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Abstract 
 

We develop a unique tree structure with random move time by subordinating asset price changes to 

random trade arrival. The asset price change is determined by two independent Bernoulli trials on trade 

arrival/non-arrival and up/down price movement. Convoluting the two leads to a trinomial tree and a 

corresponding option pricing problem with stochastic volatility. A time change from calendar-time to trading-

time, however, restores the binomial tree and leads to an isomorphic option-pricing problem with constant 

volatility but random maturity. Utility-dependent valuation results are derived in both time dimensions and 

isomorphism is demonstrated. The binomial tree now grows with arrival of trades with a speed dictated by the 

intensity of arrival, irrespective of the passage of calendar-time. At the continuous-time limit, it contains the 

information-time option-pricing model of Chang, Chang and Lim (1998) as a risk-neutral special case. The 

trinomial tree is further extended to allow for correlated price revision and trade arrival to address the leverage 

effect and test for incremental improvements in pricing and hedging against the Black and Scholes and the CEV 

models.   
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 Tree-based discrete-time option pricing models start with the seminal binomial model of Cox, Ross and 

Rubinstein (1979) (CRR hereafter) who introduced an intuitive, parsimonious, and robust approach to 

derivatives valuation. A preference-free valuation result emerges from the simple set-up of a dynamically 

complete market with two states and two traded assets. The CRR model is widely used by practitioners for 

embedding the Black and Scholes (1973) model in the continuous-time limit as well as for the efficient pricing 

of American and path-dependent options. 

 There have been various extensions to the original binomial model. Some aim at improving 

convergence efficiency while others attempt to incorporate more complex stochastic processes. A completely 

different set of tree-based models has also been developed for the evolution of interest rates.1  More recently, 

much attention has been paid to the so-called implied tree models.2 These models are the result of concerted 

efforts to deal with volatility smiles and/or sneers commonly observed in prices of traded options. One attractive 

feature of implied tree models is that they price all traded options consistently thus eliminate the pricing biases 

present in parametric models, however the tree parameters are likely to be unstable over time and need to be re-

calibrated as market conditions change. 

 Throughout these developments however, the original CRR assumption that asset price changes occur 

uniformly over calendar-time continues to exist.  The maturity of the option is divided into equal time intervals 

over which the asset price moves are of fixed magnitude, implying that a trade should always arrive at the end of 

each fixed calendar-time period.  Taking it to the continuous-time limit, this assumption implies continuous 

trading.  Although convenient, this simplification rules out actual trade arrival dynamics that a trade may not 

arrive at the end of each calendar-time period, an asset may be thinly traded during certain time periods with 

lower volatility but heavily traded during other time periods with higher volatility, and that asset price changes 

may be correlated to the pattern of trade arrival.  Although it has been recognized in Amin (1993) and 

Rubinstein (1994) and some tree-based term structure models that faster convergence can be achieved by 

introducing non-equally spaced steps, none has randomized trade arrivals. 

 In this vein, the purpose of this research is to investigate tree-based option pricing with random move 

time by randomizing trade arrival. This idea originates with the celebrated empirical evidence in the 

subordinated process3,4 literature that subordinating asset price changes to random trade arrivals significantly 

reduces asset return leptokurtosis. It is also consistent with the recent advancements in the Autoregressive 

Conditional Duration (ACD hereafter) and Autoregressive Conditional Multinomial (ACM hereafter) models 

literature (e.g., Defour and Engel (2000)) that price and trade co-move with random trade inter-arrival time.  

 Specifically, we first let asset price evolution in each calendar-time interval be governed by two 

independent i.i.d. (independently and identically distributed) Bernoulli trials. The first trial resolves the trade 

arrival/non-arrival uncertainty. When no trade arrives, the price of the underlying asset remains unchanged at 

the end of the time interval.  When a trade does arrive however, the asset price evolves in a standard binomial 

tree with its up/down movement determined by the second Bernoulli trial.  Because of this trade inter-arrival 
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time uncertainty, the binomial tree now comprises variable moves - it will only grow when a trade arrives, with 

faster growth when more trades arrive, and vice versa.  Convoluting the two trials over time leads to a unique 

and simple trinomial tree, where in each calendar-time period asset price jumps either up or down when there is 

an arrival and stays constant when there is no arrival.   

 This trinomial tree structure embeds stochastic volatility in the context of a subordinated process model 

with the total volatility in a fixed time period, for example a day, determined by the product of the constant per 

trade volatility and the “random” number of trade arrival in the period. On less eventful days, trading is slow 

and prices evolve slowly, while on more eventful days, prices evolve faster to reflect the increasing speed of 

information arrival.  The phrase “stochastic volatility" here is thus different from the usual sense of stochastic 

volatility in the current option pricing literature.  In a standard stochastic volatility model, trade arrival is 

deterministic but up and down rates at each node of the tree is stochastic.  In here however, stochastic volatility 

is induced by random trade arrival with the per-arrival up and down rates assumed to be constant. These two 

approaches are not necessarily at odds because it is conceivable that both trade arrival and up/down rates can be 

stochastic.  The advantage of the tree structure here is parsimony because it embeds stochastic volatility within a 

state space of only three states and requires only one additional parameter than CRR in option pricing and 

hedging.  Conversely, in attaining parsimony power is sacrificed in that its simple i.i.d. Bernoulli trade arrival 

specification assumes away certain stylized trade arrival dynamics like correlation between trade arrivals and 

price changes and seasonality and clustering in the trade arrival intensity process. 

 Compared to CRR, the above trinomial tree provides a more precise description of the actual speed of 

price evolution in the financial market, explains better that information arrivals generate trading volume, and 

reconciles why heavier unexpected trading volume is often empirically found to be associated with higher 

volatility.  It may also answer one of Rubinstein’s (1994) suggested future research agenda of developing a 

unique trinomial tree that incorporates stochastic volatility.  

 It is also interesting to note that making a time change from calendar-time to trading-time can restore 

the original binomial tree.  Mandelbrot and Taylor (1967), Granger and Morgenstern (1970), and Clark (1973) 

first introduced the concept of trading-time to refine subordinated process models by recognizing that asset price 

changes over trade but not just over the passage of calendar-time. Trading-time refers to a time scale where 

price changes are measured from trade to trade rather than from time to time as in the calendar-time norm. 

Trading-time subordinated process models utilize the trade arrival process as the randomizing subordinator and 

predict that we can significantly reduce asset return leptokurtosis by measuring time from trade to trade, as has 

been verified by Ané and Geman (2000) and others. This application of the concept of “operational time 

dimension” has been widely applied in the field of systems science because when the choice of the time scale is 

dictated by the nature of things, a simple change of the time scale can often reduce a complex process to a 

stationary one.  In our application, when trade arrival is utilized as the subordinator, the trinomial calendar-time 

process can be reduced to a stationary binomial one in trading-time.  This time change establishes an alternative 
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linkage between trinomial and binomials trees to Rubinstein’s (2000) suggestion of skipping all the odd time 

steps in a binomial tree. In trading-time now however, the isomorphic option has a random maturity, as the 

number of trade arrival during an option’s maturity is random.  

 Our application of a stochastic time change to valuation is by no means novel.  Prior to our study, 

Chang, Chang, and Lim (1998, CCL hereafter) have applied this time change concept to option pricing.  In an 

information-time setting, CCL derive an option pricing formula with trade arrival driven by a Poisson process.  

There is a problem however associated with the CCL model’s mathematical structure - in obtaining the 

underlying asset price process in information-time, CCL have defined a continuous Brownian motion over the 

discrete Poisson trade arrival filtration. They also require the existence of a traded information-time riskless 

bond to derive risk-neutral option pricing formulas. This assumption requires that in calendar-time there is a 

bond that has stochastic interest rates perfectly correlated with information arrival.  In contrast, we subordinate 

discrete binomial price changes to a discrete Bernoulli trade arrival filtration and do not require the information-

time bond to be traded.  As a result, we can show that at the continuous-time limit our model contains CCL as a 

special case under risk-neutrality. 

 The above stochastic time change implies that option pricing with stochastic volatility in calendar-time 

be isomorphic to option pricing with constant volatility but random maturity in trading-time. To verify this 

hypothesis, we will derive and compare option-pricing results in both time dimensions with isomorphism 

demonstrated. The above discussion also implies that given the non-traded nature of the random trade arrival 

uncertainty, complete-market preference-free pricing is infeasible. This leads us to first investigate the 

properties of a shadow security that could span and hedge the trade arrival uncertainty - a default-free bond 

issued to mature upon the random arrival of the next trade. Equilibrium arguments are then necessarily invoked 

in the context of a representative agent economy with power utility5 to determine its value and required return. 

We show that its return comprises of a riskless component as well as a random maturity risk premium.  In line 

with Rubinstein’s (1994) idea that the interest return is the “clock” running a binomial tree, the return on this 

one-trade bond here runs the clock of our binomial tree with variable move time. 

  Given the shadow price, next we value options using the discrete-time martingale pricing methodology 

of Huang and Litzenberger (1988),6 with three distinct securities and three states. We first extract two distinct 

equivalent martingale probability measures for the trade arrival and asset price uncertainties from the underlying 

prices, then we price options as martingales.  Although the two measures exist under no-arbitrage, they are not 

unique precisely because the one-trade bond is not traded, which leads to utility-dependent option pricing 

formulas.  In calendar-time, the resulting trinomial option formula with stochastic volatility degenerates into the 

original CRR formula when a trade always arrives in each consecutive time period and has the advantage of 

being applicable to American and path-dependent options.  In trading-time, the resulting binomial formula with 

random maturity naturally contains the CCL information-time formula as a continuous-time limit when risk-

neutrality is imposed.   
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 To demonstrate the robustness of our basic framework, finally we extend and empirically test the 

trinomial model by relaxing the assumption of i.i.d. Bernoulli trade arrivals.  Although Ané and Geman (2000) 

and others have empirically shown that transaction clock alone generates virtually perfect normality in stock 

returns, in microstructure research however, Hasbrouck (1991) and others have shown that the change in prices 

depends on the sign and size of trades as well as the bid-ask spread.  In the more recent ACD and ACM work, 

Dufour and Engel (2000) have shown that the higher the trade arrival intensity the larger is the price revision. 

Bakshi, Cao, and Chen (2000) further report that when volatility and asset price changes are uncorrelated with 

each other, the alternative stochastic volatility option pricing models to the Black and Scholes (1973, and BS 

hereafter) that ignore the leverage effect are unlikely to generate the levels of return skewness and kurtosis 

necessary to reconcile the BS implied-volatility smiles.7  To this end, we extend our trinomial tree by assuming 

that price revision and trade arrival intensity are correlated according to a deterministic specification similar to 

that of CEV (Cox and Ross, 1976). This deterministic intensity arrival structure is chosen over a stochastic 

structure for the reason of parsimony for requiring only one more parameter to control for the speed and 

direction of intensity change.  Incorporating stochastic intensity arrival will certainly free out the structure, but 

at the expense of a more complex state space with at least four states in each period and several more parameters 

needed in option pricing and hedging.  Since with a tree model computing time grows exponentially with the 

number of parameters required, a more general space structure as such will be computationally unbearable when 

brought to extensive empirical testing.  Therefore we focus on a deterministic intensity arrival structure in this 

study.    

 The rest of the paper is organized as follows. Section I contains the main result with the development of 

the calendar-time trinomial tree and the corresponding option-pricing model. The underlying asset price, trade 

arrival, and pricing kernel processes are first introduced to facilitate the valuation of the shadow security using 

the fundamental martingale Euler valuation equation. Equivalent martingale probability measures associated 

with asset price and trade arrival risks are then derived using the discrete-time martingale pricing methodology 

of Huang and Litzenberger (1988).  Section II develops the trading-time binomial counterpart and demonstrates 

isomorphism to the calendar-time trinomial model and convergence to CCL.  Section III contains the extended 

calendar-time trinomial model with correlated trade arrival and asset price change and the corresponding 

empirical tests vis-à-vis the Black and Scholes and the CEV models for the purpose of evaluating incremental 

improvements in pricing and hedging.  Intra-day data on S&P 500 index options are used for our empirical tests. 

Finally, section VI concludes the paper and discusses future research directions.   

 

 

I. Calendar-Time Trinomial Tree and Option Pricing  
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We apply the discrete-time martingale pricing methodology of Huang and Litzenberger (1988) to derive 

the trinomial option-pricing model when trade arrival is random, referred to as the “TRI” model.  Asset price 



evolution and the issue of market incompleteness are first discussed, which leads to the investigation of a non-

traded hedge security - the one-trade bond.  Pricing result and properties of this bond in the context of a 

representative agent economy with power utility are then investigated.  Finally, we derive the equivalent 

martingale probability measures with respect to both asset price changes and trade arrival uncertainties for 

pricing options as martingales. 

 

A. Price Evolution 

 The original binomial option pricing model is developed based on the assumption that the asset price 

evolves in a binomial random walk, where a Bernoulli trial is made at the end of each of the n successive time 

periods to determine the up/down movement of the asset price.  To randomize trade arrivals such that the asset 

price may not change at each turn of the game, let us consider a more general setup where two independent and 

successive Bernoulli trials are played at the end of each time period.  The first trial is made to determine if a 

trade will arrive.  When a trade does arrive, a second trial is made to determine the up/down movement of the 

asset price change. When a trade does not arrive, the second trial is not made and the asset price remains 

unchanged.  This construction essentially defines a subordinated binomial process, where trade arrivals serves as 

the directing process and price changes from trade to trade the parent process.  In other words, we subordinate 

binomial price changes to random trade arrivals such that the asset price will only change when a trade arrives, 

irrespective of the passage of calendar-time.   Convoluting these two trials results in an i.i.d. trinomial 

representation of the asset price movement as depicted in Figure 1. We also let R denote one plus the riskless 

rate over one period, with the usual regularity condition that u > R > d to prevent riskless arbitrage.   

______________________________ 
 

Insert Figure 1 About Here 
______________________________ 

 

 The directing process, a Bernoulli trade arrival structure, implies a geometric inter-arrival time 

distribution such that the probability that the next trade will arrive in the k-th period is  

(1-g)k-1g. It is well known that this discrete process converges to a homogeneous Poisson-jump process in the 

limit as the length of the time period shrinks to zero, with the inter-arrival time exponentially distributed. The 

parent process, or the price change from trade to trade, is a stationary recombining binomial lattice that will be 

used later for developing the trading-time option-pricing model in section II.A.   

 Despite the seemingly identical appearance of the above tree to the standard trinomial models (e.g., 

Boyle 1986) that all possible multiplicative combinations of asset price movement at the end of each successive 

turn are likely outcomes, they are fundamentally different.  The standard trinomial model is a computational 

method for evaluating integrals and thus focuses on efficient approximations of the continuous-time counterpart.  

Our trinomial specification is obtained by generalizing the original binomial model to incorporate random trade 
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arrivals.  Additionally, the standard trinomial model is stationary while our trinomial representation embeds 

stochastic volatility as explained before. 

 Compared to the standard binomial model, our trinomial model has two distinct features.  First, it 

contains the standard model as a special case.  When a trade always arrives in each consecutive calendar-time 

period, our model degenerates into the standard binomial one. Secondly, it randomizes trade arrival. The market 

thus becomes incomplete with three states but only two traded assets.  One way to hedge this additional 

uncertainty is to price the option based on the prices of the underlying asset, the riskless bond, and a second 

option.  However, this is a recursive argument since we first need to price the second option.  Ideally what we 

need is a simple hedge security that spans the trade arrival uncertainty.  For example, it would solve the problem 

should there exist a one-trade riskless numeraire bond with price β  that matures to its face value of $1 upon the 

arrival of the next trade. When there is no trade arrival, the bond price remains unchanged.  As such, this bond 

evolves in an i.i.d. trinomial representation over calendar-time as illustrated in Figure 2.  Under this construction, 

this one-trade bond has random maturity since the next trade may arrive in any of the future calendar-time 

periods.  The role of this bond, which spans the state space of trade arrivals on the Bernoulli filtration, is 

therefore to capture the time value in trading-time. 

______________________________ 
 

Insert Figure 2 About Here 
______________________________ 

 

B. Pricing the One-Trade Riskless Bond   

 Should the one-trade bond exist and be traded, the market would be complete in the triplet consisting of 

the underlying asset, the matching bond that matures with the option, and the one-trade bond that matures upon 

arrival of the next trade. Unfortunately this is not the case.  Thus to price the option, we have to make use of the 

shadow price of this one-trade bond.   We determine the shadow price and properties of the one-trade bond 

using the fundamental martingale Euler valuation equation (Euler equation thereafter) in the context of a 

representative agent economy with power utility. 

 Let q  be the one-period pricing kernel (the normalized state price or the Radon-Nikodym derivative) 

for payoffs at the end of the period defined as s(i)/π(i), where s(i) is the state price for a sure payoff of $1 in 

state i, and π(i) is the probability that state i will occur.  Note that at the beginning of the period, the pricing 

kernel equals 1 and E , where B is the price of a one-period riskless bond. Given the trinomial asset 

price filtration that defines the state space, the evolution of the pricing kernel over a generic calendar-time 

period is as shown in Figure 3 where , , and  denote the pricing kernel when the asset price jumps up, 

does not jump, and jumps down, respectively. Therefore, over two successive periods for example, the pricing 

i

Bqi =)(

uq nq dq
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kernel in the state where the asset price does not change in the first period but jumps up in the second period 

should be , with the corresponding probability (1-g)gh.   un qq

'
=

U
U

i

1−
=

+=
g
r

______________________________ 
 

Insert Figure 3 About Here 
______________________________ 

 

 The Euler equation dictates that under no arbitrage, the pricing kernel must exist such that a pricing-

kernel-scaled asset price process should follow a martingale.  Since our market is incomplete, the pricing kernel 

is neither unique nor attainable from observable market prices. Instead, it has to be determined by resorting to 

equilibrium arguments that we now turn to.  

 It is well known that in an equilibrium representative investor economy, the pricing kernel is the 

investor’s time-value-discounted marginal rate of substitution. Therefore for an average investor whose utility 

exhibits constant relative risk aversion (CRRA thereafter), 

(1) ,
),('
),( 1 θδθ −−− = eAe

tc
tcAq i

i  

where  is the investor’s utility function, A  is the consumption jump size in state i, c is aggregate 

consumption, θ is the one-period time discount factor, and 1  is the measure of relative risk aversion (with 

).  This equation reveals that the pricing kernel is a decreasing function of both the consumption jump size 

and the degree of risk aversion. 

U i

δ−

1<δ

 Given the asset price and pricing kernel processes, we are ready to price the one-trade bond using the 

Euler equation. 

 

<Theorem 1>  Given the  trinomial asset price and pricing kernel processes, the price and required return of the 

one-trade bond is respectively 

(2)        
)1( gq

Qg

n −
β ,  and 

(3) ,
)1(

1
1 








−

+
r

Qr
r

g
r  

where r is the calendar-time one-period riskless rate and Q  is the expected one-period 

pricing kernel conditional upon trade arrival. 

[ du qhhq )1( −+= ]

<Proof> 

 The Euler equation dictates that under no-arbitrage the pricing-kernel-scaled bond price process should 

follow a martingale with the bond’s shadow price being equal to its expected pricing-kernel-scaled payoff: 
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where denotes the expectation over the bond’s maturity domain T, T∈ , and q  is the expected t-

period pricing kernel-scaled-payoff conditional upon no trade arrival until period t. In other words, q  is the 

(t-1)-period pricing kernel corresponding to no trade arrival in the first (t-1) periods, Q =  is the 

expected one-period pricing kernel conditional upon trade arrival in period t, and the payoff is $1 when a trade 

arrives and zero otherwise.  This bond has random maturity since the timing of the next trade arrival, T, is 

uncertain. Given our Bernoulli trade arrival structure, the first-order inter-arrival time distribution is geometric 

with probability mass function (1-g)

TE ),1[ ∞ Qt
n

1−

uhq

1−t
n

dqh)1( −+

t-1g.  Consequently, the bond price per Eq. (4) can be rewritten as the sum of 

an infinite geometric series:  

(5)        . 1

1

)]1(([ −
∞

=

−=∑ t
n

t

gqgQβ

Solving the sum yields Eq. (2).   

 In contrast, the one-period default-free bond price is 

(6)          ).1( gqQgB n −+=

 Since by definition 
β
β−

=
1

1r  and 
B

B−
=

1r ,  

(7)        
( )

)1(
1

1 β
β

−
−

=
B

B
r
r

.  

Substituting Eqs. (5) and (6) into Eq. (7) and simplifying yields 

(8) 
φg
rr =1 , 

where  

(9) , Qr)1( +=φ

is a random maturity adjustment factor for the equivalent martingale trade arrival probability.   

              Finally it is quickly checked that Eq. (8) can be rearranged to obtain Eq. (3). 

Q.E.D.  

  

 Eq. (3) reveals that r1, the one-trade riskless rate, has two components. The first component is the 

riskless component r/g as the riskless rate per expected trade arrival. The second is a random maturity risk 
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premium as the product of 1/g and 





−

+
r

Qr
r

)1(

 , with the former being the standard deviation of the 

exponentially distributed inter-arrival time, a measure of maturity risk, and the latter being the trade arrival risk 

premium. 

  Finally the equilibrium bond price and one-trade rate can be determined by substituting Eq. (1) into Eqs. 

(2) and (3). The random maturity adjustment factor can also be rewritten in terms of the size of consumption 

jump and the degree of risk aversion by substituting Eq. (1) into Eq. (9) as shown below: 

 

].)1([)1()()1()10( 111 −−−−− −++=+= δδθθδφ du AhhAereAEr
 

For a risk-neutral investor, we have δ = 1 and (1+r)=eθ that leads to φ = 1, i.e. no adjustment is needed.  For a 

risk-averse investor however, the higher is the degree of risk-aversion the larger is the adjustment.   

 

C. The Calendar-Time Trinomial Option Pricing Model 

 This section prices a call option with maturity T in calendar-time (t) using an n-step set-up.  In other 

words, the option maturity T is equally divided into n steps (or time periods) where in each step a first Bernoulli 

trial determines trade arrival, with a positive outcome leading to an independent second trial on the up/down 

price movement. To span the additional trade arrival uncertainty, the shadow price (the equilibrium value) of the 

one-trade bond is used to facilitate pricing in this incomplete market.  To apply the discrete-time martingale 

pricing methodology of Huang and Litzenberger (1988), we normalize the one-trade bond and the asset price 

using the matching bond - the calendar-time numeraire bond that has an identical maturity to that of the option.  

The derived option-pricing model is referred to as the “TRI” model. 

 Given no-arbitrage within our trinomial setting, the normalized prices of the one-trade bond and the 

underlying asset must be dictated by the following martingale representations:  

 (11) 
β

β
B

pm m p m= + − + −( ) ( )1 1 ,  

(12) ,)1()1( dSmpSmuSpm
B
S

−+−+=  

where p and 1-p are the respective one-step equivalent martingale probability measures  for the asset price to 

move up and down; and m and 1-m are the respective one-step equivalent martingale probability measures for 

trade arrival and non-arrival.  Eqs. (11) and (12) essentially state that, with respect to the martingale probability 

measures,  the normalized price must be equal to the expected value at the end of the period.   

 Solving Eq. (11) for the one-period trade arrival martingale probability measure yields 
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(13) ,
11

11

1r
rBm =

−

−
=

β

  

which shows that the interest rate relative between calendar-time and trading-time identifies the equivalent trade 

arrival martingale probability measure.  When a trade always arrives at the end of a period without arrival 

uncertainty, the two interest rates command the same value and thus the probability measure becomes one.   

 Using Eq. (8), Eq. (13) can be further simplified to  

(14) ,  φgm =

where φ, the random maturity adjustment factor for the equivalent martingale trade arrival probability measure 

as shown in Eq. (10), is determined by the investor’s degree of  risk aversion among others. For a risk-averse 

investor, the more risk averse the investor the larger the value of φ (>1) and thus the higher the ratio m/g.  This is 

intuitive since, ceteris paribus, the more risk-averse the investor the higher should be the arrival probability in 

order to compensate the investor with a higher expected return.  For a risk-neutral investor with δ = 1 however, 

φ = 1 and thus 

(15)  .gm =

In other words, the equivalent martingale measure is identical to the true probability measure because risk-

adjustment is no longer necessary.  

 To implement this trinomial representation as a standard n-step model, we divide the option maturity (T) 

into n equal calendar-time periods such that the length of each period is ∆t = T/n.  Let j be the trade arrival 

intensity parameter, i.e. the average annual number of trade arrivals. The true probability of trade arrival in a 

calendar-time period ∆t is thus: 

 , tjg ∆=

with the regularity condition  g ≤ 1. The corresponding equivalent martingale probability is thus   

 , tjm ∆= φ

where the term  jφ  serves as a risk-adjusted or pseudo trade arrival intensity parameter.  We see that the trade 

arrival martingale probability is utility dependent and inversely related to the number of steps.  The larger the 

number of steps in the trinomial implementation, the shorter the length of a time period ∆t, and consequently the 

lower the probability of a trade arrival in a time period. 

 Next, substituting Eq. (13) into Eq. (12) and simplifying, we obtain the following one-period asset price 

equivalent martingale probability measure: 
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(16) 
du
dRp

−
−

= 1 , 



where R1 ≡ 1 + r1 is the gross return on the one-trade bond and u = exp(σ1) and d = 1/u are the respective gross 

up/down movements of the asset price. Although this probability measure resembles the original CRR measure, 

there are two fundamental differences because the two are defined over different time dimensions.  First, p is 

utility-dependent here since R1 is a risky rate.  Secondly, the u and d here are independent of ∆t but they depend 

on ∆t in CRR.  Again this is because in TRI the asset price will only jump when a trade arrives, irrespective of 

the passage of calendar-time.  Consequently in Eq. (16),  u = exp(σ1) and d = 1/u, where the per-trade volatility 

σ1 replaces CRR’s calendar-time volatility. 

 To summarize, the no-arbitrage martingale trinomial tree is obtained by superimposing a jump process 

on a standard binomial process such that the movement of the underlying asset at calendar-time t over a 

calendar-time period is modeled by the i.i.d. trinomial setup illustrated in Figure 4, where in each period a trade 

arrives with probability m and does not arrive with probability 1-m. When a trade does arrive, asset price either 

increases from St to uSt with probability p or decreases from St to dSt with probability 1-p. The model links 

option values to not only the per-trade asset price change but also the intensity of trade arrival. As the intensity 

increases, the tree grows faster with the option price moves higher to reflect the larger expected total price 

volatility, and vice versa.   

______________________________ 
 

Insert Figure 4 About Here 
______________________________ 

 

Option pricing proceeds in the usual backward recursive fashion: the normalized option price being equal to 

the expected payoff from the option under the martingale probability measures.   By applying backward 

induction, we obtain the following n-period calendar-time trinomial option pricing formula:  
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where , the n-period trade arrival equivalent martingale probability measure of k trade arrivals in n periods, 

is 

kM
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and P(i), the asset price equivalent martingale probability measure that the ending stock price is u when k 

trades arrive, is 
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Notably the larger is the trade arrival probability m the larger should be the option price to account for a larger 

expected number of expected price changes. When this probability approaches one, it is straightforward to show 

that Eq. (17) degenerates into the standard n-period CRR formula.  

 

 

II. Trading-Time Binomial Option Pricing and Convergence to CCL 

 We next derive the isomorphic option-pricing formula in the trading-time (k) counterpart, prove it 

contains the information-time option-pricing model of CCL as a risk-neutral continuous-time limit, and 

demonstrate convergency using simulation.  This version is referred to as the “BIN” model. 

 

A. The Trading-Time Binomial Option Pricing Model 

 Recall that a simple change of time scale from calendar-time to trading-time reduces the trinomial 

process to a stationary binomial one. Thus pricing options in trading-time has the benefit of working with the 

simpler standard binomial tree.  However this isomorphic option has random maturity because the number of 

trade arrivals prior to its expiration is uncertain. 

 Since in an n-step TRI model, the number of trade arrivals over the life of an option may vary from a 

minimum of zero to a maximum of n, the option with random maturity can be valued using the Euler equation as 

a conditional expectation over the trade arrival uncertainty. More specifically, the normalized price of an n-

period call option with random maturity in trading-time can be solved as the sum of the arrival-probability-

weighted normalized prices of n+1 k-trade fixed-maturity options, denoted as Ck,  i.e. options with a fixed 

number of k trade arrivals, where  k=[0,n]:  

(20)  ∑
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n
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k
k
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0

)( , 

or equivalently, 

(21) , C n M Ck k
k

n

( ) =
=
∑

0

where  is the trade arrival martingale probability measure of  k trade arrivals in n periods as shown in Eq. 

(18) and B

kM

T  is the price of the matching bond.    

Since the maturity of Ck is fixed in trading-time with k trades, the underling asset price shall evolve over 

a trading-time binomial tree with fixed length k. Therefore we can price Ck using a general N-step standard 

binomial model such that 
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is the N-period martingale probability that the ending stock price is u  and  Sd iN
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where Rk is the gross riskless rate over the trading-time interval ∆ , defined as k/N, and is the corresponding 

one-step asset price change equivalent martigale probability. Again we require u

k kp

k > Rk > dk  to prevent arbitrage.  

 Similar to the TRI model, here the per-trade volatility σ1 replaces the calendar-time volatility.   Since Ck 

is priced using the standard binomial model defined over trading-time, the up/down price movements now 

depend on the length of the trading-time interval , measured in number of trades.  Clearly now the length of 

a trading-time interval dictates the size of price movement over the interval.  We are free to specify the length of 

 by choosing an appropriate value for N - the number of step in the model.  For example in the next section, 

we shrink the trading-time interval by increasing the number of binomial step to achieve diffusion price changes.   

k∆

k∆

 Comparing Eqs. (21) - (23) to Eqs. (17) - (19), it is straightforward to see the isomorphism between TRI 

and BIN. The TRI model becomes a special case of the BIN model when we convolute the asset price change 

and the trade arrival probability measures into a trinomial probability distribution as shown in Eq. (17) and let N 

equal k such that there is one trade per step, i.e. ∆ . This is because in our setup of the TRI model only one 

trade may arrive in each step (or time period).  Conversely, as we condition the trinomial probability distribution 

in Eq. (17) on the number of trade during the option’s maturity and let  ∆ , Eqs. (17) - (19) lead to Eqs. 

(21) – (23).  

1=k

1=k

    

B. Convergence and Comparison to CCL 
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 Chang, Chang and Lim (1998) apply the concept of a stochastic time change in a continuous-time 

setting to derive an information-time European call option pricing formula as a risk-neutral Poisson sum of 

Merton’s (1973) prices over the option’s maturity domain. They further apply the Barone-Adesi and Whaley 

(1987) analytic approximation to the Merton prices to extend the formula to American options. Although both 

CCL and this research assume a subordinated asset price process with an embedded time change, there are major 



differences in research methodology and assumptions.  CCL is derived in information-time using the 

continuous-time pricing methodology by basing a diffusion process over a discrete time space.  It is also 

preference-free by assuming and using the existence of a traded information-time riskless bond to hedge the 

information arrival uncertainty. In contrast, our main result is derived in calendar-time using the discrete-time 

pricing methodology and is utility-dependent, as we recognize the unavailability of the trading-time riskless 

asset.   As such, our model allows for risk aversion and is applicable to American and path-dependent options 

exactly. Nonetheless, we will show next that by applying suitable parameterization and invoking risk-neutrality, 

BIN degenerates into CCL.  

 To mimic CCL’s approach of defining a diffusion over a discrete-time space, we first need to shrink the 

trading-time intervals so as to converge the binomial price changes onto diffusions. This is tantamount to 

dividing each trade into infinitesimally small ones by letting N -> ∞. One way consistent to the n-step TRI 

model is to divide each trade into n smaller trades.  This is accomplished by letting N equal to nk such that ∆ = 

k/(nk) = 1/n.  All trading-time binomial trees now have the same interval of 1/n trade.  Then as n approaches 

infinity and with suitable parameterization as in CRR or Jarrow and Rudd (1983), the geometric trade arrival 

process will converge onto a Poisson process with all binomial price changes simultaneously converging onto 

diffusions. This approach, however, requires an expensive n

k

2-step binomial tree for a fixed-maturity n-trade 

option, and thus can only be accomplished at a high computation cost.  

 To alleviate the computational burden, a feasible alternative is to price all fixed-maturity k-trade options, 

where , using an n-step binomial model.  In other words, we let N=n such that ],0[ nk =

 
n
kk =∆ . 

This is equivalent to splitting each trade into n/k smaller trades such that consistency is maintained in all 

binomial trees having the same n number of steps albeit with different trade sizes (or trading-time intervals).  

The longer is the original tree, i.e. when there are more trade arrivals, the larger is the trade size after the split.  

For the n-trade option, the trade size is one trade, but for the one-trade option, the size is 1/n trade. Although the 

time step, i.e. the trade size, is different for each fixed-maturity option, the computational complexity of this 

alternative convergence approach is much lower than that of the approach mentioned above. The numerical 

analysis in the next section shows that the resulting BIN price converges rapidly to the CCL price. It also 

ensures that with suitable parameterization, as the geometric trade arrival process in calendar-time converges 

onto a Poisson process with n approaching infinity, all of the binomial price changes converge onto diffusions.   

 

<Theorem 2>  Given , the BIN formula as specified in Eqs. (21) – (23) shrinks to the CCL formula 

as n approaches infinity and when investors are risk-neutral. 

nkk /=∆
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<Proof>  See the Appendix. 



 

 

C. Simulation 

In this section, we numerically examine the convergence properties of TRI and BIN in relation to CCL 

with the use of a set of parameters consistent with their empirical estimates. Their study is based on transactions 

data on futures options on the S&P 500 index, the Deutschemark, and the Japanese Yen during the period from 

June 1, 1994 to December 19, 1994. We select the following parameter values, consistent with the average 

estimates from CCL: 

j0 = 100, σ1 = 0.01, S = 100, X = 95, 100, 105, T = 3 months, r = 0.08, 

where j0 is the expected number of trade arrivals in a calendar year and σ1 is the per-arrival price change 

volatility. To examine numerical convergence, we compute option prices using number of time periods (n) 

ranging from 50 to 1,000. In order to compare with CCL, we assume that the jump risk is diversifiable (φ = 1). 

Under this assumption, risk-neutral valuation is valid in both models.  

Table I illustrates convergence properties of TRI and BIN when the underlying asset does not pay 

dividend and the jump risk is diversifiable. Prices of European call and put options are reported in the Table. 

Because jump risk is assumed to be diversifiable, the BIN prices should converge to the CCL price, which is 

reported in Table I for comparison. As expected, the BIN prices converge rapidly to the CCL prices. The pricing 

difference is less than a penny with only n = 50 time periods. In addition, the TRI prices appear to converge 

fairly quickly as well. However, there is no closed-form solution to compare with in this case. More importantly, 

prices from the TRI and BIN models are quite close, with pricing difference being less than a penny when 1,000 

time periods are used. This is very reassuring since, although the two versions appear to be isomorphic in terms 

of a stochastic time change, the implementation of the BIN model requires shrinking not only time period but 

also trade size.  As n approaches infinity, the TRI price approaches a Poisson sum of binomial prices while the 

BIN price approaches a Poisson sum of BS prices, i.e. the CCL price. Since the TRI and BIN prices are actually 

fairly close, the simplicity of the TRI model makes it more appealing to implement than the BIN model.  

Computation time further reveals the advantage of the TRI model over the BIN model. We measure the 

CPU time (in seconds) of TRI and BIN when they are implemented in Fortran 77 using a 500 MHz Pentium III 

processor (not reported here). The CPU time of the TRI model is negligible, with less than a second used even 

when 1,000 time steps are implemented. The BIN version, on the other hand, is much more expensive in 

computation time. When 200 and 1,000 time steps are used to compute the binomial price, nearly 3 seconds and 

six minutes are needed, respectively.  Therefore for the extension in the next section, we will focus on TRI. 

To further explore the convergence properties of our model, we replicate the results in Table I when the 

underlying asset pays a continuous dividend and also with other values of trade arrival intensity parameter (j) 

and per trade volatility rate (σ1).  The results show similar robustness and therefore are omitted here for brevity.   
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______________________________ 
 

Insert Table I About Here 
______________________________ 

 

 

 III. Extended Trinomial Model with Correlated Trade Arrivals and Price Changes: 

Modeling and Empirical Tests 

 
 Bakshi, Cao and Chen (1997, 2000) have reported that when volatility and asset price changes are 

uncorrelated with each other, the alternative stochastic volatility models to the BS that ignore the leverage effect 

are unlikely to generate the levels of return skewness and kurtosis necessary to reconcile the BS implied-

volatility smiles. This is especially true for index data where the smile is deep.  The implication is that Hull and 

White (1987) and Stein and Stein (1991) that assume uncorrelated volatility and asset price changes and Merton 

(1976) and CCL that assume uncorrelated jump return and trade arrival intensity should not be expected to 

perform much better than the BS.  TRI also falls into this category, because, like Merton (1976) and CCL, it also 

assumes i.i.d. price changes everywhere on the price path.   This motivates us to generalize TRI by introducing 

correlation between asset return and trade arrival intensity.  We shall call this extended model “ETRI”. 

 Black (1976) has suggested that when the stock price goes up, the level of volatility trends to go down, 

and vice-versa.   This stylized inverse time-series relation between stock return and volatility changes has 

become known as the “Fischer Black effect” or as the leverage effect, and has been supported extensively in the 

empirical literature.    For the S&P 500 index, Dumas, Fleming, and Whaley (1998) find this correlation to be  -

.570 during the period June 1, 1988 through December 21, 1993.  Schwert (1989) finds this correlation to be 

asymmetric - the increase in volatility for decreases in the index tends to be larger than its counterpart.  In this 

vein and for parsimony, we assume that the trade arrival intensity in ETRI that induces stochastic volatility in 

the model is a deterministic function of stock return. When the asset price goes up, the trade arrival intensity 

goes down to indicate a lower expected volatility and vice-versa.  

 The deterministic structure is chosen over a stochastic intensity structure for two reasons.  First, it 

requires neither additional securities to hedge the intensity risk nor the intensity risk to be priced.  Second, it is 

parsimonious with only one more parameter needed than the original pricing formula to control for the speed 

and direction of intensity change.  Incorporating stochastic intensity will certainly free out the correlation, but 

will also lead to a more complex state space structure with at least four states in each period and possibly several 

additional parameters to estimate.  Since ETRI is a tree model with computing time growing exponentially with 

the number of parameters required, a more general structure as such will be computationally unbearable when 

brought to extensive empirical testing.  Therefore we focus on a deterministic structure in this study.   In the 

following we describe and empirically test the ETRI model. 
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A. Model 

Consider the generalized subordinated binomial tree structure shown in Figure 5, where k is the net up 

moves from the initial asset price at node (0,0) to the current asset price at node (i, k) for 0  

and  

ikini ≤≤−≤≤ ,

.)( 0
kuSkS =

______________________________ 

Insert Figure 5 About Here 
______________________________ 

 

     Stock price movement is still modeled by trade arrivals. If a trade does not arrive, the stock price 

remains unchanged. If a trade does arrive, the stock price may jump up by a factor of u or jump down by a factor 

of d. However, trade arrival intensity is no longer constant in the generalized subordinated binomial model. 

Specifically, jump intensity at node (i, k) is modeled as: 
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where λ = j0φ  is the initial jump intensity at initial stock price level (when k = 0). This square-root jump 

intensity structure, motivated by that volatility moves in square-root of time, is asymmetric and may induce 

positive or negative correlation between jump intensity and stock price when θ > 0 or θ < 0. Constant jump 

intensity modeled previously is a special case when θ = 0. Numerical validation not reported here for brevity 

shows this square-root deterministic structure is robust in producing wider ranges of asset return skewness and 

kurtosis than a linear structure.  With the new jump intensity structure, the martingale probabilities can  be 

quickly shown to be 
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To implement this generalized version of the subordinated binomial model, three parameters need to be 

estimated: per trade volatility (σ1) and trade arrival parameters (λ and θ). Subsequent empirical tests are all 

based on this version of the subordinated binomial model. 

 

B. Data Description 

Intra-day data on S&P 500 index options are used for our empirical study. Consistent with previous 

research (e.g. Bakshi, Cao and Chen (2000)), we choose to study put options in the period from September 

1,1993 to August 31,1994. Given put-call parity and the fact that S&P 500 options are European, examining put 

options alone is sufficient. We also replicate the analysis using the corresponding call options and the results are 

not materially different. Hence, we concentrate on put options.  

The intra-day option price series are obtained from the Chicago Board Options Exchange (CBOE). In 

addition, daily dividend series are obtained from Standard and Poor’s Corporation through the DRI database 

while daily T-bill yields are obtained from the Wall Street Journal. Consistent with previous research, we 

concentrate on the mid bid-ask quote instead of actual transaction prices in order to avoid the bid-ask bounce 

problem. To alleviate computational burden, only the last reported bid-ask quote each day prior to 3:00 pm 

Central Standard Time is used in our empirical tests. The advantage of the intra-day data is that the option price 

and index value are recorded at the same time and thus avoid the problem of nonsynchronous trading. Since the 

S&P 500 index options are European, the present value of all dividends prior to the maturity of the option is 

removed from the index value before an option-pricing model is employed. Standard data filters are applied to 

clean up the option price data. First, observations with less than a week to maturity are eliminated because near 

maturity options may induce liquidity-related biases. Second, price quotes lower than $3/8 are excluded from 

the sample. These prices may not reflect true option value due to proximity to tick size. Third, option quotes that 

are time-stamped later than 3:00 pm Central Standard Time are excluded. The stock market closes at 3:00 pm 

but the options market continues to trade for another 15 minutes. Nonsynchronous trading problem is avoided if 

index and option data are matched prior to 3:00 pm. In addition, deep-in-the-money options are eliminated from 

the sample because these options are expensive and rarely traded. In this study, we define deep-in-the-money 

options as options that are priced at 10% of the index value or higher. Finally, option quotes violating the 

boundary condition are eliminated from the sample. Altogether, the data filters have eliminated 41% of 

observations in the sample. The final sample consists of 22,055 put prices over 253 trading days.   

 

C. Empirical Methodology and Results 

 To empirically test the performance of ETRI, we apply it to S&P 500 index options and compare its 

empirical performance against competing models. To ensure the robustness of the results, we examine and 

contrast competing models with respect to in-sample fit, out-of-sample pricing performance and dynamic 

hedging performance. While in-sample and out-of-sample pricing errors reflect a model’s static performance, 
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hedging errors reflect the model’s dynamic performance in how well the model captures the dynamic properties 

of option and the underlying security prices. The competing models are the BS model and the CEV model, 

which are specified, respectively, by the following stochastic processes (stated under the risk-neutral probability 

measure): 

dztSdttSrtdS )()()( σ+= , 

dztSdttSrtdS 0)]([)()( 0
ασ+= . 

 

C.1. Structural Parameter Estimation and In-Sample Test 

All models tested in this study have one or more unobservables. These so-called structural parameters 

must be estimated before the model can be applied to option data. As is standard in the literature, we adopt the 

implied parameter estimation approach. Specifically, our estimation procedure solves for the structural 

parameter(s) that minimize aggregate pricing errors for each model over all options on a given day. The 

procedure is described below for our generalized subordinated binomial model. It is similar for other models 

examined in this study. 

The ETRI model has three structural parameters: per trade volatility (σ1), initial trade arrival intensity (λ) 

and a second trade arrival parameter controlling the correlation between trade arrival and stock price (θ). 

Following Dumas, Fleming and Whaley (1998), Bates (1996), Bakshi, Cao, and Chen (1997) among others, we 

estimate these parameters for each trading day by minimizing the sum of squared errors (SSE hereafter) between 

model price and market price using all options on that day. In other words, we solve the following minimization 

problem: 
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where Vi(σ1, λ, θ) and Vi are model price and market price of option i. This minimum SSE is calculated over all 

options available on a given trading day. In addition, the minimum SSE also serves as a measure of in-sample fit 

for the option model tested. We use the average minimum SSE over the entire sample period to compare and 

contrast the in-sample performance of competing models. 

 Table II summarizes the results from the structural parameter estimation for the three competing models. 

Parameter estimates shown in the table are sample averages with standard errors reported in parentheses. The in-

sample fit is reported in the last column of the table. As measured by the average SSE, the ETRI model provides 

better in-sample fit than either of the two competing models. As shown in the table, the average SSE is 180.76 

for the ETRI model, which is 35.8% and 15.8% lower than the corresponding SSE for the BS and CEV model, 

respectively. This means that in terms of incremental improvements over CRR, the leverage effect accounts for 

20%, while random trade arrivals specification accounts for 15.8%.   Furthermore, the ETRI model not only 
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provides better in-sample fit (lower SSE) than either of the two competing models on average over the sample 

period but it also does so on every day from September 1, 1993 to August 31, 1994. This result is expected as 

the ETRI model has three structural parameters while the other two models have only one or two such 

parameters. With one or two extra free parameters to fit the model, it is not surprising that the ETRI model 

provides better in-sample fit than the other two models. It is also interesting to note that the estimated leverage 

parameter (θ) in the ETRI model is negative. This implies that a price increase (decrease) in the underlying asset 

tends to reduce (increase) the volatility of the underlying asset, consistent with the leverage effect first described 

by Black (1976). It is, of course, another story whether the better in-sample fit can translate into superior out-of-

sample performance.  

______________________________ 
 

Insert Table II About Here 
______________________________ 

 

C.2. State-Price Density and Internal Consistency 

Once the structural parameters are estimated, the state-price density (SPD) implied by option prices can 

be calculated for a given model. Take the subordinated binomial model for instance. The three structural 

parameters and initial stock price fully specify the probability distribution of future stock prices. For a given 

maturity, we can build a subordinated binomial tree using the estimated structural parameters. As describe 

previously, these parameters are estimated by minimizing the SSE using all option prices available on that day. 

By tracing the tree from the initial node to maturity, we calculate the probability that the stock price ends up at a 

given terminal node (nodal probability). The SPD is straightforward to determine once nodal probabilities at 

maturity are known. Alternatively, the SPD can be determined from the second partial derivative of option price 

with respect to strike price (Breeden and Litzenberger (1978)). However, we find that the nodal probability 

approach is both computationally less demanding and also more accurate.  

Because the SPD captures all the essential pricing structure of an option pricing model, we compare and 

contrast SPDs implied by structural parameters estimated from each model using option prices. Any differences 

in in-sample pricing performance among competing models should manifest itself in differences between SPDs. 

To illustrate typical SPDs from our competing models, we select a representative trading day during our sample 

period.  On September 22, 1993, the BS implied volatility is 12.7% representing the median volatility in our 

sample period. We use this particular day to show the differences in SPDs calculated using different option 

pricing models. Structural parameters are estimated as before by minimizing the sum of squared errors across all 

options on that date. The estimated structural parameters are σ = 0.1265 (BS), σ0 = 0.1279 and α0 = 0 (CEV), 

and σ1 = 0.0230, λ = 30.3633 and θ = −2.5938 (ETRI). With these parameters, SPDs for a given maturity can be 

calculated for each model. 
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 Consider first short-term SPDs implied by the three models. The SPDs are calculated with a 30-day 

maturity using the structural parameters estimated on September 22, 1993 and are illustrated in Figure 6. The BS 

and CEV models have nearly identical SPDs while the ETRI model provides a slightly more peaked SPD. To 

verify the visual differences observed in Figure 6, we calculate the skewness and kurtosis of each SPD with the 

understanding that the normal density (the BS model) has a skewness of zero and a kurtosis of 3. We find that 

the SPD from the CEV model has a skewness of –0.1106 and a kurtosis of 3.0196, with both measures only 

slightly different from the corresponding measures of the normal density. In comparison, the SPD from the 

ETRI model has a skewness of –0.0691 and a kurtosis of 3.4001. Again, the ETRI’s skewness is not much 

different from the BS’s, but its kurtosis is much higher than the BS’s. These calculations confirm the differences 

illustrated in Figure 6 and show that the SPDs from the CEV and ETRI models are slightly negatively skewed 

and more leptokurtotic than that from the BS.  

______________________________ 
 

Insert Figure 6 About Here 
______________________________ 

 

 Consider next long-term SPDs implied by the same structural parameter estimates. Using a 270-day 

maturity, Figure 7 plots the SPDs from the BS, CEV and ETRI models. The long-term SPDs from the BS and 

the CEV model are visibly more different than the short-term SPDs shown in Figure 6, but the differences are 

still not particularly large. In contrast, the SPD from the ETRI is clearly different from the SPD of either the BS 

model or the CEV model. It is significantly more skewed and more peaked than either competing SPD. To 

verify these differences, we again calculate the skewness and kurtosis for each SPD. They are –0.3415 and 

3.2564 for the CEV model and –0.5124 and 3.4811 for the ETRI model, respectively. These statistics confirm 

the visual differences observed in Figure 7 and further show that the SPDs for the CEV and ETRI exhibit a 

much higher level of kurtosis with more weight concentrated in the middle as well as a much greater degree of 

negative skewness.  

___________________________ 
 

Insert Figure 7 About Here 
______________________________ 
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The results presented in Figures 6 and 7 are representative of SPDs on most days in our sample period 

from September 1, 1993 to August 31, 1994. The SPDs for the CEV model and the ETRI model are negatively 

skewed and are more peaked than the corresponding SPD for the BS model. The difference is particularly 

pronounced for the ETRI model. If the ETRI model were the true model in our sample period, the BS model 

would have exhibited a larger implied volatility for options with a lower strike price than for options with a 

higher strike price. This is because the ETRI density is more peaked in the middle pushing more mass to the 

tails, more so to the left tail due to the negative skewness. This is consistent with the “volatility skew” observed 



during our sample period. In addition, the ETRI model is capable of providing different levels of skewness and 

kurtosis across maturities. These features of the ETRI model captured by the SPD are internally consistent with 

empirical regularities observed in option prices. 

 
C.3. Out-of-Sample Pricing Performance  

     Good in-sample fit does not necessarily translate into superior out-of-sample pricing performance. The 

presence of more structural parameters may actually lead to overfitting and penalizes a model’s out-of-sample 

performance if the extra parameters do not improve the structural fit. To ensure that the better in-sample fit of 

the ETRI model is meaningful, we next investigate the ETRI model’s out-of-sample performance in comparison 

with competing models.   

 We begin with a one-day out-of-sample pricing test where an option pricing model is tested on a given 

trading day using the structural parameters estimated from the previous trading day. As described before, the 

structural parameters are estimated by minimizing the SSE between model price and market price for each 

model considered. On the next trading day, the estimated parameters are then used to price all available options. 

The resulting model price of the option is compared to the market price to calculate the pricing error. The 

pricing error is aggregated across all options to calculate the total SSE, mean squared errors (MSE), mean errors 

(ME) and mean absolute errors (MAE). The results are summarized in Table III. Since structural parameters 

may change over time, it is expected that the out-of-sample pricing performance may not be as good as the in-

sample pricing performance. This is indeed the case when we use SSE to compare the out-of-sample pricing 

performance in Table III with the in-sample fit in Table II. For example, the average SSE for the ETRI model is 

188.58 in the out-of-sample test, which is slightly larger than the 180.76 in the in-sample test of the same model. 

Similar results hold for the BS and CEV out-of-sample tests. 

______________________________ 
 

Insert Table III About Here 
______________________________ 

 

 More interestingly, the ETRI model continues to perform better out-of-sample than the CEV model 

while the CEV model is in turn superior to the BS model. Panel I of Table III reports the out-of-sample pricing 

errors. The SSEs are 288.94, 222.26 and 188.58 for the BS, CEV and ETRI model, respectively. Measured by 

the SSE, the ETRI’s out-of-sample pricing performance is 15% better than the CEV model and 35% better than 

the BS model, similar to the in-sample results.  The conclusion is similar but less in magnitude when other 

measures of pricing errors are used to evaluate out-of-sample performance, with the exception of ME in which 

case the CEV model dominates. These results confirm that the ETRI’s superior in-sample fit does to a large 

extent translate into better out-of-sample pricing performance. 

 

C.4. Dynamic Hedging Test 
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Empirical tests performed so far are all static in nature. In other words, these tests are all one-period 

tests that require the calibration of the option pricing model in one day and the application of the calibrated 

model in another day. Many real-world applications such as delta hedging, however, require the dynamic 

application of an option pricing model. To examine an option pricing model’s dynamic fit to option prices over 

time, we conduct a dynamic hedging test of the three competing models. As is frequently used in previous 

studies, we consider a delta hedging experiment with rebalancing at fixed time intervals. The average hedging 

errors will be used to assess the dynamic fit of different models. Bakshi, Cao, and Chen (1997) have reported 

that in sharp contrast with that obtained on out-of-sample pricing, delta hedging performance seems to be 

insensitive to model misspecification.  Regardless of hedge rebalancing frequency, the real significant 

improvement by the stochastic volatility models over the BS occurs only when OTM calls are being hedged.  

The fundamental benefit of the stochastic volatility models in hedging is thus that they provide a consistent 

theoretical framework to dela-vega-neutral hedge.   It will be interesting to see if similar findings will be 

obtained in our experiment.   

The hedge portfolio is constructed as follows. Consider an option writer who wishes to use the 

underlying asset (i.e., the S&P 500 index) to hedge an option position. Delta hedging is a simple and yet 

effective strategy to use in this case. Suppose the dealer wishes to hedge a short position in a put option with τ 

periods to maturity and strike price X. The minimum-variance hedge of the put at period t requires Hs(t) units of 

the underlying asset and H0(t) dollars invested in T-bills, where 

)()( ttHs δ= , 

)()(),()(0 tStHtPtH s ⋅−= τ , 

and δ(t), P(t,τ) and S(t) are option delta, option price and index value, respectively. The hedge portfolio 

constructed in period t is thus H . For each option pricing model tested, option delta is 

calculated separately using the structural parameters estimated from all option prices on the previous trading day. 

The constructed hedge portfolio is held until the next period. The hedging error is calculated as: 

)()()( 0 tHtSts +⋅

)1()()1,1()()1( 0 +⋅−−+−⋅=+ tStHtPRtHtE sτ , 

where R is the plus 1 interest rate over the rebalancing period. The hedge portfolio is then rebalanced to 

maintain the delta neutral position. Option delta is recalculated using the structural parameters estimated on the 

day prior to the rebalancing day (period t+1). This procedure is repeated until option maturity.  The option delta 

thus obtained varies according to the model specification.   In the ETRI model, since volatility is stochastic and 

correlated with stock returns, the position to be taken in the stock must control not only for the direct impact of 

the underling price risk but also for the indirect impact of that part of volatility risk that is correlated with stock 

price fluctuations.  In contrast, in the BS model the option delta needs only to control for the impact of the 

underlying price risk.   

  The mean dollar hedging error (ME) and the mean absolute hedging error (MAE) are calculated as: 
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respectively. We also calculate the mean absolute deviation (MAD) to measure the variability of hedging errors: 

∑
=

−=
τ

τ 1
ME)(|1MAD

t
tE | . 

Because there are many options traded on any given day, we calculate these mean values across all time periods 

and options. For simplicity, we abuse the notation by continuing to use ME, MAE and MAD to denote the 

corresponding mean values across time periods and options. 

 Table IV reports the hedging errors from the delta hedging test with a one-week rebalancing period. 

Other rebalancing periods (such as one day and one month) are also considered, but the results are similar and 

hence not reported. Note that Table IV presents hedging errors relative to the BS model. For example, the ME 

for the BS and ETRI model is 2.4120 and 2.4605, respectively. The ratio of hedging errors of ETRI over BS is 

thus 1.0073, which is reported in the last row of Table IV under the heading “Overall”. All three measures of 

hedging errors indicate that on average the three competing models exhibit nearly identical delta hedging 

performance. The superior static pricing performances across moneyness of the ETRI model does not 

necessarily translate into superior dynamic pricing performances.  

 Table IV also reports hedging errors for three maturity groups and six moneyness categories. The 

maturity groups represent short-term (less than 60 days), medium-term (between 60 and 180 days) and long-

term (over 180 days) options. Option moneyness is defined as the ratio of option strike price over index value. 

To adjust for interest rate and dividends, we discount the strike price using the risk-free rate and subtract the 

present value of dividends from the index value. As shown in the table, hedging performance varies across the 

maturity and moneyness groups.. Both the CEV and the ETRI models tend to perform better than the BS model 

when the option is either deep in or out of the money, especially for short-term options. Between the CEV and 

the ETRI models, the ETRI model clearly dominates the CEV model for either deep in or out of the money 

short-term options.   For other moneyness levels, the CEV and the ETRI models perform either on par with the 

BS model or slightly worse. These results are therefore quite consistent with the findings from Bakshi, Cao, and 

Chen (1997). The ETRI model only offers incremental improvements in hedging when short-term in or out of 

money options are hedged.  

______________________________ 
 

Insert Table IV About Here 
______________________________ 
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Finally, our data and sample period are consistent with those adopted by Bakshi, Cao and Chen (2000). 

Due to differences in estimation methods, their results are not directly comparable to ours. They employ an 

internally consistent methodology to fit the structural parameters of the model once ex post while we employ the 

typical implied method to re-fit the model daily ex ante. Because both studies use the BS model as a competing 

model, however, model performances relative to the BS model may be discussed between the two studies.  We 

find that the performance of the ETRI model is comparable to that of the stochastic volatility models in Bakshi, 

Cao and Chen (2000) in out-of-sample pricing tests. The advantage of the ETRI model is of course that much 

fewer structural parameters need to be estimated in comparison with stochastic volatility models. On the other 

hand, Bakshi, Cao and Chen (2000) show that the stochastic volatility models dominate the BS model by a 

significant margin in delta hedging tests across moneyness level while the ETRI model does not.  This lack of 

significant improvement in hedging performance perhaps points to the potential need to further extend the ETRI 

model to incorporate seasonality and clustering in the trade arrival dynamics. However, incorporating stochastic 

trade arrival intensity may destroy the parsimonious properties of the ETRI model. This is because the ETRI 

model is a tree-based model with computing time growing exponentially with the number of structural 

parameters. The stochastic structure requires either additional securities to hedge the intensity risk or the 

intensity risk to be priced, which will lead to a more complex state space structure with at least four states in 

each period and possibly several additional parameters to estimate. This more general structure, though 

theoretically appealing, may be computationally too demanding when brought to extensive empirical testing. 

This tradeoff between model complexity and computational efficiency is left for future research.  

 

 

IV. Concluding Remarks 

We have developed a unique tree structure with random move time by randomizing trade arrival, 

motivated by the findings in the microstructure literature that price and trade commove with random inter-

arrival time, and in the subordinated process modeling literature that subordinating asset price changes to 

random trade arrival significantly reduces asset return leptokurtosis.   

In calendar-time, random trade arrival leads to a trinomial tree structure that embeds stochastic volatility, 

while in trading-time the isomorphic tree structure is binomial with random maturity.  We further extend the 

trinomial model to allow for negatively correlated trade arrival intensity and asset price changes to address the 

leverage effect. By benchmarking to the one-parameter BS and the two-parameter CEV models, we demonstrate 

that this parsimonious structure with only three parameters offers significant incremental improvements in 

pricing and hedging.    

 Several extensions are possible.  The first is to further extend the structure to incorporate seasonality 

and clustering in the trade arrival process, which might bring into further increment improvements. Given the 

tree nature of the model however, this extended structure might be computationally unbearable in empirical 
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testing. This motives the next extension.  Since the trading-time binomial version contains CCL as a risk-neutral 

limiting case, its extension to incorporate a stochastic intensity arrival process promises one way to extend 

Chang, Chang, and Lim (1998) as well as an analytic solution to the empirical obstacle mentioned above.  Third, 

since the calendar-time trinomial model promises a unique and parsimonious approach to option pricing with 

stochastic volatility, applications to exotic and embedded options may also be promising.    
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Footnotes 
 
 
1 Boyle (1986) developed a trinomial pricing model and demonstrated numerically that it converges faster than 
the CRR model. Madan, Milne and Shefrin (1989) studied multinomial generalizations of the original model and 
proved that the convergence properties remain unchanged.  Breen (1991), Tian (1993), Kim and Byun (1994), 
Curran (1995), Leisen and Reimer (1995), and Heston and Zhou (2000) examined and provided some 
suggestions for improving the rate of convergence of binomial and/or trinomial models.   Boyle (1988), Boyle, 
Evnine and Gibbs (1989), He (1990), Kamrad and Ritchken (1991), Amin (1991), Wei (1993), Ho, Stapleton 
and Subrahmanyam (1995), and Hilliard and Schwartz (1996, 1997) researched on tree-based models for asset 
prices with two- or multi-state variables. Hull and White (1990), Nelson and Ramaswamy (1990), and Tian 
(1994) studied binomial or trinomial models when the underlying asset follows more complex stochastic 
processes such as those suitable for the evolution of interest rates. No-arbitrage interest rate models are 
developed in such a way that they are automatically consistent with the observed term structure of interest rates 
and/or interest rate volatilities.  
 
2 The basic approach is to first find a unique risk-neutral probability distribution of ending asset prices at the 
maturity of options implied by, or consistent with, currently observed option prices. Under some reasonable 
economic and/or technical assumptions, the risk-neutral probability distribution leads to a unique binomial or 
trinomial tree. Implied binomial or trinomial models include Rubinstein (1994), Dupire (1994), Derman and 
Kani (1994), Derman, Kani, and Chriss (1996), Jackwerth and Rubinstein (1995), and Brown and Toft (1996), 
Rubinstein (1998), among others. 
 
3 A subordinated process {X[T(t)]} is obtained by randomizing the time clock t in a stationary Markov process 
{X(t)} by a new time clock {T(t)}. Thus constructed, the resulting nonstationary process {X[T(t)]} is said to be 
subordinated to {X(t)}, the stationary parent process, and directed by {T(t)}, the directing process, which is also 
called the subordinator. For more details, see Feller (1971). 
 
4 For finding supports of the subordinated process model, see Epps and Epps (1976), Westerfield (1977), Kon 
(1984), Harris (1986) and Callaway (1989) on daily stock prices, Harris (1987) on transaction data, Ané and 
Geman (2000) on high frequency data, and Tauchen and Pitts (1983) and Hall, Brorsen and Irwin (1989) on 
futures. 
 
5 Clark (1973) and others have  introduced the concept of trading-time or transaction-time to refine subordinated 
process models. Trading-time refers to a time scale where price changes are measured from trade to trade rather 
than from time to time as in the calendar-time norm. Trading-time subordinated models predict that the 
variability of security returns positively relates to the number of trades during a given calendar-time period, so 
the leptokurtosis of return distribution can be significantly reduced if we measure time from trade to trade. In 
other words, the total price change in a given calendar-time period, such as a day, is the sum of a "random" 
number of independent price changes due to random information arrival. Subordinated process models describe 
price evolution with the trade arrival process as the randomizing subordinator, and thus asset returns become 
stationary when measured in trading-time.  
 

6 Huang and Litzenberger (1988) rederived the Cox-Ross-Rubinstein's binomial option pricing model by using a 
discrete-time version of the martingale valuation theory that can be conveniently applied to an incomplete 
market. 
 

7 It is commonly known that the BS model exhibits the “volatility smile/sneer” pricing bias when brought to data, 
that the model’s implied volatilities tend to differ across exercise prices and times to expiration.  Rubinstein 
(1985) presents some early evidence. He shows that the model consistently undervalues out-of-the-money, 
short-maturity options traded on the Chicago Board Options Exchange. Rubinstein (1994) shows that the S&P 
500 option-implied volatilities forms a “smile” pattern prior to the October 1987 market crash.  Options that are 
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deep ITM or OTM have higher implied volatilities than ATM options. After the crash, a “sneer” appears – the 
implied volatilities decrease monotonically as the exercise price rises relative to the index level, with the rate of 
decrease increasing for options with shorter time to expiration.   
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Appendix 

 

<Theorem 2>  Given , the BIN formula as specified in Eqs. (21) – (23) shrinks to the CCL formula 

as n approaches infinity and when investors are risk-neutral. 

nkk /=∆

 

<Proof> 

 First, from Eq. (18), , the n-period trade arrival equivalent martingale probability measure of k trade 

arrivals in n periods, is 
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where m =  with  being the risk-adjusted arrival intensity parameter and T being the option’s maturity.  

Since as n approaches infinity, the geometric interarrival distribution converges to a Poisson distribution, we 

have 
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is a Poisson distribution with arrival intensity parameter jφ.  

 Next, from Eqs. (22) and (23) and with N=n, we have the N-step binomial price of a k-trade option 
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where r0 is the instantaneous trading-time riskless rate and Rk  is the  trading-time riskless rate over the trading-

time interval .Then as n approaches infinity with ∆k approaching zero, the n-period binomial price 

converges to the BS price: 

nkk /=∆
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where  is the trading-time BS price of a call option with asset price S, strike price X, 

instantaneous trading-time riskless rate r
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 Next by letting n approaches infinity in Eq. (21) and by substituting Mk and Ck in Eq. (21) using Eqs. 

(24) and (26), we obtain the continuous-time limit: 
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 is a Poisson distribution with pseudo arrival intensity parameter , and 

 is the trading-time BS price . 
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 C(∞) is utility-dependent because parameters r0 and φ are.  It is an increasing function of , the risk-

adjusted or the pseudo trade arrival frequency parameter, in that higher values of  and φ lead to more frequent 

trade arrivals and thus command higher option values.  

φj

j

 Finally, it is straightforward to see that when investors are risk-neutral with φ = 1, Eq. (27) simplifies to 

the following information-time option pricing formula of CCL when applying to an equity option:  
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Q.E.D. 
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Figure 1 

A Subordinated Binomial Tree under Actuarial Probabilities. 

The asset price is S at the beginning of the period. The change of price during the period depends on whether or 

not a trade arrives and whether an up or down jump takes place if a trade does arrive. In the figure, u and d 

denote the constant up and down gross jump size, respectively, g denotes the probability of one trade arrival 

during a calendar-time period, 1-g the probability of zero arrival, h the up probability, and 1-h the down 

probability. 
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Figure 2 

The Evolution of the One-Trade Bond under Actuarial Probabilities. 

The one-trade bond price is β at the beginning of the period. The bond price remains unchanged if no trade 

arrives during the calendar-time period and increases to 1 if a trade does arrive. In the figure, g denotes the 

probability of trade arrival, 1-g the probability of no trade arrival, h the probability of an up jump in stock price 

if a trade does arrive, and 1-h the probability of a down jump in stock price if a trade does arrive. 
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Figure 3  

The Evolution of the Pricing Kernel over a Calendar-Time Period. 

The pricing kernel is denoted by qi where the subscript indicates one of the three possible states (u, n and d). In 

the figure, g denotes the probability of one trade arrival during a calendar-time period, 1-g the probability of 

zero arrival, h the up probability, and 1-h the down probability. 
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Figure 4 

A Subordinated Binomial Tree under Risk-Neutral Probabilities. 

The asset price is S at the beginning of the period. The change of price during the period depends on whether or 

not a trade arrives and whether an up or down jump takes place if a trade does arrive. In the figure, u and d 

denote the constant up and down gross jump sizes, m denotes the probability of one trade arrival during a 

calendar-time period, 1-m the probability of zero arrival, p the up probability, and 1-p the down probability. 
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Figure 5 

A Generalized Subordinated Binomial Tree. 

The asset price is S(k) at the beginning of the period where k is the net up moves from the initial asset price at 

node (0, 0) to the current asset price at node (i, k). The change in asset price during the period depends on 

whether or not a trade arrives and whether an up or down jump takes place if a trade does arrive.  
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Figure 6 

30-Day State-Price Density 

The 30-day state-price density function is plotted for the BS, CEV and ETRI model, respectively. Structural 

parameters used in the calculation are estimated from option data from September 22, 1993. The BS implied 

volatility is 12.7% on that date, the median volatility in the sample period. 
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Figure 7 

270-Day State-Price Density 

The 270-day state-price density function is plotted for the BS, CEV and ETRI model, respectively. Structural 

parameters used in the calculation are estimated from option data from September 22, 1993. The BS implied 

volatility is 12.7% on that date, the median volatility in the sample period. 
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Table I 

Numerical Convergence of the TRI and the BIN Models 

The subordinated binomial prices are computed for the number of time periods (n) ranging from 50 to 

1,000. Both the trinomial version (TRI) and the sum of binomials version (BIN) are implemented. The 

parameter values used for per trade volatility, trade arrival intensity per year, option maturity, riskless 

rate, asset price, and strike prices are σ1 = 0.01, j0 = 100, T = 0.25, r0 = 0.08, S = 100, and X = 95, 100, 

105, respectively. Prices from the binomial version are compared with the continuous-time limit of 

Chang, Chang, and Lim (1998). 

 

# of Call options  European put options 
periods X = 95  X = 100  X = 105  X = 95  X = 100  X = 105 

(n) BIN TRI  BIN TRI  BIN TRI  BIN TRI  BIN TRI  BIN TRI 

     50 7.048   7.047  3.106 3.114  0.892 0.885  0.167 0.166  1.126 1.134  3.813 3.805 
     60 7.046 7.047  3.107 3.114  0.892 0.886  0.166 0.166  1.127 1.133  3.813 3.806 
     70 7.046 7.047  3.108 3.113  0.891 0.886  0.166 0.166  1.128 1.133  3.812 3.806 
     80 7.047 7.047  3.108 3.113  0.892 0.886  0.166 0.165  1.129 1.132  3.814 3.807 
     90 7.046 7.047  3.109 3.113  0.893 0.887  0.166 0.165  1.129 1.132  3.815 3.807 
   100 7.046 7.047  3.109 3.113  0.894 0.887  0.166 0.165  1.129 1.132  3.815 3.807 
   150 7.046 7.047  3.110 3.112  0.895 0.888  0.165 0.165  1.130 1.131  3.816 3.808 
   200 7.046 7.047  3.110 3.112  0.895 0.888  0.165 0.165  1.131 1.131  3.817 3.808 
   300 7.046 7.047  3.111 3.112  0.896 0.888  0.165 0.165  1.132 1.131  3.817 3.808 
   400 7.046 7.047  3.111 3.111  0.896 0.889  0.165 0.165  1.132 1.131  3.818 3.809 
   500 7.046 7.047  3.111 3.111  0.896 0.889  0.165 0.165  1.132 1.130  3.818 3.809 
   600 7.046 7.047  3.112 3.111  0.896 0.889  0.165 0.165  1.132 1.130  3.818 3.809 
   700 7.045 7.047  3.112 3.111  0.896 0.889  0.165 0.165  1.132 1.130  3.818 3.809 
   800 7.045 7.047  3.112 3.111  0.897 0.889  0.165 0.165  1.132 1.130  3.818 3.809 
   900 7.045 7.047  3.112 3.111  0.897 0.889  0.165 0.165  1.132 1.130  3.818 3.809 
1,000 7.045 7.047  3.112 3.111  0.897 0.889  0.165 0.165  1.132 1.130  3.818 3.809 
Closed-

form 7.045   n/a  3.112   n/a  0.897   n/a  0.165   n/a  1.133   n/a  3.819   n/a 
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Table II 

Structural Parameter Estimates and In-Sample Fit 

The structural parameters are volatility (σ) for the Black-Scholes (BS) model, volatility (σ0) and leverage (α0) 

for the constant elasticity of variance (CEV) model, and per trade volatility (σ1), trade arrival intensity (λ) and 

leverage (θ) for the extended subordinated binomial (ETRI) model, These structural parameters are estimated 

for each trading day by minimizing the sum of squared errors (SSE) between model price and market price using 

all options on that day. Numbers in parentheses are standard errors.  

 
  Parameter Estimate   

Model  σ σ0 α0 σ1 λ θ  SSE 

BS 
  0.1210 

(0.0145)       281.51 
(124.06) 

CEV 
   0.1345 

(0.0143) 
0.0000 

(0.0000)     214.80 
(108.06) 

ETRI 
     0.0253 

(0.0025) 
28.1127 
(5.0048) 

-2.8691 
(0.2266)  180.76 

(104.20 
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Table III 

One Day Out-of-Sample Pricing Errors 
To measure a model’s out-of-sample performance, we price all options on a trading day using the structural 

parameters estimated from the previous trading day. The model price is then compared to the market price to 

calculate the pricing error for each option. The pricing error is aggregated across options to calculate the total 

sum of squared errors (SSE), mean squared errors (MSE), mean errors (ME) and mean absolute errors (MAE). 

The three models compared are the Black-Scholes (BS) model, the constant elasticity of variance (CEV) model, 

and the extended subordinated binomial (ETRI) model. Panel I reports the results for the three models while 

Panel II presents the pricing errors relative to the BS model. Numbers in parentheses are standard errors.  

 
Model  SSE MSE ME MAE 

Panel I: Out-of-sample pricing errors 

BS  288.94 
(128.53) 

1.7795 
(0.2877) 

-0.1632 
(0.2757) 

1.4718 
(0.1914) 

CEV  222.26 
(111.84) 

1.5595 
(0.2706) 

-0.0609 
(0.2807) 

1.2940 
(0.1617) 

ETRI  188.58 
(108.35) 

1.4292 
(0.2811) 

-0.1438 
(0.2842) 

1.1790 
(0.1705) 

Panel II: Pricing errors relative to the BS model 
CEV  0.7692 0.8764 0.3732 0.8792 
ETRI  0.6527 0.8031 0.8811 0.8011 
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Table V  

Delta Hedging with One-Week Rebalancing 
In a delta hedging experiment with one-week rebalancing, the hedge portfolio is constructed with a long position in the 

underlying asset and a short position in a put option. The hedge ratio is chosen such that the hedge portfolio is delta neutral. 

Option delta is calculated separately for each model using the structural parameters estimated from all option prices on the 

previous trading day. On the next rebalancing day (after 7 days), the hedging error is calculated and recorded. The hedge 

portfolio is then rebalanced to maintain a delta neutral position. This procedure is repeated until the option expires. The 

average hedging error across all options over the sample period is used to compare competing models. Three hedging errors 

are considered: mean dollar hedging errors (ME), mean absolute dollar hedging errors (MAE), and mean absolute deviation 

(MAD). The three competing models are the Black-Scholes (BS) model, the constant elasticity of variance (CEV) model, 

and the extended subordinated binomial (ETRI) model. The table reports the hedging error of the CEV and ETRI models 

relative to the BS model.  

 

Maturity  Money  ME  MAE  MAD 
(days)  (X/S)  CEV ETRI  CEV ETRI  CEV ETRI 

< 60  < 0.94  0.9634 0.9572  0.9589 0.9487  0.9647 0.9484 

  0.94 – 0.97  1.0086 1.0143  1.0050 1.0089  0.9774 0.9601 

  0.97 – 1.00  1.0083 1.0159  1.0022 1.0058  0.9722 0.9617 

  1.00 – 1.03  1.0055 1.0177  0.9965 1.0028  0.9838 0.9783 

  1.03 – 1.06  1.0262 1.0709  0.9828 0.9836  0.9800 0.9728 

  ≥ 1.06  0.8279 0.7625  0.9050 0.8767  0.9204 0.8859 

60 – 180  < 0.94  0.9830 0.9819  0.9647 0.9617  0.9669 0.9627 

  0.94 – 0.97  1.0578 1.0643  1.0295 1.0326  1.0343 1.0394 

  0.97 – 1.00  1.0252 1.0302  1.0254 1.0321  1.0192 1.0261 

  1.00 – 1.03  1.0045 1.0118  0.9994 1.0041  1.0117 1.0202 

  1.03 – 1.06  1.0250 1.0424  0.9998 1.0044  0.9962 0.9967 

  ≥ 1.06  1.0587 1.0872  0.9787 0.9746  0.9909 0.9882 

≥ 180  < 0.94  0.9419 0.9483  0.9136 0.9212  0.9146 0.9214 

  0.94 – 0.97  0.9803 0.9857  0.9384 0.9436  0.9111 0.9171 

  0.97 – 1.00  1.0147 1.0265  1.0102 1.0224  0.9979 1.0073 

  1.00 – 1.03  1.0258 1.0316  1.0062 1.0127  0.9872 0.9891 

  1.03 – 1.06  1.0511 1.0706  1.0414 1.0590  1.0387 1.0584 

  ≥ 1.06  1.0651 1.0768  1.0502 1.0590  1.0574 1.0672 

Overall  1.0073 1.0171  0.9833 0.9859  0.9830 0.9829 
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