0.06 0.00 0.26

Mid-rates 0.009 0.254 0.10 0.11 0.08

Short-rates 0.013 0.126 -0.05 -0.02 0.22

FFR 0.014 0.122 -0.03 -0.05 0.38

CPI 0.010 0.111 -0.01 -0.04 0.28

CCPI 0.024 0.081 -0.09 0.22 0.68

LIQ -0.002 0.004 -0.29 -0.05 0.20

Residuals Correlations of FC

This table reports the mean and the standard deviation of the residuals from the frequency decompositions of x0(0, t)
which models the long-end of the yield curve, x1(0, t) which models the middle of the yield curve, x2(0, t) which
models the short-end of the yield curve, the policy rate (FFR), in�ation (CPI), core in�ation (CCPI) and the global
monetary liquidity index (LIQ). The last three columns of the table report the correlation between the low-frequency
(LF) and the medium-frequency (MF) components, the low-frequency and the high-frequency (HF) components, and
between the MF and the HF of the same variables of interest.

Table 3 presents a set of statistics on the volatility exhibited by each extracted frequency com-

ponent, and thereby on the amount of power displayed by each considered variable within the three

frequency bandwidths. While the reported statistics will be commented in detail in the following

sections, we already highlight how, all in all, the considered variables have displayed a decline in the

variability of their frequency components since the early 1990s. In particular, over the last �fteen

years all the considered variables have exhibited a decline in the mean values and the standard de-

viations of their LF. Since we do not examine the behavior of global liquidity in the early 1980s, the

mean and the standard deviation of its LF are computed only over the period 31 January 1992−30
September 2007. Similarly, the standard deviations of the MF and the HF of the long-term rates,

the policy rate, in�ation, and core in�ation have declined over the period 31 January 1992−30
September 2007 compared with the period January 1985−30 September 2007. Only the MF and

HF of the medium-maturity rates have, instead, increased. The combination of MF and HF denoted

MFetHF, con�rms that the response of the long-term rates to business-cycle and short-lived forces

has progressively become more muted, and so did the response of core in�ation. In contrast, the
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policy rate, the short-term rates and in�ation have displayed an upturn in the volatility of their

MFetHF over the last few years, starting from 2001.

Table 3: Summary statistics: standard deviations of the FC

Variable

1985-2007 1992-2007 1985-2007 1992-2007 1985-2007 1992-2007 2001-2007

Long-rates 7.09 1.68 6.13 0.90 0.39 0.30 0.49 0.40 0.69 0.54 0.43

Mid-rates 6.65 2.06 5.46 1.06 1.02 1.08 1.84 1.93 2.17 2.29 2.26

Short-rates 4.95 1.23 4.25 0.29 1.44 1.44 0.63 0.56 1.69 1.69 1.74

FFR 5.08 1.40 4.28 0.38 1.34 1.33 0.57 0.48 1.65 1.64 1.67

CPI 2.99 0.28 2.85 0.09 0.62 0.41 0.64 0.51 1.01 0.67 0.81

CCPI 2.90 0.54 2.62 0.03 0.53 0.37 0.37 0.25 0.83 0.54 0.45

LIQ 1.50 0.17 0.06 0.02 0.06 0.06

MF HF

1985-2007 1992-2007

MFetHFLF

This table in the �rst and in the third columns reports the mean and in the second and in the fourth columns reports
the standard deviation of the LF of the variables considered over the periods 31 January 1985:30 September 2007 and
31 January 1992:30 September 2007, respectively. The remaining columns of the table report the standard deviations
of the MF, the HF and a combination of the MF and the HF (MFetHF) of the considered variables over the same two
time periods. The last column show also the standard deviation of the MFetHF for the period 31 January 2001:30
September 2007. All the statistics are expressed in percentage points.

Table 4: Summary statistics: persistence of the FC

Variable Lag (1) Lag (12) Lag (24) Lag (36) Lag (1) Lag (12) Lag (24) Lag (1) Lag (12) Lag (24)

Long-rates 0.98 0.79 0.59 0.42 0.91 -0.03 0.00 0.82 -0.18 0.07

Mid-rates 0.98 0.78 0.60 0.43 0.81 -0.14 0.12 0.71 -0.02 0.19

Short-rates 0.98 0.76 0.56 0.38 0.98 0.53 0.03 0.81 -0.07 -0.04

FFR 0.98 0.77 0.57 0.39 0.98 0.55 0.02 0.85 0.10 0.01

CPI 0.97 0.69 0.49 0.33 0.93 0.30 0.10 0.80 -0.14 0.06

CCPI 0.97 0.69 0.45 0.26 0.97 0.75 0.50 0.86 0.42 0.38

LIQ 0.97 0.72 0.52 0.37 0.97 0.74 0.47 0.81 0.14 0.07

HFLF MFetHF

This table reports the autocorrelation of the low-frequency component (LF), the combined medium- and high-
frequency components (MFetHF) and the high-frquency components (HF) at displacements of 1 month, 12 months,
24 months, and for the LF of 36 months, extracted from the variables of interest.

Finally, Table 4 reports the autocorrelation of the extracted frequency components at displace-

ments of 1 month, 12 months, 24 months, and for the LF also of 36 months. As expected, for each

series the LF shows the highest persistence. For example, an increase of one percentage point in

the LF of the medium-maturity rates at time t is likely to have declined only to 0.43 percentage
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points at time t+36, i.e. after three years. Core in�ation and the global liquidity index display the

highest persistence of the e�ects produced by business-cycle and short-lived forces, combined. For

example, if they increase by one percentage point above their LF level at time t, they are likely to

be still around 0.50 percentage points above their LF level at time t + 24, i.e. after two years. In

contrast, the MF and HF of the long-term rates exhibit signi�cantly smaller persistence and so do

the MF and HF of the medium-maturity rates, thereby suggesting that these rates are essentially

driven by long-run, slowly evolving forces.

6 The yield curve and in�ation in the frequency domain

In this section we examine the relationship between the yield curve and in�ation by investigating

the interrelation among their frequency components. We show that over the last two decades U.S.

in�ation has �uctuated around a long-run anchor of about 3.0% and that the short-end of the

U.S. yield curve has followed a similar pattern, �uctuating around a long-run level of about 4.0%.

The long-end of the U.S. yield curve, although reacting timely to actual and expected consumer

price changes, has instead displayed a steadily downward-trended underlying pattern and much less

volatility.

6.1 The frequency decomposition of in�ation

The frequency decomposition shows that during the disin�ation of the 1980s the LF of annual

in�ation, which captures its enduring changes, underwent a marked decline (of about 11 percentage

points) to stabilize, starting from 1992, at the level of 2.9% (with a standard deviation of 0.10

percentage points), as shown in panel (a) of Figure 2. Meanwhile, the LF of core in�ation stabilized

at the slightly lower level of 2.6% (with a standard deviation of 0.03 percentage points), as shown

in panel (d) of Figure 2. These �ndings suggest that from the early 1990s onwards in�ation has

�uctuated around its almost �at low-frequency component. Similar results have been obtained using

di�erent methodologies by Coley and Sargent (2005), Cecchetti et al. (2007), who �nd that gross

domestic product price in�ation also followed an underlying trend anchored at about 2.2% over the

past few years, and by Stock and Watson (2007), who investigate in�ation by decomposing it into

a permanent stochastic trend and a component modeling the transitory �uctuations around the

trend.

At the same time, the MF and HF of in�ation and core in�ation have displayed progressively

smaller variability as reported in Table 3 and shown in panels (b), (c), (e) and (f) of Figure 2.

All in all, the exam of the amount of power displayed by in�ation and core in�ation within their

frequency bandwidths across time reveals that: 1) over the three decades that we consider both

in�ation measures have exhibited most of their power within their low-frequency bandwidths, as
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shown on top (right-hand scale) of panels (g) and (h) of Figure 2, which partition the time functions

of in�ation and core in�ation into their frequency components; 2) during the 1980s and early 1990s,

when in�ation was more volatile, the importance of their medium- and high-frequency bandwidths

was higher, as shown on bottom (left-had scale) of panels (g) and (h) of Figure 2; �nally, 3) some

upturns in variability occurred also in recent years, during the de�ation scare period of 2002-03 for

what concerns core in�ation, and since mid-2005 for what concerns in�ation.

Figure 2: The frequency decompositions of in�ation
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This �gure presents the spectral decomposition of U.S. headline in�ation and core in�ation. Panel (a) shows headline
in�ation and its LF; panel (b) shows its MF and panel (c) presents its HF. Panel (d) shows core in�ation and its LF;
panel (e) shows its MF and panel (f) presents its HF. Panel (g) shows the partition of in�ation into its LF (top of the
chart, right-hand scale) and the combination of its MF and HF (bottom of the chart, left-hand scale). Finally, Panel
(h) shows the partition of core in�ation into its LF (top of the chart, right-hand scale) and the combination of its
MF and HF (bottomo of the chart, left-hand scale)and panel (g) shows the same tye of partition for core in�ation.
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Altogether, these facts suggest that over the last two decades U.S. in�ation has generally re-

mained well-anchored, possibly re�ecting, as for example recently argued by Mishkin (2007), the

pattern of U.S. survey-based long-run in�ation expectations, which have stabilized at about 2.5%

over the last few years.

6.2 The frequency decomposition of the yield curve

The exam of the frequency decompositions of the monetary policy rate and the short-term rates

reveal a picture similar to the one displayed by in�ation thereby suggesting that these variables are

highly interrelated. Speci�cally, the LF of the federal funds rate target and of the short-end of the

yield curve also underwent a marked decline in the 1980s to stabilize at about 4.3% (with standard

deviations of 0.40 percentage points) and at 4.25% (with a standard deviation of 0.3 percentage

points), respectively, since 1992, as reported in Table 3 and shown in panels (a) and (d) of Figure

3. In addition, the exam of the MF show that the monetary policy rate and the short-term rates

have been fairly correlated with in�ation (by about 60%) and core in�ation (by about 40%), as

shown in panels (b) and (e) of Figure 3 (since the medium-frequency components of the short-end

of the yield curve and the federal funds rate are highly correlated, here we show each of them with

a di�erent in�ation measure). Finally, the variability of the HF of the policy rate, the short-term

rates and in�ation have moved within the same ranges throughout all the years we investigate, as

reported in Table 3, while core in�ation has displayed much more contained volatility.

Granger causality tests run to investigate whether in�ation and the federal funds rate target

help predict each other at business-cycle frequencies, show that the hypothesis that the MF of

in�ation does not cause the MF of the policy rate cannot be rejected over the entire sample, and at

increasingly longer lags since the 1990s, while we do reject the hypothesis that the MF of the policy

rate does not Granger-cause the MF of in�ation (see Table 5). Therefore, it appears that Granger

causality runs one -way from the policy rate to in�ation thereby supporting the view that through

the years monetary policy has progressively more pre-emptively reacted to price pressures upturns

and downturns.

Table 5: Summary statistics: Granger causality I

Period

Null Hypothesis: F-Stat Prob F-Stat Prob F-Stat Prob F-Stat Prob

MF inflation does not Granger cause MF policy rate 0.44 0.51 1.37 0.15 0.41 0.52 0.8 0.59

MF policy rate does not Granger cause MF inflation 7.68 0.00 2.70 0.00 7.33 0.00 1.33 0.24

1981:01-2007:09 1981:01-2007:09 1981:01-1991:12 1992:01-2007:09 

  Lags: 1   Lags: 18   Lags: 1  Lags: 7

This table reports pairwise Granger causality tests. Not to consider the �rst noisy estimates of the medium frequency
(MF) components, the sample period begins on 31 August 1980.
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Figure 3: The frequency decompositions of the policy rate and the short-term rates
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This �gure presents the spectral decomposition of U.S. headline in�ation and core in�ation. Panel (a) shows headline
in�ation and its LF; panel (b) shows its MF and panel (c) presents its HF. Panel (d) shows core in�ation and its LF;
panel (e) shows its MF and panel (f) presents its HF. Panel (g) shows the partition of in�ation into its LF (top of
the chart, right-hand scale) and the combination of its MF and HF (bottom of the chart, left-hand scale). Finally,
Panel (h) shows the partition of core in�ation into its LF (top of the chart, right-hand scale) and the combination of
its MF and HF (bottomo of the chart, left-hand scale).

The exam of the MF also shows how di�erent the response can be when monetary policy reacts

to core in�ation as opposed to when it responds to a headline measure of in�ation including all

price items. Speci�cally, at the turn of the millennium the MF of the federal funds rate target and

in�ation trended downwards on the backdrop of the stock market correction of 2000 and the ensuing

short recession of 2001. Yet, while the MF of headline in�ation bottomed out in the middle of 2002,

the MF of core in�ation began bouncing back only in March 2004, as shown in panels (b) and (e)

of Figure 3. The Federal Reserve, by focusing on the de�ationary risks associated to the steadily

downward-trended core in�ation began tightening in June 2004, when headline in�ation had been

on the rise for almost two years and real output had been accelerating for almost three years. It is

worth also noticing that business-cycle and short-lived forces appear to exert especially persistent

e�ects on core in�ation thereby rendering its dynamics more sluggish than that of headline in�ation,

as shown in Table 3.
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Figure 4: The frequency decompositions of the medium- and long-term rates
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This �gure presents the spectral decomposition of medium- and long-term rates. Panel (a) shows the long-term rates,
their LF and, on the bottom, the LF of the short-term rates; panel (b) shows the MF of the long-term rates (dark
line, right-hand scale), the MF of in�ation (light solid line, left-hand scale) and the MF of the policy rate (thin line,
left-hand side); panel (c) presents the HF of the long-term rates. Panel (c) shows the medium-term rates, their LF
and, on the bottom, the LF of the short-term rates; panel (e) shows the MF of the medium-term rates (dark line,
right-hand scale), the MF of in�ation (light solid line, left-hand scale); panel (f) presents the HF of the medium-term
rates. Finally, Panel (h) shows the partition of the long-term rates into their LF (top of the chart, right-hand scale)
and the combination of their MF and HF (bottomo of the chart, left-hand scale) and panel (g) shows the same tye
of partition for the medium-term rates.

The medium- and the long-term rates appear interrelated with in�ation developments less no-

ticeably than the short-term yields (and the federal funds rate). To start with, their LF have

continued to trend downwards also after the disin�ation-period of the 1980s as opposed to stabilize

at a constant level as the LF of the short-term rates, as shown in panels (a) and (d) of Figure 4.
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Moreover, while the amount of power displayed by the medium-term rates within their medium-

frequency has progressively increased, peaking during the de�ation scare period of 2002 and 2003,

the long-term rates appear on average less a�ected by transitory, medium- and short-run forces,

than the rates at lower maturities, as shown in Table 3 and presented in panels (g) and (h) of

Figure 4.

Nonetheless,throughout the entire period we investigate we cannot reject the hypothesis that

the MF of in�ation does not Granger-cause the MF of the long-term rates, while we do reject the

hypothesis that the MF of the long-term rates does not Granger-cause the MF of in�ation (see

Table 6). Therefore, it appears that long-term rates typically react to changes in consumer prices

in advance, and that they do so earlier than the short-term rates, as indicated by the comparison

with the statistics reported in Table 5. This is possibly due to the fact that long-term incorporate

market expectations, to which monetary policy itself reacts (see e.g. Goodfriend 1993), and because

together with in�ation they also anticipate the related monetary policy moves. Finally, the exam

Table 6: Summary statistics: Granger causality II

Period

Null Hypothesis: F-Stat Prob F-Stat Prob F-Stat Prob F-Stat Prob

MF inflation does not Granger cause MF long-rates 0.48 0.70 0.71 0.81 0.26 0.85 0.65 0.83

MF long-rates does not Granger cause MF inflation 2.55 0.06 1.45 0.11 2.89 0.04 0.92 0.54

1981:01-2007:09 1981:01-2007:09 1981:01-1991:12 1992:01-2007:09 

  Lags: 3   Lags: 18   Lags: 3  Lags: 15

This table reports pairwise Granger causality tests. Not to consider the �rst noisy estimates of the medium frequency
(MF) components, the sample period begins on 31 August 1980.

of the MF suggests that during the �conundrum� period of 2004-05, labeled so by the then-Federal

Reserve Board Alan Greenspan because the long-term rates did not appear to increase in response

to a rising policy rate and sound economic conditions, the long-term rates reacted to increasing

in�ationary pressures. As shown in panel (e) of Figure 4, in in September 2000 the MF of the

policy rate embarked on a decline that lasted until February 2002, and remained at a low level until

May 2004. Yet, the MF of the long-term rates after an initial decrease, turned up in July 2001

and �uctuated, trending even slightly upwards, until mid-2004. When it �nally began decreasing,

the policy rate had already reverted upwards. Therefore, it seems that from mid-2001 to mid-2004,

when the MF of the policy rate and the long-term rates moved in opposite directions, upwards the

�rst and downwards the second, despite their exceptionally contained volatility the long-term rates

were reacting to rising in�ation.

To conclude, actual and expected in�ation appear to in�uence the movements of yields at all

maturities. The target for the federal funds rate and the short-end of the yield curve seem noticeably

interrelated with in�ation both at low- and higher- frequencies, in line with the mandate of the

Federal Reserve to maintain price stability. For what concerns the long-term rates, although but a
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decline in their variability has rendered their response to business-cycle forces more muted over the

last few years, they appear to keep on anticipating by few months changes in consumer prices with

their MF. Such decline in volatility suggests that the movements of the long-end of the yield curve

have become more dependent on long-run forces, which however appear little related to in�ation

developments. In fact, the steadily declining LF of the long-term rates appears di�cult to reconcile

with the almost �at LF of in�ation.

7 The yield curve and monetary policy in the frequency domain

In this section we examine the relationship between the yield curve and the federal funds target

rate by investigating the interrelation of their frequency components. Against this background, we

argue that while monetary policy in�uences the short-term rates, its direct e�ect on yields of longer

maturities is limited.

Through the implementation of open market operations, the Federal Reserve aims to meet the

target it sets for the federal funds rate by altering the conditions prevailing on the reserve market

thereby encouraging its depositary institutions to trade federal funds. The most common form

of open market operations are repurchase and reverse repurchase agreements. These operations

are typically settled overnight or within few days and involve mostly, although not exclusively,

the purchase and resale of short-term and medium-maturity U.S. Treasury securities. Trade in

longer-term bonds and notes is less frequent.

Figure 5: The frequency decompositions of the policy rate and the yields
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This �gure presents the MF of the federal funds target rate and the short-term rates (panel (a)), the medium-mturity
rates (panel (b)), and the long-term rates (panel (c)).

Given these characteristics, and in line with the �ndings of the literature (e.g. Hamilton (1997)

and, more recently, Sarno, Thorton, Wen (2007)) we obtain that the MF of the federal funds rate

target is highly correlated (by 96%) and virtually synchronous with the MF of the short-end of the

yield curve, as shown in panel (a) of Figure 5, and that it is modestly correlated (by 21%) with
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the MF of the middle of the yield curve, as shown in panel (b) of Figure 5, although the medium-

maturity yields seem to anticipate the changes in the policy rate at business-cycle frequencies, as

reported in Table 7. This result needs not be in contrast with the expectation hypothesis of the term

structure and is consistent with the �ndings of Sarno and Thorton (2003), who argue that if the

market anticipates the changes in the policy rate, market rates may move in advance of the funds

rate. However, we also obtain that the MF of the federal funds rate target is virtually uncorrelated

(by 0.02%) with the MF of the long-term rates, as shown in panel (c) of Figure 5), but the long-term

rates seem to anticipate the changes in the policy rate at business-cycle frequencies, as reported in

Table 7.

Table 7: Summary statistics: Granger causality III

Period

Null Hypothesis: F-Stat Prob F-Stat Prob F-Stat Prob F-Stat Prob

MF mid-term rates do not Granger cause MF policy rate 3.59 0.03 1.29 0.23 10.31 3.E-06 3.56 0.00

MF policy rate does not Granger cause MF mid-term rates 0.46 0.63 0.47 0.91 0.74 0.53 0.77 0.66

Null Hypothesis: F-Stat Prob F-Stat Prob F-Stat Prob F-Stat Prob

MF long-term rates do not Granger cause MF policy rate 2.45 0.06 1.61 0.09 3.81 0.01 2.31 0.01

MF policy rate does not Granger cause MF long-term rates 1.49 0.22 1.43 0.15 2.66 0.05 1.70 0.07

  Lags: 12  Lags: 3

  Lags: 2   Lags: 10   Lags: 3

  Lags: 3   Lags: 12

  Lags: 10

1983:01-2007:09 1983:01-2007:09 1995:01-2007:09 1995:01-2007:09

This table reports pairwise Granger causality tests. Not to consider the �rst noisy estimates of the medium frequency
(MF) components, the sample period begins on 31 January 1983.

These �ndings seem to support the arguments originally made by Fand (1966) and con�rmed

for example by Dobell and Sargent (1969), according to which by operating essentially at the short-

and medium-range of the maturity spectrum, central banks exert a necessarily limited in�uence

on long-term rates. In particular, Dobell and Sargent (1969) suggest that, given the collinearity

between interest rates at all maturities, �what can be done [...] is to investigate to what extent

these rates appear to move independently.� Therefore, we check whether monetary policy and the

long-term rates have always moved in the same direction in response to changes in the state of the

economy. We �nd that there are a number of episodes in which this has not occurred. Notably, this

happened at the time of the 1957-1958 recession, when a substantial decline in the short-rates had

very little repercussions on the long-rates (see Fand (1996)). Again, this happened at the time of

the 1990 recession, when the policy rate was progressively decreased from 9.75% to 3.0% following

economic growth and not in�ation considerations and the long-term rates, after an initial decline,

turned upwards, and held at high levels also when the policy rate had bottomed out, re�ecting

high �scal indebtedness and the concerns of the market about the in�ation outlook. Finally, this

happened in 2004-05 giving rise to a conundrum as discussed in the preceding Section. Even in
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the most recent past, the MF of the policy rate and the long-end of the yield curve have moved in

di�erent directions, trending slightly downwards the �rst and rising the second, possibly re�ecting

economic growth and in�ation developments, respectively (see panel (e) of Figure 4).

To conclude, we argue that the fact that the policy rate and the long-term rates move in the

same direction when they react to the same economic developments, as for example in�ation, does

not mean that monetary policy directly controls the long-term rates. In fact, monetary policy and

the long-term rates may react to di�erent economic forces and in such case they appear to move in

di�erent directions. Finally, as already remarked in the preceding Section, beyond business-cycle

horizons, the policy rate and the medium- and the long-term rates appear to have been driven by

di�erent long-run economic forces since the 1990s, as exempli�ed by the di�erent patterns taken by

their LF.

8 The yield curve, monetary policy and global liquidity

In this section we examine the relationship between the LF of the long-end of the yield curve and

the secular evolution of global monetary liquidity.

The contrast of the frequency components of in�ation and the short-term rates carried out in

Section 6 suggests that the LF of the U.S. in�ation-adjusted policy rate and short-term rates have

steadily trended downwards for most of the period we investigate. In fact, since 1980 the LF of the

in�ation-adjusted policy and short-term rates, obtained by subtracting the LF of in�ation from the

LF of the policy rate and the short-end of the yield curve, have hovered around an average level

included between 2.4% and 2.6%, and have moved along a downward trend after peaking in early

1983. In the meantime, since the end of the disin�ation period of the 1980s, the MF of the real policy

rate, obtained by subtracting the MF of in�ation from the MF of the policy rate (which overlaps

with the MF of the short-term rates) has remained above its LF level twice: from mid-1994 to

mid-2001 and from early 2006 to today (see panel (a) of Figure 6). When we contrast the frequency

components of the real short-term rates with the frequency components of real GDP annual growth,

which we extract starting from the same frequency bandwidths and a similar dynamic model as for

the other macro variables, we obtain that the di�erence between the LF of the short-term rate and

real GDP growth has followed a steadily decreasing pattern (see panel (b) of Figure 6). Of course

such estimates, while indicative, are inevitably imprecise. Yet, they point in the same direction

of other �ndings, as for example the evaluation of the U.S. monetary policy stance made with the

Taylor rule by Taylor (2007).

We speculate that this has stimulated the growing of U.S. external indebtedness � the U.S.

current account, which was in balance or close to balance in the early 1990s, steadily deteriorated

thereafter bottoming out at a 6.2% of GDP de�cit in 2006 � and thereby to the out�ows of �nancial

capital. Meanwhile U.S. in�ation remained moderate � thereby easily permitting the Federal Reserve
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to support the economy � thanks to a combination of factors including technological innovation,

greater openness of emerging economies to international trade and the resulting upturn in compet-

itive pressures and greater central bank transparency and credible anti-in�ation commitments (see

e.g. Borio (2006) and El-Erian (2007).

Figure 6: The long-term rates and global liquidity
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This �gure in panel (a) presents the LF (left-hand scale) and the MF (right-hand scale) of the real short-term rate;
in panel (b) it shows the di�erence between the LF and MF of the real short-term rate and the those of real annual
GDP growth; in panel (c) it shows the "excess" global liqudity index with its LF; in panel (d) it plots a scatter
diagram with the LF of the "excess" global liqudity index on the x-axis and the LF of the long-term rates on the
y-axis; �nally, in panel (e) it shows the the "excess" global liqudity index on the x-axis and the LF of the long-term
rates on the y-axis.

Under the assumption that in�ation has increasingly been determined at the global level as shown

by Borio and Filardo (2007), the high saving ratios of the rapidly developing economies running

current account surpluses may have also contributed to o�set the rise in in�ationary pressures in the

United States, notably because these countries spent the bulk of their trade pro�ts not in purchasing

products and services, but in acquiring �nancial assets to manage exchange rate regimes (see e.g.

Geithner (2007)). Yet, while consumer price in�ation in the most industrialized countries remained

contained, the prices of �nancial assets and the real estate surged around the globe.

To investigate the relationship between the liquidity generated and exchanged on international

markets (see, e.g. Bollard (2007)), globalization, and the upturn in asset prices, we examine the

evolution of broad monetary aggregates, because they are characterized bya slow and persistent
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dynamics which appears especially suitable for the assessment of enduring, underlying trends. In

particular, we use an �excess� global liquidity index obtained by dividing the sum of the nominal

broad money stocks of the United States, the United Kingdom, the euro area, Japan, Canada and

China with the sum of the nominal GDP of the same countries, being all variables converted into US

dollars at current market exchange rates.8 Such index exhibits a general upward-trended long-run

dynamics (see panel c) of Figure 6) which underwent a noticeable acceleration in early 2001, when

�scal and external indebtedness of the United States were expanding, the long-term rates and the

policy rates decoupled (see panel c) of Figure 5), and the MF of the real short-term rate as well as

its di�erence with the MF of real GDP both moved into negative territory (see panel (a) and (b) of

Figure 6).

The relationship between the yield curve and monetary liquidity is inherently non-linear and

possibly circular. It is non-linear because higher liquidity directly props up the prices of the U.S.

Treasury securities and only through them, which are inversely related to their yields, it pushes

the interest rates down. It is possibly circular because lower interest rates may in turn support

global liquidity rises: when the yields on U.S. Treasury securities become too low to compensate

for their risk, investors may decide to reallocate their portfolios towards safer and more liquid asset

as broad money. Moreover, low interest rate spur the demand for credit further. To check whether

the build up of �excess� global liquidity of the last two decades may be related to the concomitant

decline observed in long-term rates, we plot the global liquidity index and its LF and the LF of the

long-term rates are plotted on two scatter diagrams (see panel (d) and (e) of Figure 6).

The resulting negatively sloped curve appears to corroborate the hypothesis that larger liquidity

has been associated to decreases in long-term rates. In particular, the relationships displayed in

panels (d) and (e) of Figure 6 suggest that the in�uence of (excess) global liquidity on long-term

rates has progressively sated, given that the upturn in the global liquidity index since 2001 has

been associated to smaller decreases in the LF of the long-term rates. It may also indicate that

the declining trend underlying long-term rates has approached its lower bound. Finally, if the

correlation between the two variables keeps on holding, it may also suggest that an upturn in the

LF of the U.S. long-term nominal rates has to be associated to a sizable reduction in the (excess)

global liquidity index.

9 Conclusion

In this paper we propose a frequency decomposition analysis to test theoretical assumptions and

enhance our understanding on the relationship between the yield curve, monetary policy, in�ation

and global liquidity. We use a dynamic three-factor model to explain the term structure, designed

in such a way that its three latent variables partition the maturity spectrum, and reproduce the

8See, e.g. "Excess global liquidity, asset prices and in�ation" In�ation Report, Bank of England, February 2006.
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e�ects exerted on the forward and the spot rates by a large number of macroeconomic forces divided

according to how persistent their in�uence on the interest rates is. Similarly, we explicitly model

in the state space the dynamics of the other macroeconomic variables of interest. To extract the

frequency components from each variable, we explicitly model their evolutions under the assumption

that they are driven by three types of forces: 1) long-run forces whose enduring e�ects drive the

low-frequency component, 2) medium-run forces whose e�ects wane within business-cycle horizons

and govern the medium-frequency component, and 3) short-run forces whose short-lived e�ects drive

the high-frequency component. To explain the relationship between the economics forces and the

frequency components, we model the latter as the outputs of linear, time-invariant, discrete-time,

dynamic system identi�ed starting from the data and controlled by exogenous inputs lying within

three pre-speci�ed frequency bandwidths. Such inputs are computed by a dynamic �lter, which acts

as a band-pass �lter, works in real time and in the time domain, corrects for model uncertainty and

ensures that the arithmetic sum of the frequency components reconstructs the actual history of the

variable of interest.

We �nd evidence of a direct relationship holding at all frequencies between in�ation, monetary

policy and the short-end of the yield curve. In particular, this suggests that over the last three

decades, through its direct control on short-term interest rates, the Federal Reserve has been able

to e�ciently maintain price stability. We obtain that also the long-term rates react to actual and

expected changes in the consumer price level at business-cycle frequencies, although their long-

run pattern appears to be driven by forces other than those governing in�ation and monetary

policy. Furthermore, we cannot reject the hypothesis that the policy rate does not (Granger) cause

the long-term rates also at business-cycle frequencies.Yet, we argue that this does not mean that

monetary policy does not in�uence the long-term rates. We suggest that the relationship between

monetary policy and the long-term rates can be assessed at long-run horizons through the e�ect that

monetary policy exerts of the monetary liquidity conditions. In the current increasingly integrated

global economy the variable to examine is a indicator of global monetary liquidity. However, we

argue that taking a global focus needs not diminish the e�ect of domestic policies. In fact, we

�nd evidence that the pattern underlying the U.S. in�ation-adjusted real short-term rate has been

declining since early 1983, thereby holding at levels lower than the underlying pattern displayed by

U.S. real GDP growth. We speculate that this has fostered the build up of U.S. external indebtedness

and thereby the accumulation of �excess� global monetary liquidity. Not being spent to purchase

consumer goods and services, such liquidity appears to have fed into the price of those U.S. Treasury

securities not directly a�ected by open market operations. In fact, we �nd evidence of a long-run

relationship between the progressive upturn in �excess� global monetary liquidity and the progressive

decline observed in the underlying pattern of medium- and long-maturity yields. We conclude by

quoting A. Greenspan (2007) �monetary policy should make even a �at money economy behave �as

though anchored by gold.� �

28



Appendix I

Consider the discrete-time function z(t) that we want to investigate in the frequency domain. The

function z(t) is a �nite power sampled time function, satisfying the condition, lim
N→∞

1
2N

∑N
t=−N [z(t)]2 =

Pz < ∞ where Pz is the mean power of the signal z(t). Being the sampling unit considered in this

paper equal to one month, the upper limit of the frequency domain is fmax = 0.5 cycles/month =
πrad/month. Given that the mean power Pz is �nite, the function z(t) is not Fourier transformable.

In this case, if z(t) follows an ergodic stationary process, Pz is distributed in the frequency domain

with a power spectrum Φ(f), such that: Pz =
∫ fmax
0 Φ(f) df . If z(t) follows a nonstationary pro-

cesses, as the macrovariables that we consider, the signal power is likely to be time-varying. In

this case, as shown by Donati (1971), it is possible to de�ne a class of time-varying power spectral

functions ϕ(fi, t), where fi, with i ∈ (1, Nf), denotes the frequency values belonging to a �nite set

of Nf elements, with the following properties:

• pz(t) =
∑Nf

i=1 ϕ(fi, t) is a � locally time averaged � instantaneous power obtained by a suitable

smoothing of the signal instantaneous power [z(t)]2 , such that: Pz = lim
N→∞

1
2N

∑N
t=−N pz(t);

• Φ̄(fi) = lim
N→∞

1
2N

∑N
t=−N ϕ(fi, t), is a � locally frequency averaged � power spectral value such

that Pz =
∑Nf

i=1 Φ̄(fi). If the signal z(t) is the realization of an ergodic stationary stochas-

tic process, the power spectrum Φ̄(fi) corresponds to a � locally frequency averaging� of the

stochastic process power spectrum Φ(f).

The elements ϕ(fi, t) of the time-varying power spectrum class are related to the criteria selected to

perform the local averaging in the time and frequency domains. While di�erent averaging criteria

may be adopted, they should meet the following general rules:

1. A weighted averaging approach must be applied, with the weighting function de�ned in such

a way that the averaged value may be attributed (even roughly) to a �nite interval, whose

amplitude is denoted T when referring to the time interval, and ∆f when referring to the

frequency interval. The intervals of amplitudes T and ∆f de�ne the �nite resolution of the

performed averages. As a result, in the time domain, two values ϕ(fi, t1) and ϕ(fi, t2) cannot
di�er signi�cantly if the time instant di�erence ‖t2 − t1‖ is not signi�cantly larger than T.

Similarly, in the frequency domain, two values ϕ(f1, t) and ϕ(f2, t) cannot be signi�cantly

di�erent if ‖f2 − f1‖ is not signi�cantly larger than ∆f.

2. The time-varying power spectral decomposition is possible only by adopting �nite resolutions

T and ∆f such that T ·∆f � 1.

3. If we adopt the greatest time resolution T = 1month, which is equal to the sampling unit,

then the required frequency resolution is ∆f = fmax and then no spectral decomposition is

possible.
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4. If we adopt the greatest frequency resolution, which in our case is ∆f = 1/333 cycles/month

since our data extend to 333 monthly observations, then the required time resolution coin-

cides with all the time interval (running from 1980:01 to 2007:09) and no time-varying power

spectrum may be considered, but only the power spectrum of the power averaged over all the

available time series data.

Having clari�ed the above conditions, given the aim of this paper, we decide to opt for a good

resolution in the time domain and then to accept a low resolution in the frequency domain. As

a result, we decompose the time series z(t) in only four spectral components: a low-, a medium-,

a high-frequency component and a residual decomposition error which belongs to a residual very

frequency domain, which we do not investigate.
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