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Abstract
Macroeconomic or financial data are often modelled with cointegration and

conditional heteroskedasticity, such as the generalized autoregressive condi-
tional heteroskedasticity (GARCH). However, the statistical inference method
and the asymptotic theory for the cointegration with GARCH errors have yet
to be well developed. In this paper, we consider a partially nonstationary
autoregressive model with GARCH. In addition, no prior knowledge of the
reduced rank structure is assumed. We propose the full rank and the reduced
rank quasi-maximum likelihood estimation for the model. The asymptotic
distributions of the estimators are proved to be a functional of two correlated
high-dimensional Brownian motions. These two estimators are used to con-
struct a likelihood ratio (LR) test for the reduced rank, where asymptotic
distribution is in turn a functional of a standard Brownian motion and a
standard normal vector, with some unknown nuisance parameters. The crit-
ical values of the LR test are simulated via the Monte Carlo method. The
performance of this test in finite samples is examined through Monte Carlo
experiments. We also apply our approach to an empirical example of three
interest rates.
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1 Introduction

Throughout this paper, we consider an m−dimensional autoregressive (AR) process

{Yt}, which is generated by

Yt = Φ1Yt−1 + · · ·+ ΦsYt−s + εt, (1.1)

εt = (ε1t, . . . , εmt)
′, (1.2)

εit = ηit

√
hit, hit = ai0 +

q∑

j=1

aijε
2
it−j +

p∑

k=1

bikhit−k, (1.3)

where Φj’s are constant matrices, and det{Φ(z)} = |I − Φ1z − · · · − Φsz
s| = 0 has

d ≤ m unit roots and r = m − d roots outside the unit circle. ηt = (η1t, . . . , ηmt)
′ is

a sequence of independently and identically distributed (i.i.d.) random vectors with

zero mean and E(ηtη
′
t) = Γ, where

Γ =




1 σ12 · · · σ1m

σ21 1 σ23 · · ·
· · ·

σm,1 · · · σm,m−1 1


 ,

in which σij = σji. It is easy to see that E(εt|Ft−1) = 0 and E(εtε
′
t|Ft−1) = Vt =

DtΓDt, where Ft = σ{ηs, s = t, t − 1, . . .} and Dt = diag(
√

h1t, . . . ,
√

hmt). Vt is

the time-varying covariance matrix with constant correlation. The process εt in

(1.2)-(1.3) is the multivariate generalized autoregressive conditional heteroskedas-

ticity (GARCH) process proposed by Bollerslev (1990) and has been widely used

in the literature, for example by Tse (2000). We call Model (1.1)-(1.3) a partially

nonstationary multivariate AR model with GARCH.

Assuming the εt’s are i.i.d., Ahn and Reinsel (1990) (see also Johansen, 1988)

show that, although some component series of {Yt} exhibit nonstationary behaviour,

there are r linear combinations of {Yt} that are stationary. This phenomenon,

which is called cointegration in the literature of economics, was first investigated

in Granger (1983) (see also Engle and Granger, 1987). Numerous economic models

such as consumption function, purchasing power parity, money demand function,

hedging ratio of spot and futures exchange rates, and yield curves of different terms
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of maturities impose this restriction of cointegration. The partially nonstationary

multivariate AR model or cointegration time series models without GARCH have

been extensively discussed over the past twenty years. Noticeable examples include

Phillips and Durlauf (1986), Johansen (1988,1995), Stock and Watson (1993), and

Rahbek and Mosconi (1999).

Economic time series related to financial markets, such as exchange rates and

interest rates, often exhibit time-varying variances such as GARCH. Recently, a

considerable number of papers, including Kroner and Sultan (1993), Brenner and

Kroner (1995), Alexakis and Apergis (1996), and Li, Ling and Wong (2001) (hence-

forth LLW (2001)), investigate multivariate time series that exhibit both cointegra-

tion and time-varying variances. On the other hand, while Franses, Kofman and

Moser (1994) and Lee and Tse (1996) perform Monte Carlo experiments on dif-

ferent tests for cointegration which ignore the presence of GARCH, the statistical

inference and the asymptotic theory have yet to be well developed. In LLW (2001),

the heteroskedasticity part is the random coefficient autoregressive (RCAR) model

proposed in Nicholls and Quinn (1982) and Tsay (1987). It excludes the terms hit−k

in Model (1.3). Moreover, LLW (2001) mainly consider the case with a diagonal Γ.

In contrast, the model of heteroskedasticity in this paper includes the hit−k and

it does not assume a diagonal Γ. These differences from LLW (2001)’s model are

substantial in practice, and thus our model provides a much wider scope of applica-

tions. Furthermore, unlike Ahn and Reinsel (1990) and LLW (2001), our approach

is similar to that of Anderson (1951) and Johansen (1988) and does not assume the

unnecessary prior knowledge of the reduced rank structure. This is non-trivial when

m is equal to or greater than 3.

In this paper, we first investigate the full rank and the reduced rank quasi-

maximum likelihood estimations (QMLE) for Model (1.1)-(1.3). The asymptotic

distribution of either estimator is proved to be a functional of two correlated high-

dimensional Brownian motions. Using these two estimators, we construct an LR
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test for the reduced rank. To the best of our knowledge, such a test does not

exist in the literature. Again, our test does not assume the prior knowledge of the

reduced rank structure. We show that the asymptotic distribution of the LR test is

a functional of a standard Brownian motion and a standard normal vector with d

unknown nuisance parameters. The critical value of this LR test is thus simulated

via the Monte Carlo method. It is worth mentioning that in the univariate case,

Seo (1999) and Ling, Li and McAleer (2002) construct a unit root test with the

MLE of a unit-root AR/ARMA-GARCH model. The Monte Carlo experiments in

the two papers suggested that the unit root test based on the maximum likelihood

estimation (MLE) is much more powerful that the Dickey-Fuller test based on the

least squares estimation (LSE). It is expected that the LR test based on the MLE of

Model (1.1)-(1.3) is more powerful than Johansen (1988)’s test or Reinsel and Ahn

(1992)’s test which both ignore GARCH. This is confirmed with our Monte Carlo

experiments.

This paper proceeds as follows. Section 2 discusses the structure of Model (1.1)-

(1.3). Section 3 and Section 4 derive the asymptotic distribution of the full rank

estimator and that of the reduced rank estimator, respectively. Section 5 devises a

test for the reduced rank. Section 6 extends the previous results to a model with a

constant term. We report the Monte Carlo experiments and an illustrative empirical

example of three interest rates in Sections 7 and 8 respectively. Conclusions can be

found in Section 9. All technical proofs are relegated to the Appendix.

2 Basic Properties of Models

First we reparameterize Model (1.1) as follows:

Wt = CYt−1 + Φ∗
1Wt−1 + · · ·+ Φ∗

s−1Wt−s+1 + εt, (2.1)

where Wt = Yt − Yt−1, Φ∗
j = −∑s

k=j+1 Φk and C = −Φ(1) = −(Im − ∑s
j=1 Φj).

Following Ahn and Reinsel (1990), let m × m matrices P and Q = P−1 be such
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that Q(
∑s

j=1 Φj)P = diag(Id, Γr), the Jordan canonical form of
∑s

j=1 Φj. Defining

Zt = QYt, we obtain

Zt = diag(Id, Γr)Zt−1 + ut and ut = Q[Φ∗
1Wt−1 + · · · + Φ∗

s−1Wt−s−1 + εt]. (2.2)

Furthermore, let g(z) = (1 − z)−ddet{Φ(z)} and H(z) = (1 − z)−d+1adj{Φ(z)}, we

can rewrite ut as

ut = {Im + Q
s−1∑

k=1

Φ∗
kg(B)−1H(B)PBk}at = Ψ(B)at, (2.3)

where at = Qεt and Ψ(B) = Im + Q
∑s−1

k=1 Φ∗
kg(B)−1H(B)PBk =

∑∞
k=0 ΨkB

k in

which Ψ0 = Im, Ψk = O(ρk) and ρ ∈ (0, 1), as in Ahn and Reinsel (1990). Partition

Q′ = [Q1, Q2] and P = [P1, P2] such that Q1 and P1 are m×d matrices, and Q2 and

P2 are m × r matrices. Further partition ut = [u′
1t, u

′
2t]

′ such that u1t is d × 1 and

u2t is r × 1. Define Z1t = Q′
1Yt and Z2t = Q′

2Yt so that

Z1t = Z1,t−1 + u1t and Z2t = ΓrZ2t−1 + u2t. (2.4)

Given Assumption (a) below, it can be shown that {Z1t} is a nonstationary random

vector with d unit roots; while {Z2t} is stationary. The r columns of Q′
2 are called

cointegrated vectors in the literature of economics.

Now we make the following assumptions for Model (1.2)-(1.3).

Assumption (a). ai0 > 0, ai1, . . . , aiq, bi1, . . . , bip ≥ 0, and
∑q

j=1 aij +
∑p

k=1 bik <

1, where i = 1, . . . , m.

Assumption (b). For i = 1, . . . , m, all eigenvalues of E(Ait ⊗Ait) lie inside the

unit circle, where ⊗ denotes the Kronecker product and

Ait =




ai1η
2
it . . . aiqη

2
it bi1η

2
it . . . bipη

2
it

I(q−1)×(q−1) 0(q−1)×1 0(q−1)×p

ai1 . . . aiq bi1 . . . bip

0(p−1)×q I(p−1)×(p−1) 0(p−1)×1


 .

Assumption (c). ηt is symmetrically distributed.

Assumptions (a) and (b) are the necessary and sufficient conditions for the finite

second and fourth moments of the GARCH error εt in Model (1.2)-(1.3), see Ling
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(1999) and Ling and McAleer (2002a). Assumption (c) is for convenience, which

renders (3.9) below and thus allows the parameters in the AR part and those in the

GARCH part to be estimated separately without altering the asymptotic distribu-

tions.

3 Full Rank Estimation

This section considers a full rank estimation, which incorporates the GARCH spec-

ified in Model (1.2)-(1.3). The estimators in the GARCH part may be used in

updating the reduced rank estimators which incorporate GARCH in Sub-section

4.2. We first rewrite Model (2.1) as

Wt = CP1Z1t−1 + CP2Z2t−1 +
s−1∑

j=1

Φ∗
jWt−j + εt. (3.1)

Let Xt−1 ≡ [Y ′
t−1, W

′
t−1, . . . , W

′
t−s+1]

′ (a sm × 1 vector), ϕ ≡ vec[C, Φ∗
1, . . . , Φ

∗
s−1] (a

m2s × 1 vector of parameters in the AR part) and δ ≡ [δ′1, δ
′
2]

′ (parameters in the

GARCH part), where δ1 ≡ [a′
0, a

′
1, . . . , a

′
q, b

′
1, . . . , b

′
p]

′ (a (1 + q + p)m × 1 vector)

(aj ≡ [a1j, ..., amj]
′, j = 0, 1, ..., q; bk ≡ [b1k, ..., bmk]

′, k = 1, ..., p.) and δ2 ≡ ṽ(Γ)

(note ṽ(Γ) is a m(m− 1)/2× 1 vector which is obtained from vec(Γ) by eliminating

the supradiagonal and the diagonal elements of Γ. See, for instance, p.27 in Magnus,

1988).

3.1 Computational Procedure

Denote the full-rank estimates of ϕ and δ as ϕ̂ and δ̂, which maximize the conditional

log-likelihood function:

l =
n∑

t=1

lt and lt = −1

2
ε′tV

−1
t εt −

1

2
ln |Vt|, (3.2)

where Vt = DtΓDt. For simplicity, we assume that the initial value Ys = 0 for s ≤ 0.

Moreover, it should be noted that lt, εt and Vt in (3.2) are functions of the unknown

parameters ϕ and δ. Denote ht = (h1t, . . . , hmt)
′ and h̃t = (h−1

1t , . . . , h−1
mt)

′. Using
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the conventional definitions of gradients (see, for instance, Theorem 6 in Chapter 5

of Magnus and Neudecker, 1988), it follows that

∇ϕlt = −1

2
∇ϕht(ι − w(εtε

′
tV

−1
t )) � h̃t + (Xt−1 ⊗ Im)V −1

t εt, (3.3)

∇δlt =

(
−1

2
∇δ1ht(ι − w(εtε

′
tV

−1
t )) � h̃t

−ν̃(Γ−1 − Γ−1D−1
t εtε

′
tD

−1
t Γ−1)

)
, (3.4)

where � is the Hadamard product, ι is the m× 1 sum vector (1, 1, . . . , 1)′, w(·) is a

m×1 vector containing the diagonal elements of an m×m matrix. Moreover, for i =

1, 2, . . . , m, let a(i)(z)b(i)(z)−1 =
∑∞

j=1 νijz
j, where a(i)(z) =

∑q
j=1 aijz

j and b(i)(z) =

1 −∑p
j=1 bijz

j . Denote νj ≡ (ν1j, . . . , νmj)
′, j = 1, 2, · · ·. Let ε̃t ≡ (ε2

1t, . . . , ε
2
mt)

′. It

follows that

∇ϕht = −2
q∑

l=1

(Xt−l−1 ⊗ Im)diag(al � εt−l) +
p∑

l=1

(∇ϕht−l)diag(bl)

= −2
t−1∑

l=1

(Xt−l−1 ⊗ Im)diag(νl � εt−l); (3.5)

∇a0ht = Im +
p∑

l=1

(∇a0ht−l)diag(bl), (3.6)

∇aj
ht = diag(ε̃t−j) +

p∑

l=1

(∇aj
ht−l)diag(bl), j = 1, . . . , q, (3.7)

∇bk
ht = diag(ht−k) +

p∑

l=1

(∇bk
ht−l)diag(bl); k = 1, . . . , p. (3.8)

Let β = (β ′
1, β

′
2)

′, where β1 = vec(CP1) and β2 = vec(CP2, Φ
∗
1, . . . , Φ

∗
s−1).

Further denote β̂1 = vec(ĈP1), β̂2 = vec(ĈP2, Φ̂
∗
1, . . . , Φ̂

∗
s−1) and Q̄∗ = diag(Q ⊗

Im, I(s−1)m2). Then Q̄∗′−1(ϕ̂ − ϕ) = [(β̂1 − β1)
′, (β̂2 − β2)

′]′. Define D̄∗ = diag(nIdm,
√

nIrm+(s−1)m2). Using Assumptions (a)-(c) and a method similar to the one used

in Ling and Li (1998), we can show that

D̄∗−1Q̄∗(
n∑

t=1

∇2
ϕϕ′ lt)Q̄

∗′D̄∗−1 =
n∑

t=1

D̄∗−1Q̄∗FtQ̄
∗′D̄∗−1 + op(1),

1√
n

D̄∗−1Q̄∗(
n∑

t=1

∇2
ϕδ′ lt) = op(1) and

1

n

n∑

t=1

∇2
δδ′ lt =

1

n

n∑

t=1

St + op(1), (3.9)

where Ft = −(Xt−1X
′
t−1 ⊗ V −1

t ) − (∇ϕht)D
−2
t (Γ−1 � Γ + Im)D−2

t (∇′
ϕht)/4, St =

(Sijt)2×2, S11t = −(∇δ1ht)D
−2
t (Γ−1 �Γ + Im)D−2

t (∇′
δ1

ht)/4, S12t = −(∇δ1ht)D
−2
t Ψm

(Im ⊗ Γ−1)NmL̃′
m, and S22t = −2L̃mNm[Γ−1 ⊗ Γ−1]NmL̃′

m, see Appendix A.
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By (3.9), the ϕ and δ can be estimated separately without altering the asymptotic

distributions. The estimators ϕ̂ and δ̂ can be obtained by the iterative Newton-

Raphson algorithm:

ϕ̂(k+1) = ϕ̂(k) − (
n∑

t=1

Ft)
−1(

n∑

t=1

∇ϕlt)|ϕ̂(k),δ̂(k) , (3.10)

δ̂(k+1) = δ̂(k) − (
n∑

t=1

St)
−1(

n∑

t=1

∇δlt)|ϕ̂(k),δ̂(k); (3.11)

where ϕ̂(k) and δ̂(k) are the estimates at the k-th iteration. The initial estimator

ϕ̂(0) is the LSE of ϕ in Model (1.1). Using the residuals ε̂t from ϕ̂(0) as the artifical

observations of Model (1.2)-(1.3), the QMLE of δ in Model (1.2)-(1.3) is used as

the initial value δ̂(0). Given Assumptions (a)-(c), it is not difficult to show that

D̄∗−1Q̄∗(ϕ̂(0) − ϕ) = Op(1) and δ̂(0) is
√

n−consistent for δ, using methods similar

to those employed by LLW (2001) and Ling, Li and McAleer (2002).

3.2 Limiting Distributions

For any fixed positive constant K, first define Θn ≡ {(ϕ̃, δ̃) : ‖D̄∗Q̄∗′−1(ϕ̃ − ϕ)‖ ≤

K and ‖
√

n(δ̃−δ)‖ ≤ K}. Similar to the arguments for the univariate case in Ling,

Li and McAleer (2002) and Ling and Li (2002), we can show that the following holds

uniformly in the ball Θn:

n∑

t=1

D̄∗−1Q̄∗(Ft|ϕ̃,δ̃ − Ft)Q̄
∗′D̄∗−1 = op(1) and n−1

n∑

t=1

(St|ϕ̃,δ̃ − St) = op(1); (3.12)

n∑

t=1

D̄∗−1Q̄∗(∇ϕlt|ϕ̃,δ̃ −∇ϕlt) =
n∑

t=1

D̄∗−1Q̄∗Ft(ϕ̃ − ϕ) + op(1), and

n−1/2
n∑

t=1

(∇δlt|ϕ̃,δ̃ −∇δlt) = n−1/2
n∑

t=1

St(δ̃ − δ) + op(1). (3.13)

Thus, the estimator of (ϕ, δ) obtained by (3.10)-(3.11) satisfies D̄∗Q̄∗′−1(ϕ̃ − ϕ) =

OP (1) and
√

n(δ̃ − δ) = Op(1) if the initial estimator satisfies these equations, too.

As a result, given the initial estimator suggested in Sub-section 3.1 and the iterative

algorithm (3.10)-(3.11), we obtain the asymptotic representations:

D̄∗Q̄∗′−1(ϕ̂ − ϕ) = −(
n∑

t=1

D̄∗−1Q̄∗FtQ̄
∗′D̄∗−1)−1(

n∑

t=1

D̄∗−1Q̄∗∇ϕlt) + op(1),(3.14)
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√
n(δ̂ − δ) = −(

n∑

t=1

n−1St)
−1(

n∑

t=1

n−1/2∇δlt) + op(1). (3.15)

Partition Q̄∗(Xt−j ⊗ Im) into two parts corresponding to β1 and β2,

Q̄∗(Xt−j ⊗ Im) =

(
Z1t−j ⊗ Im

Ut−j ⊗ Im

)
,

where Ut = [Z ′
2t, W

′
t , . . . , W

′
t−s+2]

′. In view of (3.3) and (3.5), we have:

n∑

t=1

D̄∗−1Q̄∗∇ϕlt =

(
n−1∑n

t=1 N1t

n−1/2∑n
t=1 N2t

)
, (3.16)

N1t = (Z1t−1 ⊗ Im)V −1
t εt +

t−1∑

j=1

(Z1t−j−1 ⊗ Im)(νj � εt−j) � λt,

N2t = (Ut−1 ⊗ Im)V −1
t εt +

t−1∑

j=1

(Ut−j−1 ⊗ Im)(νj � εt−j) � λt,

in which λt = (ι − w(εtε
′
tV

−1
t )) � h̃t. As demonstrated by Ling and Li (1998), it

can be shown that n−3/2∑n
t=1 Z1t−jU

′
t−k = op(1), j, k = 1, 2, . . ., and hence the cross-

product terms in
∑n

t=1 D̄∗−1Q̄∗FtQ̄
∗D̄∗−1 that involve Z1t−j and Ut−k also converge

to zero in probability. Denote Πjt ≡ (εt−jε
′
t−j � h̃th̃

′
t). From (A.1) in Appendix A,

we have:

n∑

t=1

D̄∗−1Q̄∗FtQ̄
∗D̄∗−1 = −diag(n−2

n∑

t=1

L1t, n
−1

n∑

t=1

L2t) + op(1), (3.17)

L1t = [Z1t−1Z
′
1t−1 ⊗ V −1

t ] +
t−1∑

j=1

[Z1t−j−1Z
′
1t−j−1 ⊗ ((Γ−1 � Γ + Im) � νjν

′
j � Πjt)],

L2t = [Ut−1U
′
t−1 ⊗ V −1

t ] +
t−1∑

j=1

[Ut−j−1U
′
t−j−1 ⊗ ((Γ−1 � Γ + Im) � νjν

′
j � Πjt)].

To facilitate the discussion of the asymptotic distributions of ĈP1 and other

parameters of concern, denote (W ′
m(u), W̃ ′

m(u))′ as the 2m−dimensional Brownian

motion with the covariance matrix:

uΩ ≡ u

(
V0 Im

Im Ω̃1

)
,

where V0 = EVt, Ω̃1 = E(V −1
t ) + E(τtτ

′
t), τt = (

∑∞
j=1 νj � εt−j) � λt, E(τtτ

′
t) =

(∆ − ιι′) � ∑∞
j=1(νjν

′
j � E(Πjt)), and ∆ = E[w(ηtη

′
tΓ

−1)(w(ηtη
′
tΓ

−1))′]. Further,
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define Bd(u) = Ω−1/2
a1

[Id, 0] Ω1/2
a V

−1/2
0 Wm(u), where Ωa = E(ata

′
t) and Ωa1 =

[Id, 0]Ωa[Id, 0]′. Then, it is easy to see that Bd(u) is a standard d−dimensional

Brownian motion.

Lemma 3.1. Suppose Assumptions (a)-(c) hold. Then

(a) n−2
n∑

t=1

L1t −→L Ψ11Ω
1/2
a1

∫ 1

0
Bd(u)Bd(u)′Ω1/2

a1
Ψ′

11 ⊗ Ω1,

(b) n−1
n∑

t=1

N1t −→L vec[{
∫ 1

0
Bd(u)dW̃m(u)′}′Ω1/2

a1
Ψ′

11];

(c) n−1
n∑

t=1

L2t −→p Ω2,

(d) n−1/2
n∑

t=1

N2t −→L N(0, Ω̃2);

(e) −n−1
n∑

t=1

St −→p Ωδ,

(f) n−1/2
n∑

t=1

∇δlt −→L N(0, Ω̃δ),

where Ψ11 ≡ [Id, 0](
∑∞

k=1 Ψk)[Id, 0]′, Ωδ ≡ −E(St), Ω̃δ ≡ E(∇δlt∇′
δlt), and

Ω1 ≡ E(V −1
t ) + (Γ−1 � Γ + Im) �

∞∑

j=1

(νjν
′
j � E(Πjt));

Ω2 ≡ E(Ut−1U
′
t−1 ⊗ V −1

t ) +
∞∑

j=1

E(Ut−j−1U
′
t−j−1 ⊗ (Γ−1 � Γ + Im) � νjν

′
j � Πjt),

Ω̃2 ≡ E(Ut−1U
′
t−1 ⊗ V −1

t ) +
∞∑

j=1

E(Ut−j−1U
′
t−j−1 ⊗ (∆ − ιι′) � νjν

′
j � Πjt). 2

The following theorem comes from Lemma 3.1.

Theorem 3.1. Under the assumptions in Lemma 3.1,

(a) n(Ĉ − C)P1 −→L Ω−1
1 M̃,

(b)
√

n(β̂2 − β2) −→L N(0, Ω−1
2 Ω̃2Ω

−1
2 ),

(c)
√

n(δ̂ − δ) −→L N(0, Ω−1
δ Ω̃δΩ

−1
δ ),

where M̃ = [
∫ 1
0 Bd(u)dW̃m(u)′]′[

∫ 1
0 Bd(u)Bd(u)′du]−1Ω−1/2

a1
Ψ−1

11 . 2

It is not difficult to show that when ηt’s are normally distributed, (∆ − ιι′) =

(Γ−1 �Γ+ Im) and thus Ω̃1 = Ω1, Ω̃2 = Ω2, and Ω̃δ = Ωδ. When all βik are zero and
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Γ is diagonal, the asymptotic distribution M̃ is the same as that in LLW (2001) and

further when hti is a constant, M̃ is the same as the asymptotic distribution of full

rank LSE in Ahn and Reinsel (1990). It should be noted that, for Model (1.1)-(1.3),

the LSE method in Ahn and Reinsel (1990) can still be used, but the estimator for

C is not as efficient as the QMLE in Theorem 3.1 in the sense proposed by Ling and

McAleer (2002).

4 Reduced Rank Estimation

In this section, we consider the reduced rank estimation. Rewrite Equation (3.1)

in a reduced rank form, which is also known as the error-correction form in the

literature of economics:

Wt = ABYt−1 +
s−1∑

j=1

Φ∗
jWt−j + εt, (4.1)

where the matrix C in Equation (3.1) is expressed as AB. Both A and B are full

rank matrices of dimensions m × r and r × m, respectively.

As we argue in Sub-section 4.2 below, the full rank estimator for δ (parameters

in the GARCH part) suggested in Section 3 can be used as the initial estimator for

the reduced rank estimation that incorporates GARCH. However, we need an initial

estimator for the parameters in the AR part, which is the subject for discussion in

Sub-section 4.1.

We denote the parameters in the reduced rank AR part as α = [α′
1, α

′
2]
′, where

α1 ≡ vec[B] and α2 ≡ vec[A, Φ∗
1, . . . , Φ

∗
s−1].

4.1 Initial Estimator for Parameters in AR Part

In this sub-section, we first show the asymptotic properties of Johansen’s estimator,

which will be used as the initial estimator for the parameters in the AR part. Then

we argue the asymptotic equivalence between Johansen’s estimator and that sug-

gested in Ahn and Reinsel (1990) (or LLW (2001)). The latter imposes some prior

11



knowledge of the reduced rank structure.

Johansen’s estimator is essentially the QMLE which ignores the possible GARCH.

More precisely, the estimator maximizes the likelihood function in (3.2), with Vt re-

placed by V0, a constant matrix.

Denote the Johansen’s estimator as α̂ = [α̂′
1, α̂

′
2]
′, where α̂1 = vec[B̂] and α̂2 =

vec[Â, Φ̂∗
1, . . . , Φ̂

∗
s−1]. Following Johansen (1988), in Theorem 4.1 below, we consider

the limiting distributions of the normalized estimators α̌1 ≡ (Im ⊗ (B̂B̄′)−1)α̂1 and

α̌2 ≡ diag((B̂B̄′)′ ⊗ Im, I(s−1)m2)α̂2, where B̄ = (BB′)−1B. As in Sub-section 3.1,

we define U †
t ≡ [(BYt)

′, W ′
t , . . . , W

′
t−s+2]

′.

Theorem 4.1. Suppose the assumptions in Lemma 3.1 hold. Consider the normal-

ized estimators vec[B̌] ≡ vec[(B̂B̄′)−1B̂] = α̌1 and vec[Â(B̂B̄′), Φ̂∗
1, . . . , Φ̂

∗
s−1] = α̌2.

(a) n(B̌ − B)P1 −→L (A′V −1
0 A)−1A′V −1

0 PM, and thus n(B̌ − B) = Op(1);

(b)
√

n(α̌2 − α2) −→L N(0, Σ−1
2 Σ̃2Σ

−1
2 ),

where M = Ω1/2
a [

∫ 1
0 Bd(u)dBm(u)′]′[

∫ 1
0 Bd(u)Bd(u)′du]−1Ω−1/2

a1
Ψ−1

11 , Bm(u) = Ω1/2
a Q

Wm, Σ2 = E(U †
t−1U

†′
t−1 ⊗ Im), Σ̃2 = E(U †

t−1U
†′
t−1 ⊗ Vt), and the remaining variables

are defined in Lemma 3.1. 2

From Theorem 4.1(a), one can see that the asymptotic distribution of B̌ is the

same as that in Johansen (1988), regardless of the presence of GARCH. On the

other hand, if there is no heteroskedasticity and Vt = V0, from Theorem 4.1(b),

Σ−1
2 Σ̃2Σ

−1
2 = [E(U †

t−1U
†′
t−1)]

−1 ⊗ V0 and the asymptotic distribution of α̌2 is exactly

the same as that derived in Johansen (1988) or Ahn and Reinsel (1990).

Although the normalization in Johansen’s estimation involves the true parameter

B, as shown in Chapter 7 by Johansen (1995), the above distribution is found useful

for hypothesis testing. In the following two sections, we follow this line and use the

distribution of a similar normalized statistic (which incorporates GARCH) to devise

a test for the reduced rank.

We conclude this sub-section with a discussion about imposing some prior infor-
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mation on the reduced rank structure. Note C = −P2(Ir−Γr)Q
′
2 = AB. Further, we

can always write ABYt−1 = ABR−1RYt−1, where R is a permutation matrix so that

the last d components of the series RYt are purely nonstationary, see Section 5 of Ahn

and Reinsel (1990). In this representation, we may write BR−1 ≡ [D1, D2], where

D1 is invertible. As a result, ABYt−1 = AD1[Ir, B0]RYt−1, where B0 ≡ D−1
1 D2.

Corollary 4.1. Let B̌ and Ǎ ≡ Â(B̂B̄′) be defined as in Theorem 4.1, B̆ ≡

D−1
1 B̌R−1 = [B̆1, B̆2] and ᾰ2 ≡ vec[ǍD1B̆1, Φ̂

∗
1, . . . , Φ̂

∗
s−1]. If the assumptions in

Lemma 3.1 hold, then it follows that

(a) n(B̆−1
1 B̆2 − B0) = nD−1

1 (B̌ − B)P1R
−1
21 + Op(n

−1/2)

−→L D−1
1 (A′V −1

0 A)−1A′V −1
0 PMR−1

21 ;

(b)
√

n(ᾰ2 − α†
2) −→L N(0, Σ−1

2 Σ̃2Σ
−1
2 ).

where RP ≡
(

R11 R12

R21 R22

)
, and α†

2 ≡ vec[AD1, Φ
∗
1, . . . , Φ

∗
s−1]. 2

If, as in Ahn and Reinsel (1990) and LLW (2001), we are able to arrange the

components of Yt so that the last d components are purely nonstationary, we can

impose the structure B = [Ir, B0], D1 = Ir, R = Im and R21 = P21. Then,

B̂−1
1 B̂2 = B̌−1

1 B̌2 = B̆−1
1 B̆2. ᾰ2 = vec[ÂB̂1, Φ̂

∗
1, . . . , Φ̂

∗
s−1]. In accordance with

Corollary 4.1,

n(B̂−1
1 B̂2 − B0) −→L (A′V −1

0 A)−1A′V −1
0 PMP−1

21 ; (4.2)

√
n(ᾰ2 − α2) −→L N(0, Σ−1

2 Σ̃2Σ
−1
2 ). (4.3)

The distribution in (4.2) is exactly the same as that in Ahn and Reinsel (1990).

4.2 Reduced Rank Estimation that Incorporates GARCH

In this sub-section, using Johansen’s estimator α̂ = [α̂′
1, α̂2]

′, where α̂1 = vec[B̂] and

α̂2 = vec[Â, Φ̂∗
1, . . . , Φ̂

∗
s−1] (see Sub-section 4.1) and the other estimator in the full

rank estimation, δ̂ (see Section 3), we propose a new reduced rank estimation that

incorporates GARCH.

13



For the error correction form (4.1), the log-likelihood function lt is the same

as that in (3.2), but now it is a function of parameters α and δ. Denote U∗
t ≡

[(Yt ⊗ A′)′, (U †
t ⊗ Im)′]′. Similar to (3.3) and (3.5),

∇αlt = −1

2
(∇αht)(ι − w(εtε

′
tV

−1
t )) � h̃t + U∗

t−1V
−1
t εt, where (4.4)

∇αht = −2
q∑

l=1

U∗
t−l−1diag(al � εt−l) +

p∑

l=1

(∇αht−l)diag(bl).

Denote the reduced rank estimators as α̇ = (α̇′
1, α̇

′
2)

′ and δ̇, where α̇1 = vec[Ḃ]

and α̇2 = vec[Ȧ, Φ̇∗
1, . . . , Φ̇

∗
s−1]. Similar to Theorem 4.1, in Theorem 4.2 below,

inter alia, we derive the limiting distributions of n(ḂB̄′)−1ḂP1 and
√

nȦ(ḂB̄′).

As a result, (ḂB̄′)−1Ḃ − B = Op(n
−1) (see, for instance, p.179 and Lemma 13.2 by

Johansen, 1995). Although the true B is involved, this normalization is found useful

for deriving the distribution of the rank test in the next section.

Define D̄∗∗ ≡ diag[D̄∗∗
1 ,

√
nIrm+(s−1)m2 ], where D̄∗∗

1 = diag(nIrd,
√

nIr2). As in

Section 3, we also define Q ≡ diag[Q1, Irm+(s−1)m2 ], where Q1 = (Q ⊗ Ir).

Using Assumptions (a)-(c) and a method similar to the one used by Ling and Li

(1998), we can show that:

n−1/2D̄∗∗−1Q(
n∑

t=1

∇2
αδ′ lt) = op(1). (4.5)

As a result, α and δ can be estimated separately without loss of efficiency. The

estimation procedure for δ and its asymptotic properties are the same as those

given in Theorem 3.1. In the following, we confine our attention to the estimation

of α.

Consider the block-diagonal terms in ∇2
αα′ lt. With reference to the arguments in

Appendix A, similar to (3.9),

D̄∗∗−1
1 Q1

n∑

t=1

∇2
α1α′

1
ltQ′

1D̄
∗∗−1
1 = D̄∗∗−1

1 Q1

n∑

t=1

R1tQ′
1D̄

∗∗−1
1 + op(1), (4.6)

n−1
n∑

t=1

∇2
α2α′

2
lt = n−1

n∑

t=1

R2t + op(1), (4.7)
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where

R1t = −Yt−1Y
′
t−1 ⊗ A′V −1

t A − 1

4
(∇α1ht)D

−2
t (Γ−1 � Γ + Im)D−2

t (∇′
α1

ht), and

R2t = −U †
t−1U

†′
t−1 ⊗ V −1

t − 1

4
(∇α2ht)D

−2
t (Γ−1 � Γ + Im)D−2

t (∇′
α2

ht).

Moreover, as (Q′
1⊗Ir)(

∑n
t=1 ∇2

α1α′
2
lt) involves terms with Q′

1Yt−j and U †
t−k (j, k =

1, 2, . . .), by the arguments similar to those around (3.17),

n−3/2(Q′
1 ⊗ Ir)(

n∑

t=1

∇2
α1α′

2
lt) = op(1). (4.8)

All in all, confining the attention to the limiting distributions of estimators for

(P ′
1⊗Ir)α1 = vec[BP1] and α2, we consider the iterative Newton-Raphson algorithm:

α̇
(k+1)
1 = α̇

(k)
1 − (

n∑

t=1

R1t)
−1(

n∑

t=1

∇α1 lt)|α̇(k)
1 ,α̇

(k)
2 ,δ̇(k) ; (4.9)

α̇
(k+1)
2 = α̇

(k)
2 − (

n∑

t=1

R2t)
−1(

n∑

t=1

∇α2 lt)|α̇(k+1)
1 ,α̇

(k)
2 ,δ̇(k) , (4.10)

where α̇(k) and δ̇(k) are the estimates at the k-th iteration. The initial estimator

α̇(0) = α̂ is the Johansen’s estimator described in the previous sub-section; while

the initial estimator δ̇(0) = δ̂ is the full rank estimator described in Sub-section

3.1. As the un-normalized α̇
(k+1)
1 may not converge to a fixed vector, the iterations

(4.11)-(4.12) are terminated until the likelihood value in (3.2) ceases to increase.

Similar to Theorem 4.1, in Theorem 4.2, we derive the limiting distributions

of the normalized estimators α̈1 ≡ (Im ⊗ (ḂB̄′)−1)α̇1 and α̈2 ≡ diag((ḂB̄′)′ ⊗

Im, I(s−1)m2)α̇2.

Again, using the arguments similar to those for the univariate case in Ling, Li

and McAleer (2002) and Ling and Li (2002), we can show that the following holds

uniformly in the ball Θn = {(α̃, δ̃) : ‖D̄∗∗Q′−1(α̃−α)‖ ≤ K and ‖
√

n(δ̃− δ)‖ ≤ K}

for any fixed positive constant K:

n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̃,δ̃ − R1t)Q′

1D̄
∗∗−1
1 = op(1), n−1

n∑

t=1

(R2t|α̃,δ̃ − R2t) = op(1); (4.11)

n∑

t=1

D̄∗∗−1
1 Q1(∇α1 lt|α̃,δ̃ −∇α1 lt) =

n∑

t=1

D̄∗∗−1
1 Q′

1R1t(α̃1 − α1) + op(1), and
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n−1/2
n∑

t=1

(∇α2 lt|α̃,δ̃ −∇α2 lt) = n−1/2
n∑

t=1

R2t(α̃2 − α2) + op(1). (4.12)

The estimator α̇ obtained by (4.11)-(4.12), after normalization (the normalized esti-

mator will be denoted as α̈ = (α̈′
1, α̈

′
2)

′), as one can see in the proof of Theorem 4.2,

satisfies D̄∗∗Q′−1(α̈−α) = Op(1), since the normalized initial estimator (denoted as

α̌ = (α̌′
1, α̌

′
2)

′) does (see Theorem 4.1).

Theorem 4.2. Let B̈ = (ḂB̄′)−1Ḃ and α̈2 = vec[Ȧ(ḂB̄′), Φ̇∗
1, . . . , Φ̇

∗
s−1]. If the

assumptions in Lemma 3.1 hold, then

(a) n(B̈ − B)P1 −→L (A′Ω1A)−1A′M̃, and thus n(B̈ − B) = Op(1);

(b)
√

n(α̈2 − α2) −→L N(0, Ω†−1
2 Ω̃†

2Ω
†−1
2 ),

where M̃ is defined in Theorem 3.1,

Ω†
2 ≡ E(U †

t−1U
†′
t−1 ⊗ V −1

t ) +
∞∑

j=1

E(U †
t−j−1U

†′
t−j−1 ⊗ (Γ−1 � Γ + Im) � νjν

′
j � Πjt),

Ω̃†
2 ≡ E(U †

t−1U
†′
t−1 ⊗ V −1

t ) +
∞∑

j=1

E(U †
t−j−1U

†′
t−j−1 ⊗ (∆ − ιι′) � νjν

′
j � Πjt),

and the remaining variables are defined as in Lemma 3.1. 2

In order to prove Theorem 4.2, as in Section 3, we define Q̄∗∗ = diag(Q̄∗∗
1 , Q̄∗∗

2 ),

where

Q̄∗∗
1 ≡ (Q ⊗ (ḂB̄′)′) = Q1(Im ⊗ (ḂB̄′)′), and (4.13)

Q̄∗∗
2 ≡ diag((ḂB̄′)−1 ⊗ Im, I(s−1)m2). (4.14)

This choice of Q̄∗∗ facilitates the derivation of the distribution of
√

n(Ȧ(ḂB̄′)−A),

and that of n((ḂB̄′)−1Ḃ − B)P1. Q̄∗∗
1 and Q̄∗∗

2 are also used in Lemmas B.4 and

B.5, both of which are preliminaries for the Proof of Theorem 4.2.

Next consider estimating ABP2 rather than A. Let α3 = vec[ABP2, Φ
∗
1, . . . , Φ

∗
s−1]

and its normalized estimator α̈3 = vec[Ȧ(ḂB̄′)BP2, Φ̇
∗
1, . . . , Φ̇

∗
s−1]. It is not difficult

to see from Theorem 4.2(b) that:

√
n(α̈3 − α3) −→L N(0, Ω−1

2 Ω̃2Ω
−1
2 ),
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which is exactly the same distribution of
√

n(β̂2−β2) in Theorem 3.1(b). This result

will be used in the next section.

We conclude this sub-section with a discussion about imposing some prior infor-

mation on the reduced rank structure.

Corollary 4.2. Let Ä = Ȧ(ḂB̄′), B̃ ≡ D−1
1 B̈R−1 = [B̃1, B̃2] and α̃2 ≡ vec[ÄD1B̃1, Φ̇

∗
1, . . . , Φ̇

∗
s−1].

Suppose the assumptions in Lemma 3.1 hold. Then:

(a) n(B̃−1
1 B̃2 − B0) = nD−1

1 (B̈ − B)P1R
−1
21 + Op(n

−1/2)

−→L D−1
1 (A′Ω1A)−1A′M̃R−1

21 ,

(b)
√

n(α̃2 − α†
2) −→L N(0, Ω†−1

2 Ω̃†
2Ω

†−1
2 ),

where B̈ is defined as in Theorem 4.1, M̃ is defined in Theorem 3.1, and D1, R, R21

and α†
2 are as defined in Corollary 4.1. 2

If, as in Ahn and Reinsel (1990) and LLW (2001), we are able to arrange the

components of Yt so that the last d components are purely nonstationary, then

α̃2 = vec[ȦḂ1, Φ̇
∗
1, . . . , Φ̇

∗
s−1]. Following the arguments right after Corollary 4.1 and

by Corollary 4.2,

n(Ḃ−1
1 Ḃ2 − B0) −→L (A′Ω1A)−1A′M̃P−1

21 , (4.15)

√
n(α̃2 − α2) −→L N(0, Ω†−1

2 Ω̃†
2Ω

†−1
2 ). (4.16)

The distribution in (4.15) is essentially the same as that in LLW (2001), with slightly

different definitions of Ω1 and W̃m(u), due to a different model of conditional het-

eroskedasticity.

5 Testing for the Reduced Rank

In this section, we apply the asymptotic distributions derived in Section 3 (that for

the full rank estimation) and in Section 4 (that for the reduced rank estimation) to

devise a test for the reduced rank. Both estimators incorporate GARCH.
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Consider the null hypothesis,

H0 : rank(C) = r < m vs Ha : rank(C) = m. (5.1)

Here we consider the LR test. To incorporate GARCH, instead of the ratio of

the residual sum of squares, here we consider the general form:

LRG ≡ 2l(β̂1) − 2l(β̇1), (5.2)

where l(.) is the log-likelihood function defined in (3.2). β̂1 ≡ vec(ĈP1) is the full

rank estimator. β̇1 ≡ vec(ȦḂP1) = vec(ÄB̈P1) ≡ β̈1 is the reduced rank estimator.

Note in both estimations, the estimators for β2 = CP2 = ABP2 and those for δ

are unaffected (asymptotically) by whether or not the reduced rank is imposed on

C. As a result, using a second-order Taylor expansion around the true parameter

β1 = vec(CP1) = vec(ABP1),

LRG = (β̂1 − β1)
′(

n∑

t=1

L1t)(β̂1 − β1) − (β̇1 − β1)
′(

n∑

t=1

L1t)(β̇1 − β1) + op(1)

= (β̂1 − β1)
′(

n∑

t=1

L1t)(β̂1 − β1) − (β̈1 − β1)
′(

n∑

t=1

L1t)(β̈1 − β1) + op(1)

where L1t is as defined in Section 3.

Using Lemma 3.1, Theorem 3.1 and Theorem 4.1, we derive the asymptotic

distribution of LRG, as follows.

Lemma 5.1. Suppose the assumptions in Lemma 3.1 hold. Under the null hypoth-

esis in (5.1), the LR statistic in (5.2),

LRG −→L tr[(
∫ 1

0
Bd(u)dṼd(u)′)′(

∫ 1

0
Bd(u)Bd(u)′du)−1(

∫ 1

0
Bd(u)dṼd(u)′)],

where Ṽd(u) = ΥBd(u) + [(Q′
1Ω

−1
1 Q1)

−1/2Q′
1Ω

−1
1 Ω̃1Ω

−1
1 Q1(Q

′
1Ω

−1
1 Q1)

−1/2 − ΥΥ′]1/2

Vd(u), Υ = (Q′
1Ω

−1
1 Q1)

1/2(Q′
1V0Q1)

−1/2, and (B′
d(u), V ′

d(u))′ is a 2d−dimensional

standard Brownian motion. 2

When there is no heteroskedasticity, all the νj’s defined in Section 3 are 0.

Refer to (3.18), (3.19), and the definition of Ω1 in Lemma 3.1. Ω̃1 = Ω1 =
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V −1
0 , and thus Ṽd(u) = Bd(u) The distribution in Lemma 5.1 can be simplified as

tr[(
∫ 1
0 Bd(u)dBd(u)′)′(

∫ 1
0 Bd(u)Bd(u)′du)−1(

∫ 1
0 Bd(u)dBd(u)′)], which is exactly the

same as that in Johansen (1988,1995), or that in Reinsel and Ahn (1992). On the

other hand, when there is heteroskedasticity, but Ω̃1 = Ω1, the distribution can be

simplified as that in the next theorem.

Theorem 5.1. Suppose the assumptions in Lemma 5.1 hold. If, in addition, Ω̃1 =

Ω1,

LRG −→L tr{[ζ(Id − Λd)
1/2 + ΦΛ

1/2
d ]′[ζ(Id − Λd)

1/2 + ΦΛ
1/2
d ]}, (5.3)

where Λd is a diagonal matrix containing the d eigenvalues of (Id − ΥΥ′), Φ =

[
∫ 1
0 Bd(u)Bd(u)′du]−1/2

∫ 1
0 Bd(u)dVd(u)′ is a d−dimensional standard normal vector

independent of ζ = [
∫ 1
0 Bd(u)Bd(u)′du]−1/2

∫ 1
0 Bd(u)dBd(u)′. 2

When Ω̃1 6= Ω1, alternatively we may consider the LR-type test statistic:

LR∗
G ≡ vec(Ĉ∗ − ȦḂ∗)′(−

n∑

t=1

Ḟ ∗
t )vec(Ĉ∗ − ȦḂ∗), (5.4)

where vec(Ĉ∗) = (
∑n

t=1 Ḟ ∗
t )−1(

∑n
t=1 Ḟt)vec(Ĉ), Ḃ∗ = (Ȧ′ ˙̃Ω1Ȧ)−1(Ȧ′Ω̇1Ȧ)Ḃ. F ∗

t is the

Ft in (3.9) with (Γ−1 � Γ + Im) replaced by (∆ − ιι′). The asymptotic distribution

is derived in the following corollary.

Corollary 5.1. Suppose the assumptions in Lemma 5.1 hold. The LR-type test

statistic in (5.4),

LR∗
G −→L tr{[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]′[ζ(Id − Λ∗

d)
1/2 + ΦΛ

∗1/2
d ]}, (5.5)

where Λ∗
d is a diagonal matrix containing the d eigenvalues of (Id−(Q′

1Ω̃
−1
1 Q1)

1/2(Q′
1V0

Q1)
−1(Q′

1Ω̃
−1
1 Q1)

1/2). 2

As an illustration, in Tables C.10 and C.20, we tabulate the critical values for

d = 1 and d = 2, respectively. More precisely, for each d and each set of d eigenval-

ues (refer to Λd in (5.3)), 100, 000 replications of the quantity tr{[ζ̂(Id − Λd)
1/2 +

Φ̂Λ
1/2
d ]′[ζ̂(Id − Λd)

1/2 + Φ̂Λ
1/2
d ]} are drawn, where

ζ̂ = (n−2
T∑

t=1

z1t−1z
′
1t−1)

−1/2(n−1
T∑

t=1

z1t−1a
′
1t),
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Φ̂ = (n−2
T∑

t=1

z1t−1z
′
1t−1)

−1/2(n−1
T∑

t=1

z1t−1a
′
2t),

where T = 2, 000, z1t is a d-dimensional random walk process z1t = z1t−1 + a1t, and

[a′
1t, a

′
2t]

′ is generated from an i.i.d. N(0, I2d) process.

6 Inclusion of a Constant Term

The results in Sections 3-5 can be extended to Model (1.1)-(1.3) with a constant

term. That is, we modify Equation (2.1) as:

Wt = CYt−1 + Φ∗
1Wt−1 + · · ·+ Φ∗

s−1Wt−s+1 + εt + µ0, (6.1)

where µ0 6= 0. Similar to the analysis in Section 2, we consider Zt = QYt, where

Zt = diag(Id, Γr)Zt−1 + ut. (6.2)

However, in view of the drift term, ut above has to be modified as:

ut = Q[Φ∗
1Wt−1 + · · ·+ Φ∗

s−1Wt−s−1 + εt + µ0].

On the other hand, it is not difficult to show that E[ut] = Qµ0. Note that by the

definition of Q, either Q′
1µ0 6= 0 or Q′

2µ0 6= 0, but not both. In the rest of the paper,

we consider the latter case and leave the equally interesting former case to further

research.

Since Q′
1µ0 = 0, as in Equation (2.6) above, Z1t −Z1t−1 has a zero mean and the

Z1t is defined as before. Moreover, as Q′
2µ0 6= 0, Z2t ≡ Q′

2Yt has a non-zero mean.

Along the lines of Section 4 in Reinsel and Ahn (1992), we consider the following

equation:

Wt − W̄0 = AB(Yt−1 − Ȳ1)
′ + Φ∗

1(Wt−1 − W̄1) + · · · + Φ∗
s−1(Wt−s+1 − W̄s) + εt,(6.3)

where W̄j and Ȳj are the sample mean of Wt−j and that of Yt−j, respectively.

The major theorems 3.1, 4.1, 4.3 and 5.1 still hold, with the d-dimensional stan-

dard Brownian motion Bd(u) replaced by [Bd(u) −
∫ 1
0 Bd(u)du]. In particular, for

the LR statistic in (5.3), we have the following theorem.
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Theorem 5.1’. Suppose the assumptions in Lemma 5.1 hold for an AR model with

a constant term. Consider the variables defined there. If, in addition, Ω̃1 = Ω1,

LRG −→L tr{[ζ̄(Id − Λd)
1/2 + Φ̄Λ

1/2
d ]′[ζ̄(Id − Λd)

1/2 + Φ̄Λ
1/2
d ], (6.4)

where Λd is a diagonal matrix containing the d eigenvalues of (Id − ΥΥ′), Φ̄ =

[
∫ 1
0 B̄d(u)B̄d(u)′du]−1/2

∫ 1
0 B̄d(u)dVd(u)′ is a d−dimensional standard normal vector

independent of ζ̄ = [
∫ 1
0 B̄d(u)B̄d(u)′du]−1/2

∫ 1
0 B̄d(u)dBd(u)′, B̄d(u) ≡ [Bd(u)−

∫ 1
0 Bd(u)du]

2

As an illustration, in Tables C.11 and C.21, we tabulate the critical values for

d = 1 and d = 2, respectively. As in Section 5, for each d and each set of d

eigenvalues (refer to Λd in (6.4)), 100, 000 replications of the quantity tr{[ˆ̄ζ(Id −

Λd)
1/2 + ˆ̄ΦΛ

1/2
d ]′[ˆ̄ζ(Id − Λd)

1/2 + ˆ̄ΦΛ
1/2
d ]} are drawn, where

ˆ̄ζ = (n−2
T∑

t=1

[z1t−1 − z̄1][z1t−1 − z̄1]
′)−1/2(n−1

T∑

t=1

[z1t−1 − z̄1]a
′
1t),

ˆ̄Φ = (n−2
T∑

t=1

[z1t−1 − z̄1][z1t−1 − z̄1]
′)−1/2(n−1

T∑

t=1

[z1t−1 − z̄1]a
′
2t),

where T = 2, 000, z̄1 is the sample mean of z1t, where z1t is a d-dimensional random

walk process z1t = z1t−1 + a1t, and [a′
1t, a

′
2t]

′ is generated from an i.i.d. N(0, I2d)

process.

7 Monte Carlo Experiments

In this section, the finite-sample size and power of our LR test (LRG) are examined

with Monte Carlo experiments. Throughout, we consider testing the H0 : rank(C) =

1 (see (5.1)). With Γ = Im, the GARCH error εt (see (1.3)) is generated as:

εit = ηit

√
hit, hit = 0.1 + 0.3ε2

it−j + 0.6hit−k, ηit ∼ i.i.d.N(0, 1).

In the first part of the experiments, we consider a bi-variate AR(1) model (with-

out a constant term). The matrix C in the error correction form (4.1) is:

DGP (1a) C = AB, A =

(
−0.4
0.12

)
, B = (1.0,−2.5).
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DGP (1b) C = κI2, κ = 0.1.

DGP (1c) C = κI2, κ = 0.5.

In the second part of the experiments, we consider a tri-variate AR(1) model

(without a constant term). The matrix C is:

DGP (2a) C = AB, A =




−0.4
0.12
0.12


 , B = (1.0,−2.5, 0.0).

DGP (2b) C = κI3, κ = 0.1.

DGP (2c) C = κI3, κ = 0.5.

Both DGP(1a) and DGP(2a) are the DGP under the null. However, the former

DGP contains 1 unit root while the latter contains 2. DGP(1b) and DGP(1c) are

the DGP under the alternative. The latter DGP is expected to reject the null more

frequently, as the κ is larger. This is also the case with DGP(2b) and DGP(2c).

For each DGP, time series with different number of observations are generated.

Reduced rank estimation with and without GARCH are done. The empirical means

and standard deviations of the estimated A and B for DGP(1a) and DGP(2a) (the

null models) are reported in Tables 7.1 and 7.2 respectively. In general, the biases

of the estimators with GARCH are comparable to, if not smaller than, those with-

out GARCH. The standard deviations and the mean squared errors are definitely

smaller, even when the sample size is as small as 200.
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TABLE 7.1

Empirical means and standard deviations
of the estimated A and B
DGP(1a) A Bi-variate System

A1 = −0.4 A2 = 0.12 B2 = −2.5

n=200 No GARCH Mean -0.4047 0.1204 -2.5004
SD 0.0310 0.0359 0.0506

With GARCH Mean -0.4030 0.1199 -2.4993
SD 0.0229 0.0262 0.0396

n=400 No GARCH Mean -0.4019 0.1210 -2.4999
SD 0.0212 0.0269 0.0235

With GARCH Mean -0.4012 0.1203 -2.4999
SD 0.0146 0.0185 0.0181

n=800 No GARCH Mean -0.4008 0.1201 -2.5000
SD 0.0161 0.0209 0.0116

With GARCH Mean -0.4006 0.1200 -2.4998
SD 0.0105 0.0124 0.0088

number of replications = 1,000.

TABLE 7.2

Empirical means and standard deviations
of the estimated A and B

DGP(2a) A Tri-variate System

A1 = −0.4 A2 = 0.12 A3 = 0.12 B2 = −2.5 B3 = 0.0

n=200 No GARCH Mean -0.4026 0.1244 0.1219 -2.5038 -0.0007
SD 0.0334 0.0343 0.0265 0.0717 0.0395

With GARCH Mean -0.4019 0.1219 0.1209 -2.5001 -0.0010
SD 0.0229 0.0265 0.0204 0.0589 0.0322

n=400 No GARCH Mean -0.4016 0.1228 0.1220 -2.5012 -0.0002
SD 0.0225 0.0268 0.0179 0.0351 0.0188

With GARCH Mean -0.4010 0.1211 0.1210 -2.5011 -0.0002
SD 0.0149 0.0176 0.0137 0.0283 0.0134

n=800 No GARCH Mean -0.4009 0.1210 0.1207 -2.5007 0.0000
SD 0.0165 0.0213 0.0126 0.0164 0.0095

With GARCH Mean -0.4002 0.1203 0.1204 -2.5006 -0.0002
SD 0.0103 0.0125 0.0094 0.0122 0.0065

number of replications = 1,000.
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The LRG is computed with the procedure described in Section 5. For comparison,

we also compute the LR test (also known as the trace test in the literature) suggested

in Johansen (1988,1995) (henceforth LRNG). Note this test is (asymptotically)

equivalent to the LR test suggested in Reinsel and Ahn (1992), if we impose the

prior knowledge of the reduced rank structure. For LRNG, the critical value can be

found in Table I of Reinsel and Ahn (1992) or Table 15.1 in Johansen (1995). For

LRG, we first estimate the eigenvalue(s) of the matrix Id − ΥΥ′ with the reduced

rank estimation, the p − value are then approximated with 100,000 simulations of

the limiting distribution in (5.3), using the method described in Section 5 with T

equals the actual number of observations.

Rejection frequencies are summarized in Tables 7.3 and 7.4, respectively. Both

LRNG and LRG are of the reasonably correct finite-sample size, even when the

number of observations is as small as 200. Both tests slightly over-reject when

there are 2 unit roots and the sample size is 200 or 400, and the over-rejections are

comparable. From the two tables, it is clear that LRG is more powerful than LRNG.

TABLE 7.3

Rejection Fequency of Testing for the Reduced Rank H0 : r = 1
Part (1) A Bi-variate System

n size = 0.05 size = 0.10
(DGP) (1a) (1b) (1c) (DGP) (1a) (1b) (1c)

200 LRNG 0.062 0.019 0.461 LRNG 0.106 0.054 0.733
LRG 0.063 0.042 0.655 LRG 0.097 0.113 0.824

400 LRNG 0.048 0.049 0.972 LRNG 0.095 0.142 0.994
LRG 0.061 0.184 0.992 LRG 0.112 0.336 0.998

800 LRNG 0.052 0.294 0.999 LRNG 0.109 0.561 1.000
LRG 0.044 0.596 1.000 LRG 0.109 0.784 1.000

number of replications = 1,000.

24



TABLE 7.4

Rejection Fequency of Testing for the Reduced Rank H0 : r = 1
Part (2) A Tri-variate System

n size = 0.05 size = 0.10
(DGP) (2a) (2b) (2c) (DGP) (2a) (2b) (2c)

200 LRNG 0.077 0.006 0.361 LRNG 0.151 0.020 0.545
LRG 0.079 0.023 0.641 LRG 0.135 0.076 0.767

400 LRNG 0.071 0.022 0.972 LRNG 0.127 0.062 0.995
LRG 0.078 0.114 0.997 LRG 0.139 0.230 0.998

800 LRNG 0.058 0.160 1.000 LRNG 0.107 0.329 1.000
LRG 0.051 0.603 1.000 LRG 0.107 0.774 1.000

number of replications = 1,000.

8 An Empirical Example

In this section, we fit our model to the logarithms of three US monthly interest

rates, which are well-known of having GARCH effect. See, for instance, Bollerslev

(1990). The series are the federal fund rate, the 90-day treasury bill rate, and the

one-year treasury bill rate. For comparison with the results in Reinsel and Ahn

(1992), we use the series from January 1960 to December 1979 and thus we have

240 observations.

As expected, the estimated AR parameters are comparable to those obtained

if we ignore GARCH. However, unsurprisingly, our LR test for the reduced rank

behaves differently from the one that ignores GARCH. Furthermore, it is well-known

that this type of tests may be sensitive to the order of this model. Consequently, we

try different s of an AR(s) model, where s = 1, ..., 6, all with a constant term. The

LR test results are summarized in Table 8.1, where the p − value is approximated

using the method described in Section 7.
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TABLE 8.1

LR Test Statistics

H0 : r = 0 H0 : r = 1 H0 : r = 2

s LRNG LRG LRNG LRG LRNG LRG

1 69.70(0.000) 71.17(0.000) 16.21(0.084) 53.97(0.000) 0.107(0.939) 42.048(0.000)
2 49.07(0.000) 29.08(0.003) 13.02(0.210) 16.32(0.009) 0.757(0.801) 1.519(0.259)
3 34.86(0.019) 11.89(0.381) 11.35(0.320) 8.10(0.147) 0.692(0.814) 4.317(0.056)
4 46.43(0.000) 52.25(0.000) 15.60(0.101) 31.01(0.000) 1.044(0.748) 33.044(0.000)
5 47.26(0.000) 56.77(0.000) 13.25(0.197) 19.54(0.003) 1.231(0.714) 18.168(0.000)
6 38.65(0.006) 56.77(0.000) 13.43(0.188) 19.54(0.003) 1.085(0.741) 18.168(0.000)
p-values are in brackets.

Table 8.1 clearly shows the hypothesis that r = 0 is rejected by both tests.

Interestingly, while the LRNG can hardly reject or only marginally rejects (when

s = 4) the null of r = 1, our LRG clearly rejects it, except possibly when s = 3. Note

that unlike Reinsel and Ahn (1992), we have not made the finite-sample modification

for LRNG.

As with other empirical findings in the literature, the LRNG does not reject the

null of r = 2. In those studies, it is natural to conclude that the reduced rank

equals 2 and, in other words, the interest rates are nonstationary and there exist

2 cointegrating vectors. Somewhat surprisingly, due to the high power of LRG or

other factors, it rejects the null of r = 2, except possibly when s = 2 and the

p− value may be unreliable due to the insufficient number of lags. (In fact, in both

estimations, there is a substantial increase in the likelihood value, when s increases

from 3 to 4.)

All in all, unlike LRNG, the LRG strongly rejects that the reduced rank is 1.

In fact, judging from the LRG, there is some evidence that the rank is 3, in other

words, the interest rates are stationary.
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9 Conclusions

Macroeconomic or financial data are often modelled with cointegration and con-

ditional heteroskedasticity, such as GARCH. However, the asymptotic theory and

the statistical inference method for the cointegration with GARCH errors have yet

to be well developed in the literature. In this paper, we consider a partially non-

stationary autoregressive model with GARCH. In addition, no prior knowledge of

the reduced rank structure is assumed. We propose the full rank and the reduced

rank quasi-maximum likelihood estimation for the model. The estimation is mod-

ified upon the conventional reduced rank regression. The asymptotic distributions

of the estimators are derived to be a functional of two correlated high-dimensional

Brownian motions. These results are used to construct a LR test for the reduced

rank. It is shown that the asymptotic distribution of the LR test is a functional of

the standard Brownian motion and the standard normal vector with some unknown

nuisance parameters. The critical values of the LR test are tabulated. The perfor-

mance of this test in finite-sample is examined through Monte Carlo experiments.

We also apply our approach to an empirical example of three interest rates.

With GARCH in the data series generated in the Monte Carlo experiments,

our test for the reduced rank shows substantial improvement upon the conventional

trace test suggested in Johansen (1988,1995), which is asymptotically equivalent to

Reinsel and Ahn (1992)’s LR test. On the other hand, in contrast to the empirical

results in the existing literature, our LR test shows evidence that the US monthly

interest rates are stationary. In fact, our empirical result is more in line with the

common belief that the US interest rates are controllable under the stabilization

mechanism of the US Federal Reserve Board. We conjecture that this conclusion

is reached as our test becomes more powerful when heteroskedasticity is taken into

account.

On the other hand, in the Monte Carlo experiments and the empirical study,
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we assume that the data are normally distributed. Though results can easily be

robustified by considering the more involved Lemma 5.1 or Corollary 5.1, the crucial

issue is: Will the power of our test be further improved if other distributional

assumptions are taken into account? This challenging topic is undertaken along the

line of adaptive estimation suggested in Ling and McAleer (2002b).

A Appendix to Sub-section 3.1

Given (3.3), considering the derivative of ∇ϕlt w.r.t. ϕ, we obtain:

D̄∗−1Q̄∗(
n∑

t=1

∇2
ϕϕ′lt)Q̄

∗′D̄∗−1

= −
n∑

t=1

D̄∗−1Q̄∗[Xt−1X
′
t−1 ⊗ V −1

t +
1

4
(∇ϕht)Λt(∇′

ϕht)]Q̄
∗′D̄∗−1 + op(1),

where Λt = (D−2
t εtε

′
tD

−2
t � V −1

t ) + D−4
t dg(εtε

′
tV

−1
t ), dg(A) is a diagonal matrix

containing the diagonal elements of A. Note E[Λt|Ft−1] = (D−1
t ΓD−1

t �V −1
t )+D−4

t =

D−2
t (Γ−1 � Γ + Im)D−2

t . In view of this and (3.5), the Ft in (3.10) can be defined

and expressed as:

Ft ≡ −(Xt−1X
′
t−1 ⊗ V −1

t ) − 1

4
(∇ϕht)D

−2
t (Γ−1 � Γ + Im)D−2

t (∇′
ϕht) (A. 1)

= −(Xt−1X
′
t−1 ⊗ V −1

t ) −
t−1∑

j=1

(Xt−j−1X
′
t−j−1 ⊗ (Γ−1 � Γ + Im) � νjν

′
j � Πjt),

where Πjt is defined around (3.17). Similarly,

n−1(∇2
δ1δ′1

l) = −n−1
n∑

t=1

1

4
(∇δ1ht)Λt(∇′

δ1
ht) + op(1)

= −n−1
n∑

t=1

1

4
(∇δ1ht)D

−2
t (Γ−1 � Γ + Im)D−2

t (∇′
δ1ht) + op(1).(A. 2)

On the other hand,

n−1(∇2
δ2δ′1

l) = −n−1
n∑

t=1

(∇δ1ht)Ψm(D−1
t εtε

′
tD

−1
t Γ−1 ⊗ D−2

t Γ−1)NmL̃′
m

= −n−1
n∑

t=1

(∇δ1ht)Ψm(Im ⊗ D−2
t Γ−1)NmL̃′

m + op(1). (A. 3)
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n−1(∇2
δ2δ′2

l) = −n−1
n∑

t=1

L̃mNm[Γ−1 ⊗ (4Γ−1D−1
t εtε

′
tD

−1
t Γ−1 − 2Γ−1)]NmL̃′

m

= −n−1
n∑

t=1

L̃mNm[Γ−1 ⊗ 2Γ−1]NmL̃′
m + op(1). (A. 4)

The definitions of Ψm (basis matrix for diagonality), L̃m (basis matrix for strict

lower triangularity) and Nm (commutation matrix) can be found on p.109, p.96 and

p.48 of Magnus (1988) respectively.

B Appendix: Technical Proofs

Lemma B.1. Let the process εt be defined as in model (1.1)-(1.3) and ε∗t =

∑t−1
l=1 diag(νl�εt−l)(ι−w(εtε

′
tV

−1
t ))�h̃t+V −1

t εt. If Assumptions (a)-(c) are satisfied.

Then

1√
n

[nτ ]∑

t=1

(
εt

ε∗t

)
−→L

(
Wm(τ)

W̃m(τ)

)
in D2m,

where (W ′
m(τ), W̃ ′

m(τ))′ are defined as in Lemma 3.1, and Dn = D × D · · · × D(n

factors), with D denoting the space of functions on [0, 1] defined and equipped with

the Skorokhod topology. 2

Proof. Denote ε∗∗t =
∑∞

l=1 diag(νl � εt−l)(ι − w(εtε
′
tV

−1
t )) � h̃t + V −1

t εt. Since

νl = O(ρl), it is easy to show that

1√
n

n∑

t=1

|ε∗∗t − ε∗t | = op(1). (B. 1)

Let λ1 and λ2 be constant m × 1 vectors and λ = (λ′
1, λ

′
2)

′
, with λλ

′ 6= 0. Denote

ξt = λ′
1εt + λ′

2ε
∗∗
t and Sn =

∑n
t=1 ξt. It is obvious that ξt is a martingale difference

sequence with respect to Ft. By Assumptions (a)-(b), σ∗2 = n−1ES2
n = λ′

1E(Vt)λ1 +

2λ′
1λ2 + λ′

2Ω1λ2 < ∞. Using the invariance principle for martingales and a similar

method as for Lemma A.1 in LLW (2001), we can show that

1√
n

[nτ ]∑

t=1

(
εt

ε∗∗t

)
−→L

(
Wm(τ)

W̃m(τ)

)
in D2m. (B. 2)

By (B.1) and (B.2), we complete the proof. 2
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Lemma B.2. Under the assumptions of Lemma 3.1, it follows that

(a)
1√
n

[nτ ]∑

k=1

u1k =
1√
n

[Id, 0](
∞∑

k=1

Ψk)
[nτ ]∑

k=1

ak + Op(1/
√

n)

−→L Ψ11Ω
1/2
a1

Bd(τ) in Dd,

(b) n−2
n∑

t=1

Z1t−1Z
′
1t−1 −→L Ψ11Ω

1/2
a1

∫ 1

0
Bd(u)Bd(u)′duΩ1/2

a1
Ψ′

11,

(c) n−1
n∑

t=1

atZ
′
1t−1 −→L Ω1/2

a [
∫ 1

0
Bd(u)dBm(u)′]′Ω1/2

a1
Ψ′

11,

where u1t is defined as in (2.4), Bd and Ψ11 are defined as in Lemma 3.1, and Bm is

defined as in Theorem 4.1. 2

Proof. We first consider (a). By (2.3), we have

1√
n

[nτ ]∑

k=1

u1k =
1√
n

[Id, 0]
[nτ ]∑

k=1

(
∞∑

i=1

Ψi)ak−i

=
1√
n

[Id, 0]
[nτ ]∑

k=1

(
k∑

i=1

Ψi)ak−i +
1√
n

rt (B. 3)

where rt = [Id, 0]
∑[nτ ]

k=1(
∑∞

i=k+1 Ψi)ak−i. Note that

E||rt|| ≤
[nτ ]∑

k=1

(
∞∑

i=k+1

||Ψi||)E||ak−i|| = O(
[nτ ]∑

k=1

∞∑

i=k+1

ρi) = O(1), (B. 4)

O(·) holds uniformly in τ . Furthermore, we have

1√
n

[nτ ]∑

k=1

(
k∑

i=1

Ψi)ak−i =
1√
n

[nτ ]∑

k=1

Ψk(
[nt]−k∑

i=1

ai)

=
1√
n

(
[nτ ]∑

k=1

Ψk)(
[nt]∑

i=1

ai) +
1√
n

r1t

=
1√
n

(
∞∑

k=1

Ψk)(
[nt]∑

i=1

ai) +
1√
n

r2t +
1√
n

r1t (B. 5)

where r1t = (
∑[nτ ]

k=1 Ψk)(
∑[nt]

i=[nt]−k ai) = Op(1), r2t = (
∑∞

k=[nt]+1 Ψk)(
∑[nt]

i=1 ai) = Op(1),

and Op(·) holds uniformly in τ . By (B.3)-(B.5) and Lemma B.1, we have

1√
n

[nτ ]∑

k=1

u1k −→L [Id, 0](
∞∑

k=1

Ψk)ΩaBm(τ).

As in Ahn and Reinsel (1992), [Id, 0]
∑∞

i=1 Ψi = [Ψ11, 0] = Ψ11[Id, 0]. Thus, (a) holds.

By (a) of this lemma and the continuity mapping theorem, we know that (b) holds.
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(c) comes from Theorem 2.2 in Kurtz and Protter (1991), Lemma B.1 and (a) of

this lemma. This completes the proof. 2

Lemma B.3. Denote sjkt = 2
∑t−1

i=1 νijνikεj,t−iεk,t−i/hj,thk,t + c(hjthkt)
−1/2 for any

constant c. Then, under the assumptions in Lemma 3.1, it follows that

1√
n

[nτ ]∑

t=1

[sjkt − E(sjkt)] −→L σjkwjk(τ),

where σjk is a non-negative constant, wjk is a standard Brownian motion, and j, k =

1, · · · , m. 2

Proof. Note that each εit, a component of εt, is generated by a univariate

GARCH(p,q) model. Using Theorem 2.1 in Ling and Li (1997) and Lemma 3.3 in

Ling and Li (1998), the proof is essentially the same as that of Theorem 3.4 in Ling

and Li (1998). The details are omitted. This completes the proof. 2

Proof of Lemma 3.1. Note that Z1t−i−1 =
∑t−i−1

k=1 u1k = Z1t−1−
∑t−1

k=t−i−1 u1k =

Z1t + rit, where rit = −∑t−1
k=t−i−1 u1k. It is not difficult to show that

1

n2

n∑

t=1

t−1∑

i=1

{(Z1t−1r
′
it + ritZ1t−1 + ritr

′
it) ⊗ [(Γ−1 � Γ + Im) � νjν

′
j � Πjt]} = op(1).

Thus, we have

1

n2

n∑

t=1

[
t−1∑

i=1

{Z1t−i−1Z
′
1t−i−1 ⊗ [(Γ−1 � Γ + Im) � νjν

′
j � Πjt]} + Z1t−1Z

′
1t−1 ⊗ V −1

t ]

= n−2
n∑

t=1

[
Z1t−1Z

′
1t−1

⊗{
t−1∑

i=1

[(Γ−1 � Γ + Im) � νjν
′
j � Πjt] + V −1

t }
]
+ op(1). (B. 6)

By Theorem 2.1 in Ling and Li (1998), (B.6), Lemma B.2(b) and Lemma B.3, the

LHS of (B.6) is given by

1

n2

n∑

t=1

(Z1t−1Z
′
1t−1 ⊗ Ω1) +

1

n2

n∑

t=1

[Z1t−1Z
′
1t−1 ⊗ (

q∑

i=1

Vit + V −1
t − Ω1)] + op(1)

−→L Ψ11Ω
1/2
a1

∫ 1

0
Bd(u)Bd(u)′Ω1/2

a1
Ψ′

11 ⊗ Ω1. (B. 7)

By (B.6)-(B.7), (a) holds. Similarly, we can show that

1

n

n∑

t=1

N1t =
1

n

n∑

t=1

(Z1t−1 ⊗ Im)ε∗t + op(1). (B. 8)
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By Theorem 2.2 in Kurtz and Protter (1991), Lemma B.1 and (B.8), (b) holds. (c)

and (e) can be proved using the ergodic theorem, while (d) and (f) can be proved by

the standard martingale central limiting theorem. This completes the proof. 2

Proof of Theorem 3.1. It comes directly from Lemma 3.1. 2

Proof of Theorem 4.1. From the proof of Lemma 13.2 by Johansen (1995), in

our notation,

n(B̌ − B)P1 = (A′V −1
0 A)−1A′V −1

0 (n−1
n∑

t=1

εtZ
′
1t−1)(n

−2
n∑

t=1

Z1t−1Z
′
1t−1)

−1 + op(1).

Note that εt = Pat by the definition of at. By Lemma B.2(c)

1

n

n∑

t=1

εtZ
′
1t−1 = P (

1

n

n∑

t=1

atZ
′
1t−1)

−→L PΩ1/2
a [

∫ 1

0
Bd(u)dBm(u)′]′Ω1/2

a1
Ψ′

11. (B. 9)

Similarly, by Lemma B.2(b),

1

n2

n∑

t=1

Z1t−1Z
′
1t−1 −→L Ψ11Ω

1/2
a1

[
∫ 1

0
Bd(u)Bd(u)′du]Ω1/2

a1
Ψ′

11. (B. 10)

Combining (B.9) and (B.10), Part (a) is proved. The proof of Part (b) is straight-

forward and thus it is omitted. This completes the proof. 2

Proof of Corollary 4.1. The proof essentially follows the lines in Lemma 13.3

and pp.179-180 by Johansen (1995).

From Theorem 4.1, (B̌ − B) = Op(n
−1). As a result, (B̆ − [Ir, B0]) = Op(n

−1).

Next, define an rxm matrix T ≡ [Ir, 0rxd] and a normalized estimator B̆T ≡

[Ir, B̆
−1
1 B̆2]. Algebra shows:

B̆T = (B̆T ′)−1B̆.

Similar to the arguments on pp.179-180 by Johansen (1995), we take the first-order

Taylor expansion of (B̆T ′)−1B̆RP1 around [Ir, B0]:

(B̆T ′)−1B̆RP1 = ([Ir, B0]T
′)−1[Ir, B0]RP1 + ([Ir, B0]T

′)−1(B̆ − [Ir, B0])RP1

−(B∗T ′)−1(B̆ − [Ir, B0])T
′(B∗T ′)−1[Ir, B0]RP1

−(B∗T ′)−1(B̆ − [Ir, B0])T
′(B∗T ′)−1(B̆ − [Ir, B0])RP1,
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where B∗ lies between B̆ and [Ir, B0].

Note that [Ir, B0]T
′ = Ir and [Ir, B0]RP1 = 0, and the third term vanishes.

Moreover, it is not difficult to see that the last term is Op(n
−2). Therefore,

(B̆T − [Ir, B0])RP1 = (B̆ − [Ir, B0])RP1 + Op(n
−2)

= D−1
1 (B̌ − B)P1 + Op(n

−2). (B. 11)

However, given the definitions of R11 and R21,

(B̆T − [Ir, B0])RP1 = R11 + B̆−1
1 B̆2R21 − R11 − B0R21

= (B̆−1
1 B̆2 − B0)R21.

Therefore, by (B.11) and Theorem 4.1,

n(B̆−1
1 B̆2 − B0) = D−1

1 n(B̌ − B)P1R
−1
21 + Op(n

−1)

−→L D−1
1 (A′V −1

0 A)−1A′V −1
0 PMR−1

21 .

The proof of Part (b) is straightforward and thus it is omitted. This completes the

proof. 2

Lemma B.4. Under the assumptions of Theorem 4.2, it follows that

(a) (B̂B̄′)−1(Ḃ − B̂) = Op(n
−1/2),

(b) Â(ḂB̄′) = Â(B̂B̄′) + Op(n
−1/2),

(c) (ḂB̄′)−1B̂P1 = (B̂B̄′)−1B̂P1 + Op(n
−3/2) = BP1 + Op(n

−1),

(d) (ḂB̄′)−1B̂P2 = (B̂B̄′)−1B̂P2 + Op(n
−1/2) = BP2 + Op(n

−1/2). 2

Proof. (a). We first note that vec[(B̂B̄′)−1(Ḃ − B̂)] = (Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1).

Define Q̄∗∗∗
1 = (Q⊗ (B̂B̄′)′) = (Q⊗ Ir)(Im ⊗ (B̂B̄′)′). In other words, Q̄∗∗∗

1 is the

Q̄∗∗
1 (see (4.13)) with Ḃ replaced by B̂. Thus, Q̄∗∗∗′−1

1 = (P ′ ⊗ Ir)(Im ⊗ (B̂B̄′)−1).

(Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1) = Q′
1D̄

∗∗−1
1 D̄∗∗

1 (P ′ ⊗ Ir)(Im ⊗ (B̂B̄′)−1)(α̇1 − α̂1)

= Q′
1D̄

∗∗−1
1 [D̄∗∗

1 Q̄∗∗∗′−1
1 (α̇1 − α̂1)].
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Therefore, it suffices to show that D̄∗∗
1 Q̄∗∗∗′−1

1 (α̇1 − α̂1) = Op(1).

Set k = 0 in (4.11) and pre-multiply the entire equation by D̄∗∗
1 Q̄∗∗∗′−1

1 .

D̄∗∗
1 Q̄∗∗∗′−1

1 (α̇1 − α̂1)

= −[
n∑

t=1

(R1t|α̂1,α̂2,δ̂)Q̄
∗∗∗′
1 D̄∗∗−1

1 ]−1[
n∑

t=1

(∇α1 lt|α̂1,α̂2,δ̂)]

= −[
n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (R1t|α̂1,α̂2,δ̂)Q̄
∗∗∗′
1 D̄∗∗−1

1 ]−1[
n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (∇α1 lt|α̂1,α̂2,δ̂)]

= −[
n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̌1,α̌2,δ̂)Q

′
1D̄

∗∗−1
1 ]−1[

n∑

t=1

D̄∗∗−1
1 Q1(∇α1 lt|α̌1,α̌2,δ̂)].

Recall from Theorem 4.1 and Theorem 3.1 that n(α̌1 −α1) = Op(1),
√

n(α̌2 −α2) =

Op(1), and
√

n(δ̂ − δ) = Op(1). Using (4.11),

n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̌1,α̌2,δ̂)Q

′
1D̄

∗∗−1
1 =

n∑

t=1

D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 + op(1). (B. 12)

Similarly, using (4.12),

n∑

t=1

D̄∗∗−1
1 Q1(∇α1 lt|α̌1,α̌2,δ̂)

=
n∑

t=1

D̄∗∗−1
1 Q1∇α1 lt +

n∑

t=1

D̄∗∗−1
1 Q1R1t(α̌1 − α1) + op(1)

=
n∑

t=1

D̄∗∗−1
1 Q1∇α1 lt + [

n∑

t=1

D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 ]n−1D̄∗∗

1 (P ′ ⊗ Ir)[n(α̌1 − α1)] + op(1)

= Op(1), (B. 13)

where the last equation holds by Lemma 3.1. By (B.12) and (B.13), (a) is proved.

We now consider (b). By the consistency of Â(B̂B̄′) for A and (a) of this lemma,

Â(ḂB̄′) = Â(B̂B̄′) + Â(B̂B̄′)(B̂B̄′)−1(Ḃ − B̂)B̄′ = Â(B̂B̄′) + Op(1)Op(n
−1/2).

Thus, (b) holds.

For (c) and (d), note that:

(ḂB̄′)−1B̂ = [(B̂B̄′)−1ḂB̄′]−1(B̂B̄′)−1B̂ = [(B̂B̄′)−1ḂB̄′]−1B̌. (B. 14)

Using the formulas, dF−1 = −F−1(dF )F−1 (see, for instance, Theorem 3, Chapter

8 in Magnus and Neudecker, 1988) for any r × r squared matrix F , and applying a
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one-term Taylor’s expansion to [(B̂B̄′)−1ḂB̄′]−1 around B̌B̄′, we have

[(B̂B̄′)−1ḂB̄′]−1 = [B̌B̄′]−1 − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1,

where B∗ lies between (B̂B̄′)−1Ḃ and B̌. Therefore, the RHS of (B.14) equals:

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂ − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌

= (B̂B̄′)−1B̂ − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌. (B. 15)

By (a) of this lemma, (B̂B̄′)−1Ḃ − B̌ = Op(n
−1/2). On the other hand, [B∗B̄′]−1, B̄

and B̌ are all OP (1). By (B.15), (d) holds.

By Theorem 4.1, B̌P1 = Op(n
−1) since BP1 = 0. Post-multiply (B.15) by P1,

[(B̂B̄′)−1B̂B̄′]−1(B̂B̄′)−1B̂P1 − [B∗B̄′]−1[(B̂B̄′)−1Ḃ − B̌]B̄′[B∗B̄′]−1B̌P1

= (B̂B̄′)−1B̂P1 + Op(n
−3/2).

Thus (c) holds. This completes the proof. 2

Lemma B.5. Consider Q̄∗∗∗
1 = (Q ⊗ (B̂B̄′)′) = (Q ⊗ Ir)(Im ⊗ (B̂B̄′)′), which is

defined in the proof of Lemma B.4. Define ὰ2 ≡ vec[Â(ḂB̄′), Φ̂∗
1, . . . , Φ̂

∗
s−1]. That

is, ὰ2 is α̌2 with B̂ replaced by Ḃ. It follows that

(a)
n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (R1t|α̂1,α̂2,δ̂)Q̄
∗∗′
1 D̄∗∗−1

1 =
n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̌1,α̌2,δ̂)Q

′
1D̄

∗∗−1
1 + op(1),

(b)
n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (∇α1 lt|α̂1,α̂2,δ̂) =
n∑

t=1

D̄∗∗−1
1 Q1(∇α1 lt|α̌1,α̌2,δ̂),

(c) n−1
n∑

t=1

Q̄∗∗
2 (R2t|α̇1,α̂2,δ̂)Q̄

∗∗′
2 = n−1

n∑

t=1

(R2t|α̈1,ὰ2,δ̂),

(d) n−1/2
n∑

t=1

Q̄∗∗
2 (∇α2 lt|α̇1,α̂2,δ̂) = n−1/2

n∑

t=1

(∇α2 lt|α̈1,ὰ2,δ̂),

where all other variables are defined as in Sub-section 4.2. 2

Proof. For (a), first note that
√

n(ὰ2 − α̌2) = Op(1) by Lemma B.4(b). Using

the expression for R1t around (4.6)-(4.7), it is not difficult to see that the LHS in

(a) equals:

n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (R1t|α̂1,α̂2,δ̂)Q̄
∗∗∗′
1 D̄∗∗−1

1 + op(1) =
n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̌1,α̌2,δ̂)Q

′
1D̄

∗∗−1
1 + op(1).
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(b), (c) and (d) are straightforward. This completes the proof. 2

Proof of Theorem 4.2. It suffices to consider the first iteration. To prove

Theorem 4.2(a), recall that α̇1 = α̇
(1)
1 and α̂1 = α̇

(0)
1 . Set k = 0 in (4.11),

α̇1 = α̂1 − (
n∑

t=1

R1t|α̂1,α̂2,δ̂)
−1(

n∑

t=1

∇α1 lt|α̂1,α̂2,δ̂). (B. 16)

Pre-multiply (B.16) by D̄∗∗
1 Q̄∗∗′−1

1 . By Lemmas B.5(a) and B.5(b),

D̄∗∗
1 Q̄∗∗′−1

1 α̇1 = D̄∗∗
1 Q̄∗∗′−1

1 α̂1 − [
n∑

t=1

(R1t|α̂1,α̂2,δ̂)Q̄
∗∗′
1 D̄∗∗−1

1 ]−1[
n∑

t=1

(∇α1 lt|α̂1,α̂2,δ̂)]

= D̄∗∗
1 Q̄∗∗′−1

1 α̂1 − [
n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (R1t|α̂1,α̂2,δ̂)Q̄
∗∗′
1 D̄∗∗−1

1 ]−1

·[
n∑

t=1

D̄∗∗−1
1 Q̄∗∗∗

1 (∇α1 lt|α̂1,α̂2,δ̂)]

= D̄∗∗
1 Q̄∗∗′−1

1 α̂1 − [
n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̌1,α̌2,δ̂)Q

′
1D̄

∗∗−1
1 ]−1

·[
n∑

t=1

D̄∗∗−1
1 Q1(∇α1 lt|α̌1,α̌2,δ̂)] + op(1).

(B. 17)

By (B.12) and (B.13), it follows that

n∑

t=1

D̄∗∗−1
1 Q1(R1t|α̌1,α̌2,δ̂)Q

′
1D̄

∗∗−1
1 =

n∑

t=1

D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 + op(1), (B. 18)

n∑

t=1

D̄∗∗−1
1 Q1(∇α1 lt|α̌1,α̌2,δ̂) =

n∑

t=1

D̄∗∗−1
1 Q1∇α1 lt + [

n∑

t=1

D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 ]

·D̄∗∗
1 (P ′ ⊗ Ir)(α̌1 − α1) + op(1). (B. 19)

By (B.18)-(B.19), we can express (B.17) as:

D̄∗∗
1 Q̄∗∗′−1

1 α̇1 = D̄∗∗
1 Q̄∗∗′−1

1 α̂1 − [
n∑

t=1

D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 ]−1[

n∑

t=1

D̄∗∗−1
1 Q1∇α1 lt]

−D̄∗∗
1 (P ′ ⊗ Ir)(α̌1 − α1) + op(1). (B. 20)

However, note that

Q̄∗∗′−1
1 α̇1 = [P ′ ⊗ (ḂB̄′)−1]vec[Ḃ]

= vec[(ḂB̄′)−1ḂP ] = vec[(ḂB̄′)−1ḂP1, (ḂB̄′)−1ḂP2].
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To prove Theorem 4.2(a), we only need to consider the first rd elements of D̄∗∗
1 Q̄∗∗′−1

1 α̇1.

By (B.20) and Lemma B.4(c), the first rd elements of D̄∗∗
1 Q̄∗∗′−1

1 α̂1 equal:

vec[n(ḂB̄′)−1B̂P1] = vec[n(B̂B̄′)−1B̂P1] + op(1). (B. 21)

As
∑n

t=1 D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 converges in distribution to a block-diagonal matrix,

the first rd elements of [
∑n

t=1 D̄∗∗−1
1 Q1R1tQ′

1D̄
∗∗−1
1 ]−1[

∑n
t=1 D̄∗∗−1

1 Q1∇α1 lt] equal:

[n−2
n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[n−1
n∑

t=1

(Q′
1 ⊗ Ir)∇α1 lt] + op(1). (B. 22)

Furthermore, since BP1 = 0, the first rd elements of D̄∗∗
1 (P ′ ⊗ Ir)(α̌1 − α1) equal:

n(P ′
1 ⊗ Ir)vec[B̌ − B] = vec[n(B̌P1 − BP1)]

= vec[nB̌P1] = vec[n(B̂B̄′)−1B̂P1]. (B. 23)

By (B.21)-(B.23), the first rd elements in (B.20) can be expressed as:

vec[n(ḂB̄′)−1ḂP1]

= vec[n(B̂B̄′)−1B̂P1]

−[n−2
n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[n−1
n∑

t=1

(Q′
1 ⊗ Ir)∇α1 lt]

−vec[n(B̂B̄′)−1B̂P1] + op(1)

= −[n−2
n∑

t=1

(Q′
1 ⊗ Ir)R1t(Q1 ⊗ Ir)]

−1[n−1
n∑

t=1

(Q′
1 ⊗ Ir)∇α1 lt] + op(1).(B. 24)

Thus, Theorem 4.2(a) is proved.

For Theorem 4.2(b), recall that α̇2 = α̇
(1)
2 and α̂2 = α̇

(0)
2 . Set k = 0 in (4.12),

α̇2 = α̂2 − (
n∑

t=1

R2t|α̇1,α̂2,δ̂)
−1(

n∑

t=1

∇α2 lt|α̇1,α̂2,δ̂). (B. 25)

Pre-multiply (B.25) by
√

nQ̄∗∗′−1
2 . By Lemmas B.5(c) and B.5(d), it follows that

√
nQ̄∗∗′−1

2 α̇2 =
√

nQ̄∗∗′−1
2 α̂2

−[n−1
n∑

t=1

Q̄∗∗
2 (R2t|α̇1,α̂2,δ̂)Q̄

∗∗′
2 ]−1[n−1/2

n∑

t=1

Q̄∗∗
2 (∇α2 lt|α̇1,α̂2,δ̂)]

=
√

nQ̄∗∗′−1
2 α̂2 − [n−1

n∑

t=1

R2t|α̈1,ὰ2,δ̂]
−1[n−1/2

n∑

t=1

∇α2 lt|α̈1,ὰ2,δ̂],(B. 26)
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where ὰ2 is defined in Lemma B.5. By (a) of this theorem. n(α̈1 − α1) = Op(1).

By Theorem 4.1(b) and Lemma B.4(b),
√

n(ὰ2 − α2) = Op(1). By Theorem 4.1(c),
√

n(δ̂ − δ) = Op(1). Thus, by (4.11), we have

n−1
n∑

t=1

(R2t|α̈1,ὰ2,δ̂) = n−1
n∑

t=1

R2t + op(1). (B. 27)

Similarly, using (4.12),

n−1/2
n∑

t=1

(∇α2 lt|α̈1,ὰ2,δ̂)

= n−1/2
n∑

t=1

∇α2 lt + [n−1
n∑

t=1

∇2
α2α2′lt]

√
n(ὰ2 − α2) + op(1). (B. 28)

Note that Q̄∗∗′−1
2 α̇2 = α̈2 and Q̄∗∗′−1

2 α̂2 = ὰ2. Combining (B.27) and (B.28), (B.26)

can be expressed as:

√
nα̈2 =

√
nὰ2 − [n−1

n∑

t=1

R2t]
−1[n−1/2

n∑

t=1

∇α2 lt] −
√

n(ὰ2 − α2) + op(1).

Alternatively,

√
n(α̈2 − α2) = −[n−1

n∑

t=1

R2t]
−1[n−1/2

n∑

t=1

∇α2 lt] + op(1). (B. 29)

Thus Theorem 4.2(b) is also proved. 2

Proof of Corollary 4.2. Exactly the same as that of Corollary 4.1 with B̂ ,

B̌, and (A′V −1
0 A)−1A′V −1

0 PM replaced by Ḃ, B̈, and (A′Ω1A)−1A′M̃ , respectively.

2

Proof of Lemma 5.1. First consider the first term in (5.2). By Theorem 3.1(a)

and Lemma 3.1(a),

(β̂1 − β1)
′(

n∑

t=1

L1t)(β̂1 − β1)

= vec[n(Ĉ − C)P1]
′[n−2

n∑

t=1

L1t]vec[n(Ĉ − C)P1]

−→L vec[Ω−1
1 M̃ ]′[Z ⊗ Ω1]vec[Ω−1

1 M̃ ]

= vec[Ω−1
1 M̃ ]′vec[Ω1Ω

−1
1 M̃Z] = tr[M̃ ′Ω−1

1 M̃Z], (B. 30)
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where Z ≡ Ψ11Ω
1/2
a1

∫ 1
0 Bd(u)Bd(u)′Ω1/2

a1
Ψ′

11 (see Section 3) and M̃ is as defined in

Theorem 3.1. Next we consider the second term in (5.2). First note that:

ÄB̈ − AB = (Ä − A)B + A(B̈ − B) + (Ä − A)(B̈ − B).

Recall that BP1 = 0. As argued in Theorem 4.1, (B̈ − B)P1 = Op(n
−1) and

(Ä − A) = Op(n
−1/2) under H0, and hence,

n(ÄB̈ − AB)P1 = n(Ä − A)BP1 + nA(B̈ − B)P1 + (Ä − A)n(B̈ − B)P1

= nA(B̈ − B)P1 + Op(n
−1/2).

Therefore, by Theorem 4.1(a) and Lemma 3.1(a),

(β̈1 − β1)
′(

n∑

t=1

L1t)(β̈1 − β1)

= vec[n(ÄB̈ − AB)P1]
′[n−2

n∑

t=1

L1t]vec[n(ÄB̈ − AB)P1]

= vec[nA(B̈ − B)P1]
′[n−2

n∑

t=1

L1t]vec[nA(B̈ − B)P1] + op(1)

−→L vec[DM̃ ]′[Z ⊗ Ω1]vec[DM̃ ]

= vec[DM̃ ]′vec[Ω1DM̃Z] = tr[M̃ ′DΩ1DM̃Z], (B. 31)

where D ≡ A(A′Ω1A)−1A′. Combining (B.30) and (B.31),

LRG −→L tr[M̃ ′(Ω−1
1 − DΩ1D)M̃Z]

= tr[(Ω−1
1 − A(A′Ω1A)−1A′)M̃ZM̃ ′].

Following the lines on p.359 of Reinsel and Ahn (1992), we can rewrite Ω−1
1 −

A(A′Ω1A)−1A′ as:

Ω−1
1 (Ω1 − Ω1A(A′Ω1A)−1A′Ω1)Ω

−1
1 = Ω−1

1 Q1(Q
′
1Ω

−1
1 Q1)

−1Q′
1Ω

−1
1 .

Therefore, we can rewrite the asymptotic distribution as:

tr[(
∫ 1

0
Bd(u)Ṽd(u)′)′(

∫ 1

0
Bd(u)Bd(u)′du)−1(

∫ 1

0
Bd(u)Ṽd(u)′)],
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where Ṽd(u) ≡ (Q′
1Ω

−1
1 Q1)

−1/2Q′
1Ω

−1
1 W̃m(u). Note that

E[Bd(u)Ṽd(u)′] = uΩ
−1/2
a1 (Q′

1Ω
−1
1 Q1)

1/2 = uΥ′.

Thus, we can rewrite Ṽd(u) as a linear combination of two independent d−dimensional

standard Brownian motions:

ΥBd(u) + [(Q′
1Ω

−1
1 Q1)

−1/2Q′
1Ω

−1
1 Ω̃1Ω

−1
1 Q1(Q

′
1Ω

−1
1 Q1)

−1/2 − ΥΥ′]1/2Vd(u).(B. 32)

The proof is complete. 2

Proof of Theorem 5.1. When Ω̃1 = Ω1, (B.32) in the proof of Lemma 5.1 can

be expressed as:

ΥBd(u) + [Id − ΥΥ′]1/2Vd(u).

The limiting distribution can then be expressed as:

tr{[
∫ 1
0 ΥBd(u)dBd(u)′Υ′ +

∫ 1
0 ΥBd(u)dVd(u)′(Id − ΥΥ′)1/2]′[

∫ 1
0 ΥBd(u)Bd(u)′Υ′du]−1

[
∫ 1
0 ΥBd(u)dBd(u)′Υ′ +

∫ 1
0 ΥBd(u)dVd(u)′(Id − ΥΥ′)1/2]}.

However, ΥBd(u) ∼ N(0, ΥΥ′). Abusing the notation, we write ΥBd(u) as (ΥΥ′)1/2

Bd(u), where Bd(u) is (another) d−dimensional standard Brownian motion inde-

pendent of Vd(u).

Therefore, cancelling some of the (ΥΥ′)1/2 terms, the asymptotic distribution

can be expressed as:

tr{[
∫ 1
0 Bd(u)dBd(u)′(ΥΥ′)1/2 +

∫ 1
0 Bd(u)dVd(u)′(Id − ΥΥ′)1/2]′[

∫ 1
0 Bd(u)Bd(u)′du]−1

[
∫ 1
0 Bd(u)dBd(u)′(ΥΥ′)1/2 +

∫ 1
0 Bd(u)dVd(u)′(Id − ΥΥ′)1/2]}.

Since (Id − ΥΥ′) is a real symmetric matrix, we can decompose it as:

(Id − ΥΥ′) = ΘΛdΘ
′,

where Θ is an orthogonal matrix such that Θ′Θ = Id. In view of (ΥΥ′)1/2 =

Θ(Id −Λd)
1/2Θ′ and (Id −ΥΥ′)1/2 = ΘΛ

1/2
d Θ′ and due to the orthogonality of Θ, we
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can write the asymptotic distribution as:

tr{[
∫ 1

0
Θ′Bd(u)dBd(u)′Θ(Id − Λd)

1/2Θ′ +
∫ 1

0
Θ′Bd(u)dVd(u)′ΘΛ

1/2
d Θ′]′

·[
∫ 1

0
Θ′Bd(u)Bd(u)′duΘ]−1

·[
∫ 1

0
Θ′Bd(u)dBd(u)′Θ(Id − Λd)

1/2Θ′ +
∫ 1

0
Θ′Bd(u)dVd(u)′ΘΛ

1/2
d Θ′]}.

Since Θ′Bd(u) ∼ N(0, Θ′Θ) = N(0, Id), similar to the previous arguments, and

abusing the notation, we can write Θ′Bd(u) and Θ′Vd(u) as two independent stan-

dard Brownian motions Bd(u) and Vd(u) respectively. Cancelling the orthogonal Θ,

we have:

tr{[
∫ 1

0
Bd(u)dBd(u)′(Id − Λd)

1/2 +
∫ 1

0
Bd(u)dVd(u)′Λ

1/2
d ]′

·[
∫ 1

0
Bd(u)Bd(u)′du]−1[

∫ 1

0
Bd(u)dBd(u)′(Id − Λd)

1/2 +
∫ 1

0
Bd(u)dVd(u)′Λ

1/2
d ]}

= tr{[ζ(Id − Λd)
1/2 + ΦΛ

1/2
d ]′[ζ(Id − Λd)

1/2 + ΦΛ
1/2
d ]}.

This completes the proof. 2

Proof of Corollary 5.1. Similar to that of Theorem 5.1 and thus it is omitted.2

Proof of Theorem 5.1’. Similar to that of Theorem 5.1 and thus it is omitted.2
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C Appendix: Simulated Critical Values

TABLE C.10

Quantiles of the Limiting Distribution (5.3) or (5.5)

d = 1, no Constant Term

α−th simulated quantiles
λ1 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.602 1.550 1.891 2.343 2.995 4.153 5.357 7.018
0.1 0.575 1.539 1.869 2.315 2.978 4.140 5.365 6.941
0.2 0.553 1.511 1.850 2.308 2.964 4.138 5.362 6.939
0.3 0.533 1.489 1.824 2.282 2.941 4.108 5.305 6.921
0.4 0.515 1.462 1.800 2.254 2.914 4.083 5.286 6.929
0.5 0.499 1.441 1.770 2.223 2.883 4.043 5.242 6.895
0.6 0.490 1.414 1.743 2.197 2.845 4.013 5.225 6.824
0.7 0.481 1.385 1.718 2.171 2.811 3.963 5.174 6.839
0.8 0.470 1.364 1.693 2.139 2.782 3.920 5.097 6.774
0.9 0.461 1.354 1.674 2.105 2.746 3.867 5.047 6.718
1.0 0.455 1.326 1.649 2.078 2.711 3.827 5.068 6.633
The table values were computed from 100, 000 simulations with T = 2, 000.
λ1 is the eigenvalue of Λ1 in (5.3) or Λ∗

1 in (5.5).

TABLE C.11

Quantiles of the Limiting Distribution (6.4)

d = 1, with a Constant Term

α−th simulated quantiles
λ1 .500 .750 .800 .850 .900 .950 .975 .990

0.0 2.457 4.342 4.904 5.607 6.588 8.167 9.653 11.690
0.1 2.203 4.082 4.649 5.362 6.327 7.932 9.449 11.469
0.2 1.952 3.819 4.383 5.092 6.051 7.656 9.225 11.291
0.3 1.704 3.533 4.094 4.799 5.767 7.373 8.949 11.027
0.4 1.470 3.236 3.784 4.477 5.457 7.049 8.615 10.727
0.5 1.241 2.921 3.451 4.132 5.113 6.679 8.253 10.293
0.6 1.036 2.603 3.117 3.763 4.715 6.251 7.810 9.817
0.7 0.851 2.267 2.749 3.375 4.272 5.763 7.296 9.316
0.8 0.693 1.938 2.382 2.965 3.794 5.220 6.690 8.655
0.9 0.557 1.619 2.007 2.526 3.270 4.576 5.937 7.789
1.0 0.457 1.324 1.643 2.070 2.705 3.827 5.044 6.678
See the footnote in Table C.10.
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TABLE C.20

Quantiles of the Limiting Distribution (5.3) or (5.5)

d = 2, no Constant Term

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.0 5.508 7.844 8.522 9.365 10.479 12.286 14.065 16.278
0.0 0.1 5.405 7.739 8.413 9.267 10.386 12.237 13.971 16.144
0.0 0.2 5.298 7.645 8.313 9.159 10.312 12.158 13.886 16.041
0.0 0.3 5.189 7.541 8.210 9.062 10.234 12.073 13.793 15.986
0.0 0.4 5.068 7.440 8.112 8.959 10.119 11.987 13.722 15.895
0.0 0.5 4.952 7.330 8.008 8.865 10.003 11.887 13.659 15.802
0.0 0.6 4.839 7.216 7.909 8.744 9.906 11.789 13.542 15.716
0.0 0.7 4.726 7.112 7.783 8.647 9.796 11.676 13.440 15.623
0.0 0.8 4.619 6.981 7.668 8.525 9.680 11.559 13.354 15.530
0.0 0.9 4.504 6.867 7.542 8.410 9.551 11.446 13.230 15.435
0.0 1.0 4.393 6.745 7.417 8.268 9.443 11.306 13.172 15.450
0.1 0.1 5.287 7.635 8.325 9.172 10.295 12.140 13.885 16.105
0.1 0.2 5.178 7.534 8.229 9.079 10.217 12.071 13.817 15.991
0.1 0.3 5.058 7.440 8.123 8.979 10.125 11.987 13.736 15.920
0.1 0.4 4.945 7.341 8.023 8.865 10.018 11.902 13.612 15.806
0.1 0.5 4.832 7.224 7.920 8.750 9.919 11.818 13.539 15.643
0.1 0.6 4.718 7.108 7.791 8.643 9.808 11.692 13.422 15.552
0.1 0.7 4.605 6.987 7.677 8.533 9.679 11.578 13.296 15.482
0.1 0.8 4.498 6.856 7.559 8.413 9.561 11.434 13.179 15.337
0.1 0.9 4.382 6.749 7.430 8.290 9.455 11.284 13.064 15.247
0.1 1.0 4.278 6.627 7.307 8.157 9.307 11.147 12.950 15.229
0.2 0.2 5.070 7.445 8.137 8.987 10.116 11.973 13.707 15.898
0.2 0.3 4.945 7.336 8.037 8.881 10.028 11.879 13.601 15.812
0.2 0.4 4.828 7.225 7.916 8.761 9.916 11.791 13.501 15.647
0.2 0.5 4.711 7.111 7.807 8.658 9.819 11.691 13.383 15.556
0.2 0.6 4.596 6.998 7.682 8.532 9.691 11.566 13.298 15.405
0.2 0.7 4.488 6.881 7.560 8.415 9.579 11.433 13.191 15.319
0.2 0.8 4.383 6.753 7.435 8.288 9.453 11.293 13.027 15.191
0.2 0.9 4.266 6.621 7.309 8.165 9.322 11.141 12.902 15.023
0.2 1.0 4.160 6.502 7.190 8.031 9.182 10.985 12.768 15.020
0.3 0.3 4.830 7.232 7.929 8.781 9.931 11.752 13.491 15.702
0.3 0.4 4.717 7.118 7.809 8.657 9.816 11.669 13.411 15.609
0.3 0.5 4.598 7.001 7.688 8.540 9.693 11.570 13.285 15.471
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TABLE C.20 (Continued)

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.3 0.6 4.489 6.877 7.570 8.415 9.565 11.432 13.179 15.318
0.3 0.7 4.369 6.758 7.442 8.281 9.442 11.296 13.051 15.202
0.3 0.8 4.263 6.636 7.302 8.160 9.310 11.158 12.897 15.021
0.3 0.9 4.152 6.505 7.187 8.042 9.163 11.010 12.743 14.870
0.3 1.0 4.052 6.374 7.045 7.882 9.046 10.819 12.592 14.853
0.4 0.4 4.600 7.006 7.695 8.549 9.707 11.557 13.290 15.510
0.4 0.5 4.486 6.877 7.577 8.420 9.576 11.438 13.180 15.374
0.4 0.6 4.373 6.760 7.444 8.287 9.440 11.310 13.061 15.231
0.4 0.7 4.255 6.631 7.318 8.148 9.313 11.171 12.881 15.087
0.4 0.8 4.150 6.506 7.179 8.012 9.176 11.024 12.733 14.928
0.4 0.9 4.040 6.378 7.050 7.883 9.018 10.847 12.567 14.747
0.4 1.0 3.941 6.233 6.911 7.735 8.875 10.678 12.395 14.651
0.5 0.5 4.376 6.751 7.437 8.298 9.444 11.322 13.053 15.298
0.5 0.6 4.261 6.625 7.299 8.171 9.310 11.176 12.919 15.115
0.5 0.7 4.151 6.497 7.178 8.016 9.177 11.049 12.759 14.954
0.5 0.8 4.036 6.362 7.039 7.870 9.030 10.854 12.567 14.820
0.5 0.9 3.937 6.235 6.907 7.727 8.866 10.693 12.398 14.612
0.5 1.0 3.836 6.098 6.758 7.588 8.685 10.541 12.202 14.486
0.6 0.6 4.152 6.495 7.161 8.015 9.153 11.035 12.781 14.993
0.6 0.7 4.045 6.356 7.027 7.874 9.015 10.894 12.580 14.809
0.6 0.8 3.930 6.214 6.890 7.719 8.857 10.713 12.401 14.622
0.6 0.9 3.828 6.086 6.749 7.577 8.698 10.529 12.218 14.480
0.6 1.0 3.733 5.959 6.612 7.428 8.512 10.358 12.002 14.298
0.7 0.7 3.936 6.213 6.885 7.721 8.847 10.719 12.432 14.668
0.7 0.8 3.827 6.082 6.738 7.564 8.688 10.555 12.247 14.435
0.7 0.9 3.724 5.933 6.598 7.413 8.520 10.353 12.036 14.259
0.7 1.0 3.630 5.811 6.464 7.251 8.347 10.151 11.794 14.091
0.8 0.8 3.728 5.934 6.586 7.400 8.526 10.342 12.053 14.255
0.8 0.9 3.626 5.791 6.434 7.240 8.345 10.144 11.857 14.064
0.8 1.0 3.528 5.666 6.303 7.084 8.154 9.952 11.588 13.825
0.9 0.9 3.531 5.655 6.286 7.071 8.166 9.932 11.656 13.770
0.9 1.0 3.446 5.521 6.142 6.913 7.972 9.703 11.390 13.553
1.0 1.0 3.359 5.378 5.977 6.734 7.777 9.471 11.120 13.264
The table values were computed from 100, 000 simulations with T = 2, 000.
λ1 ≤ λ2 are the eigenvalues of Λ2 in (5.3) or Λ∗

2 in (5.5).
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TABLE C.21

Quantiles of the Limiting Distribution (6.4)

d = 2, with a Constant Term

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.0 0.0 9.425 12.515 13.401 14.445 15.842 18.064 20.120 22.745
0.0 0.1 9.130 12.222 13.102 14.148 15.578 17.783 19.865 22.477
0.0 0.2 8.823 11.936 12.789 13.851 15.270 17.508 19.618 22.192
0.0 0.3 8.520 11.599 12.485 13.541 14.955 17.201 19.338 21.901
0.0 0.4 8.216 11.282 12.156 13.213 14.630 16.877 19.012 21.541
0.0 0.5 7.908 10.942 11.814 12.865 14.277 16.516 18.663 21.236
0.0 0.6 7.604 10.602 11.464 12.506 13.913 16.137 18.305 20.842
0.0 0.7 7.301 10.256 11.103 12.143 13.537 15.739 17.898 20.390
0.0 0.8 6.995 9.914 10.734 11.759 13.132 15.332 17.436 19.987
0.0 0.9 6.693 9.553 10.359 11.350 12.712 14.908 16.920 19.498
0.0 1.0 6.382 9.182 9.964 10.951 12.287 14.387 16.372 18.904
0.1 0.1 8.814 11.934 12.804 13.849 15.264 17.530 19.582 22.311
0.1 0.2 8.519 11.619 12.480 13.553 14.977 17.212 19.338 22.013
0.1 0.3 8.208 11.304 12.172 13.232 14.650 16.897 19.051 21.670
0.1 0.4 7.889 10.976 11.838 12.909 14.326 16.564 18.724 21.346
0.1 0.5 7.582 10.636 11.500 12.568 13.984 16.206 18.361 20.978
0.1 0.6 7.273 10.299 11.157 12.198 13.616 15.833 17.947 20.528
0.1 0.7 6.963 9.960 10.792 11.832 13.219 15.439 17.508 20.137
0.1 0.8 6.665 9.600 10.424 11.450 12.808 15.004 17.070 19.640
0.1 0.9 6.365 9.236 10.037 11.054 12.393 14.561 16.565 19.157
0.1 1.0 6.065 8.863 9.665 10.640 11.952 14.014 16.001 18.530
0.2 0.2 8.207 11.319 12.182 13.233 14.661 16.917 19.005 21.739
0.2 0.3 7.900 11.008 11.849 12.933 14.341 16.583 18.703 21.389
0.2 0.4 7.574 10.673 11.515 12.591 13.985 16.246 18.381 21.052
0.2 0.5 7.262 10.337 11.182 12.244 13.630 15.894 18.007 20.695
0.2 0.6 6.946 9.984 10.832 11.886 13.259 15.495 17.593 20.250
0.2 0.7 6.636 9.623 10.477 11.502 12.861 15.094 17.145 19.815
0.2 0.8 6.337 9.269 10.114 11.114 12.457 14.650 16.720 19.281
0.2 0.9 6.039 8.901 9.714 10.707 12.034 14.178 16.204 18.757
0.2 1.0 5.738 8.522 9.323 10.289 11.585 13.665 15.612 18.155
0.3 0.3 7.589 10.678 11.539 12.600 14.000 16.253 18.369 21.093
0.3 0.4 7.265 10.342 11.202 12.246 13.658 15.906 18.007 20.787
0.3 0.5 6.944 9.996 10.859 11.903 13.310 15.539 17.642 20.360
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TABLE C.21 (Continued)

α−th simulated quantiles
λ1 λ2 .500 .750 .800 .850 .900 .950 .975 .990

0.3 0.6 6.625 9.653 10.503 11.533 12.919 15.147 17.224 19.921
0.3 0.7 6.319 9.297 10.132 11.149 12.515 14.736 16.763 19.441
0.3 0.8 6.016 8.930 9.762 10.762 12.087 14.277 16.341 18.904
0.3 0.9 5.710 8.551 9.355 10.337 11.666 13.806 15.836 18.329
0.3 1.0 5.415 8.174 8.955 9.916 11.200 13.272 15.228 17.725
0.4 0.4 6.953 10.001 10.857 11.915 13.306 15.556 17.672 20.385
0.4 0.5 6.630 9.644 10.499 11.547 12.961 15.153 17.233 20.004
0.4 0.6 6.319 9.300 10.143 11.160 12.572 14.747 16.856 19.548
0.4 0.7 6.016 8.945 9.765 10.796 12.152 14.345 16.402 19.072
0.4 0.8 5.705 8.579 9.387 10.387 11.709 13.888 15.889 18.549
0.4 0.9 5.394 8.191 8.993 9.955 11.264 13.372 15.399 17.907
0.4 1.0 5.092 7.817 8.571 9.525 10.783 12.869 14.789 17.292
0.5 0.5 6.323 9.303 10.136 11.186 12.595 14.741 16.868 19.545
0.5 0.6 6.013 8.935 9.770 10.796 12.191 14.352 16.438 19.122
0.5 0.7 5.700 8.575 9.384 10.397 11.774 13.919 15.986 18.639
0.5 0.8 5.386 8.191 9.002 9.993 11.309 13.470 15.485 18.047
0.5 0.9 5.080 7.820 8.591 9.557 10.850 12.958 14.958 17.429
0.5 1.0 4.790 7.421 8.172 9.100 10.340 12.409 14.340 16.794
0.6 0.6 5.697 8.569 9.390 10.407 11.780 13.924 16.018 18.673
0.6 0.7 5.384 8.190 9.000 10.004 11.356 13.484 15.555 18.199
0.6 0.8 5.079 7.806 8.604 9.580 10.897 13.018 15.024 17.607
0.6 0.9 4.776 7.419 8.190 9.139 10.412 12.479 14.464 16.943
0.6 1.0 4.486 7.022 7.756 8.681 9.892 11.922 13.828 16.291
0.7 0.7 5.071 7.809 8.595 9.584 10.921 13.031 15.056 17.617
0.7 0.8 4.770 7.423 8.195 9.155 10.456 12.553 14.497 17.093
0.7 0.9 4.471 7.029 7.758 8.689 9.956 11.975 13.937 16.376
0.7 1.0 4.182 6.613 7.328 8.221 9.415 11.389 13.272 15.693
0.8 0.8 4.470 7.029 7.772 8.711 9.963 12.045 13.915 16.478
0.8 0.9 4.174 6.616 7.341 8.240 9.466 11.429 13.363 15.794
0.8 1.0 3.904 6.207 6.888 7.750 8.914 10.816 12.668 15.007
0.9 0.9 3.892 6.219 6.905 7.759 8.942 10.861 12.674 15.178
0.9 1.0 3.620 5.794 6.438 7.260 8.386 10.211 11.956 14.235
1.0 1.0 3.350 5.377 5.983 6.737 7.800 9.527 11.218 13.381
See the footnote in Table C.20.
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