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Abstract 

Recent research documents the importance of uncertainty in determining macroeconomic outcomes, 

but little is known about the transmission of uncertainty across such outcomes. This paper examines 

the response of uncertainty about inflation and output growth to shocks documenting statistically 

significant asymmetries and spillovers. Uncertainty about inflation is a determinant of output 

uncertainty, while higher growth volatility tends to raise inflation volatility. Both inflation and 

growth volatility respond asymmetrically to positive and negative shocks. Negative growth shocks 

and positive shocks to inflation lead to higher and more persistent uncertainty than shocks of equal 

magnitude but opposite sign. 
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1. Introduction 

The role of uncertainty is central in many macroeconomic models explaining the dynamics of 

economic activity and inflation. Milton Friedman (1977), for example, has argued that uncertainty 

adversely affects the ability of the price mechanism to efficiently allocate resources; in Friedman’s 

analysis, uncertainty regarding the realization of inflation is a contributing factor in slowing the rate 

of economic growth. 1 More recently, Huizinga (1993) argues that a greater degree of inflation 

uncertainty implies that actual realizations of inflation have a larger unexpected component, and 

could therefore have larger real effects. Hayford (2000) argues that high inflation will produce high 

inflation uncertainty in a world in which there is confusion regarding the monetary authority’s 

predisposition towards lowering inflation. He identifies a spillover between uncertainty about 

inflation and real economic activity and shows that this can affect real output growth. Uncertainty 

also features in some models of the monetary policy transmission mechanism. Cukierman and 

Meltzer (1986) show that a monetary authority wishing to enact an expansionary policy can exploit 

inflation uncertainty; in effect the authority can use the uncertainty to cloak a high inflation policy 

in an attempt to boost economic activity. Links between growth uncertainty and real activity have 

also been hypothesized. Black (1987) suggests there will be a positive relation based on growth 

uncertainty being a time in which the riskiest investment projects become more profitable. 

Woodford (1990), however, hypothesizes a negative relation based on the increased riskiness of 

investment when output is volatile.2 

In the empirical literature, researchers have generally adopted one of three approaches when 

modeling macroeconomic uncertainty. The first approach uses the unconditional second moments 

of the data. Examples include Logue and Willet (1976), Taylor (1981) and Ramey and Ramey 

(1995) inter alia. Other papers use the dispersion of survey forecasts of inflation and real activity to 

                                                                 
1 See also Okun (1971). 
2 The empirical literature relating macroeconomic performance to growth and inflation uncertainty has produced mixed 
results. Numerous papers have tested for a link between output uncertainty and growth (Ramey and Ramey 1995, 
Kormendi and Meguire 1985, Grier and Tullock (1989, Caparale and McKiernan 1998, Grier and Perry 2001 and Henry 
and Olekalns 2002 inter alia). The results span the complete range from a negative to a zero to a positive relation. There 
is an equally large literature that relates inflation uncertainty and real output (see Holland 1993 for a survey). Here, 
there is a predominance of papers that find a negative relation (see Grier et. al. 2002 for a recent study). 



 3

proxy uncertainty (Cuikirman and Wachtel 1979, Hayford 2000, inter alia). Finally, there has been 

increasing use made of time series models of conditional heteroscedasticity (Engle 1982 and 1983, 

Jansen 1989, Henry and Olekalns 2002, inter alia).  

In this paper, we provide a new empirical characterization of macroeconomic uncertainty by 

jointly modeling the conditional variance-covariance process underlying real economic activity and 

inflation. 3 Our approach improves on much of the previous research in allowing for the possibility 

of an asymmetric response of uncertainty to macroeconomic shocks and uncertainty spillovers 

across macroeconomic outcomes. Moreover, we make use of a new analytical tool, the Variance 

Impulse Response Function (VIRF); in our analysis, VIRFs (i) allow quantification of the extent to 

which uncertainties about real activity and inflation are interrelated, (ii) characterize the magnitude 

and persistence of macroeconomic uncertainty following a shock, and (iii) provide evidence of an 

asymmetric response of macroeconomic uncertainty to shocks. Unlike constant correlation models, 

commonly used in multivariate analysis, our approach has the advantage of not requiring the 

conditional correlation coefficient between real activity and inflation to be time invariant 4. 

Our paper proceeds as follows. Section two describes the data, while the third section outlines 

the statistical model. Estimates and diagnostic tests are presented in the fourth section. The VIRFs 

are described in the penultimate section. The final section presents some concluding comments. 

 

2. Data Description 

The data used in this study were obtained from the FRED database at the Federal Reserve Bank of 

Saint Louis. The sample is monthly data over the period April 1947 to October 2000. We measure 

inflation, tπ , as the annualised, monthly difference of the logarithm of P, the producer price index; 

                                                                 
3 Our focus is on the conditional second moments of the data. This is appropriate for our purpose since one of our 
primary aims is to document the persistence of shocks to the variance-covariance process of inflation and real activity. 
This would not be possible if we worked with the unconditional second moments. Nor is there likely to be sufficient 
variation over time in survey-based measures of uncertainty to enable identification of the effects of shocks to the 
variance-covariance process.  
4  An example of a constant correlation approach to the joint modeling of real activity and inflation is the paper by Grier 
and Perry (2000) 
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Similarly we measure real activity as the annualised, monthly difference of the logarithm of I, the 

index of industrial production; 
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Table 1 presents summary statistics for the data. Both real activity and inflation are positively 

skewed and display significant amounts of excess kurtosis, with both series failing to satisfy the null 

hypothesis of the Bera-Jarque (1980) test for normality. Augmented Dickey-Fuller (1979) unit root 

tests and Kwiatkowski, Phillips, Schmidt and Shin (1992) tests for stationarity suggest that 

 and t ty π are I(0) series.  However, a series of Ljung-Box tests for serial correlation suggests that 

there is a significant amount of serial dependence in the data. Similarly, a Ljung-Box test for serial 

correlation in the squared data provides strong evidence of conditional heteroscedasticity in the 

data.  

-Table 1 about here- 

Since one of our concerns in this paper is to estimate an extremely general specification of the 

variance-covariance structure, we also present Engle and Ng’s (1993) test for asymmetry in 

volatility in Table 1. This facilitates a test of sign bias; whether positive and negative shocks to 

volatility affect future volatility differently. Size bias, where not only the sign but also the 

magnitude of the innovation in volatility is important, can also be tested.  

The results in Table 1 suggest that the conditional volatility of real activity may be sensitive to 

the size and sign of the innovation. There is strong evidence of negative size bias, some evidence of 

positive size bias, and the joint test for asymmetry in variance is highly significant at all usual levels 

of confidence. Likewise, the tests suggest that the sign of innovations to inflation influences 

inflation volatility with π t displaying positive size bias. The joint test is significant at all usual levels 

of confidence. 
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Given the strong evidence in Table 1 of conditional heteroscedasticity and asymmetry in the 

data, we characterise the joint data generating process underlying inflation and real activity as a 

Multivariate Asymmetric GARCH-in-Mean model. The conditional mean equations of the model 

are modelled as an augmented Vector Autoregressive Moving Average or VARMA(p,q), 

1 1
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Under the assumption ),0(~| ttt HΩε , the model may be estimated using Maximum Likelihood 

methods, subject to the requirement that Ht be positive definite for all values of tε  in the sample. 

This assumption of a symmetric time-varying variance-covariance matrix must be considered 

tenuous given the evidence in Table 1 documenting the asymmetric response of output and inflation 

volatility to positive and negative innovations of equal magnitude. 

To allow for the possibility of asymmetric responses we extend the BEKK approach of Engle 

and Kroner (1995), using 

*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11t t t t t tH C C A A B H B D Dε ε ξ ξ− − − − −= + + +     (5) 
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5 We choose the values of p and q that minimise the Akaike and Schwarz information criteria. In the results below, 
p=q=2. 



 6

Note that ,y tξ  allows for the observed negative sign and size bias in real activity and ,tπξ  allows for 

the positive size bias in inflation. The inclusion of these variables, which can be interpreted as 

measuring the arrival of “bad news” regarding real activity and inflation, relaxes the assumption of 

a symmetric time-varying variance-covariance matrix.  

 

4. Results and Specification Tests 

Table 2 reports parameter estimates, as well as specification and diagnostic tests, for the full model 

given by (4) and (5). We follow Weiss (1986) and Bollerslev and Wooldridge (1992) who argue 

that asymptotically valid inference regarding normal quasi-maximum likelihood estimates may be 

based upon robustified versions of the standard test statistics.6  

- Table 2 about here - 

The inflation – real activity process is strongly conditionally heteroscedastic. The statistical 

significance of the off-diagonal elements of *
11

*
11

*
11 D  B,A and  matrices implies that innovations to 

inflation (real activity) significantly influence the conditional variance of real activity (inflation).  

The significance of the various elements of the *
11D  matrix implies that the sign as well as the size 

of both inflation and activity innovations are important. 

The model appears to be well specified. The standardised residuals, /  for ,it it itz h i yε π= = , 

and their corresponding squares, satisfy the null of no fourth order linear dependence of the Q(4) 

and Q2(4) tests. Similarly there is no evidence, at the 5% level, of twelfth order serial dependence in 

2
, , and y t y tz z . On the basis of Q2(12) though, there is some evidence of twelfth order dependence in 

the squared standardised residuals of inflation. For a well-specified model ( ) 0itE z =  and 2( ) 1itE z = . 

These conditions are supported at any level of significance.  The model also significantly reduces 

the degree of skewness and kurtosis in the standardised residuals when compared with the raw data. 

                                                                                                                                                                                                                       
 
6 The model was also estimated assuming a conditional Students -t distribution. The results were qualitatively 
unchanged. Details are available from the second author upon request. 
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Similarly the model predicts that ( )2
, ,  for   ,i t i tE h i yε π= = and ( ), , ,y t t y tE hπ πε ε = . These conditions 

are supported by the data at the 5% level.  

Table 3 reports the results of applying robust conditional moment bias tests to the estimated 

model (Kroner and Ng 1998). These tests are based on a comparison of the cross-product matrix of 

the residuals from the estimated model with the estimated covariance matrix. One indication that 

the estimated model provides a good characterization of the data is the absence of systematic 

patterns in the vertical distance between the elements of , ,y t tπε ε  and ,y th π . This distance is measured 

by the generalized residual , , , ,y t y t t y tv hπ π πε ε= − . A correctly specified model would imply 

1 ,( ) 0t y tE v π− = ; this means that ,y tv π  should be orthogonal to any variable known in period t-1.  

We check for three types of systematic biases in the generalized residuals. For sign bias, we 

define indicator variables 1 , 1( 0)i
i tm I ε −= <  for ,i y π= , where ( ) 1I =i  if the argument is true. A test 

for quadrant bias can be based on a partition of 1 1yt tπε ε− −  according to ( ), 1 , 10, 0y t tπε ε− −< < , 

( ), 1 , 10, 0y t tπε ε− −> < , ( ), 1 , 10, 0y t tπε ε− −< >  and ( ), 1 , 10, 0y t tπε ε− −> > . The indicator variables 2m  

relate to these respective quadrants. Finally a set of indicators, 3m , can be defined that scale the sign 

bias indicators by the magnitude of the innovations. These variables can be used to detect sensitivity 

to the sign and size of the innovations. 

-Table 3 about here- 

Table 3 shows that, in the main, the model is well specified.  Only two of the thirty generalised 

residual test statistics are significant at the 5% level. The indicator ,
3

ymπ , used to detect bias to the 

magnitude of , 1y tε −  when , 0tπε <  is significant for ,y tv . Similarly for the conditional variance of 

inflation only the indicator 1
ym  is significant indicating some bias to forecasts of inflation volatility 

when growth innovations are nega tive. The conditional covariance equations display no evidence of 

quadrant and size/sign misspecification.  
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Finally, we note that all elements of the Ψ matrix are statistically significant at the 5% level. 

This is consistent with uncertainty about inflation and real activity impacting on the respective 

conditional means. The implications of this are discussed further in a companion paper to the 

current research (Grier et. al. 2002). 

 

4. Variance Impulse Response Functions  

In this section, we investigate the dynamics implied by the conditional variance-covariance 

structure of the model by perturbing the system with shocks to real activity and inflation. 

Specifically, we trace the effects of these shocks to the conditional variances (and covariance) 

through time, allowing for an asymmetric response (implied by expression (5)) to the shocks. The 

analysis extends the Generalised Impulse Response Functions (GIR’s) introduced by Koop et al 

(1996), in the context of multivariate non- linear systems, to the conditional variances of a system 

(as opposed to the traditional analysis of conditional means of series). 

Since this technique is new, we now provide more detail. Define the random vector 

( )t tZ vech H= , where tH  is, as defined in section 3, the 2 2×  conditional variance-covariance 

matrix of tε ; tZ  will therefore be 3 1×  dimensional vector, where the first, second and third 

elements are respectively given by ,y th , ,y th π  and ,thπ . The VIRF for a specific shock tυ  and history 

1tω −  can then be given as, 

1 1 1( , , ) [ | , ] [ | ],Z t t t n t t t n tVIRF n E Z E Zυ ω υ ω ω− + − + −= −               (6) 

for n = 0, 1, 2, …. Hence, the VIRF is conditional on tυ  and 1tω −  and constructs the response by 

averaging out future shocks given the past and present. Given this, a natural reference point for the 

impulse response function is the conditional expectation of t nZ +  given only the history 1tω − , and, in 

this benchmark response, the current shock is also averaged out. Assuming that tυ  and 1tω −  are 

realisations of the random variables Vt and 1t−Ω  that generate realisations of { tZ }, then (following 
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the ideas proposed in Koop et al (1996)) the VIRF defined in (6) can be considered to be a 

realisation of a random variable given by, 

1 1 1( , , ) [ | , ] [ | ]Z t t t n t t t n tVIRF n V E Z V E Z− + − + −Ω = Ω − Ω .              (7) 

Note that the first and third elements of 1( , , )Z t tVIRF n V −Ω  give the impulse responses of the 

conditional variances of ty  and tπ , respectively, whilst the second element represents the impulse 

response relating to the conditional covariance.7  

Analogous to GIRFs, a number of alternative conditional versions of the VIRF’s can be 

defined.8 Given the asymmetric nature of the conditional variance-covariance structure, of 

particular interest is the evaluation of the significance of the asymmetric effects of positive and 

negative activity and inflation shocks on ,y th , ,y th π  and ,thπ . For instance, the response functions 

can be used to measure the extent to which negative shocks may (or may not) be more persistent 

than positive shocks as well as assess the potential diversity in the dynamics in the effects of 

positive and negative shocks on the conditional volatilities of output growth and inflation, and on 

their conditional covariance.  

Let 1( , , )Z t tVIRF n V +
−Ω  denote the VIRF  from conditioning on the set of all possible positive 

shocks, where }{ | 0t t tV υ υ+ = >  and 1( , , )Z t tVIRF n V +
−− Ω  denote the VIRF from conditioning on the 

set of all possible negative shocks. The distribution of the random asymmetry measure, 

1 1 1( , , ) ( , , ) ( , , )Z t t Z t t Z t tASY n V VIRF n V VIRF n V+ + +
− − −Ω = Ω − − Ω ,            (8) 

will be zero if positive and negative shocks have exactly the same effect. The distribution of (8) can 

provide an indication of the asymmetric effects of positive and negative shocks.  

The asymmetry measure we propose is analogous to the measure proposed in van Dijk et al 

(2000) for the case of GIRFs. However, a notable distinction is that the measure in (8) is comprised 

of the difference between the variance response functions, 

                                                                 
7 Hafner and Herwartz (2001) also consider such an extension and derive analytical expressions for the VIRF’s for the 
case of symmetric multivariate GARCH models. 
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1 1( , , ) and ( , , )Z t t Z t tVIRF n V VIRF n V+ +
− −Ω − Ω , in contrast to the summation of the corresponding 

generalised impulse response versions. This distinction arises because VIR’s are made up of the 

squares of the innovations (and therefore will be of the same sign), in contrast to the case of GIR’s, 

where positive and negative shocks cause the response functions to take opposite signs. Note that 

the conditional variance-covariance structure proposed in this paper allows for asymmetry to enter 

through the terms ,y tξ =min{ ,0},y tε  and 
, t

ξ
π

=max{ ,0}
2, t

ε , in the form of '
1 1t tξ ξ− −  in 

expression (5), where ( )'

, , t y t tπξ ξ ξ= .  Hence, if the matrix of coefficients, *
11D , defined in (5) is not 

significantly different from zero, then the VIRF will not distinguish between a positive or negative 

shock. If, on the other hand, *
11D , is significant, then the possibility of asymmetric responses to 

positive and negative shocks arises (even though 1 1( , , ) and ( , , )Z t t Z t tVIRF n V VIRF n V+ +
− −Ω − Ω , 

relating to positive and negative shocks, respectively, will be of the same sign). 

A second distinction between the VIRFs and GIRFs following naturally from this discussion is 

that, unlike for GIRF’s, the property of linearity in the shocks no longer holds. Therefore, a shock 

of * tκ υ , where κ is a scalar, will not have κ  times the effect of tυ , if we consider conditional 

volatility responses.  

Finally, akin to GIRFs, VIRFs allow for composition dependence in multivariate models9 and 

avoid problems of dependence on the size and sign of the shock. However, in contrast to GIRF’s, 

VIRF’s exhibit dependence on the history through the conditional variance-covariance matrix at 

time zero when the shock occurs (i.e. through 0 0( )Z vech H= ). This is clear from expression (5), 

setting t=1. 

It is impossible to construct analytical expressions for the conditional expectations for the non-

linear structure proposed in this paper. Therefore, Monte Carlo methods of stochastic simulation 

                                                                                                                                                                                                                       
8 For instance, it is possible to condition on a particular shock and treat the variables generating the history as random, 
or, condition on a particular history and allow the shocks to be the random variables. Alternatively, particular subsets of 
shocks/histories could be conditioned on (see Koop et al for further details). 
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need to be used.10 Following the algorithm described in Koop et al, impulse responses 

1( , , )Z t tVIRF n υ ω −  are computed for all 637 histories in the sample for horizons n=0,1,…N, with 

N=50. At each history, 100 draws are made from the joint distribution of the innovations and 

R=250 replications are used to average out the effects of the shocks.11 

- Figure 1 about here - 

 Figures 1, 2 and 3 display the VIRFs for real activity and inflation shocks bootstrapped from the 

data. Figure 1 displays the response functions for the conditional variances of activity and inflation 

to a shock that causes our activity measure to rise by a unit on impact. The activity shock results in 

a markedly higher and more persistent response from ,y th  relative to ,thπ . The peak response of ,y th  

is approximately five times the maximum response of ,thπ  to the shock. Further, for activity 

volatility, the effects of the shock die out after roughly 40 months, while the effect of the growth 

shock on inflation volatility dissipates after approximately 15 months. 

- Figure 2 about here - 

The response of ,y th  and ,thπ  to a shock that causes inflation to rise by one unit on impact is 

displayed in Figure 2. Here the peak response of ,thπ  is roughly twice the maximum response of 

,y th . Both responses appear to dissipate after approximately 20-25 months.  

- Figure 3 about here - 

 The response functions for the conditional covariance to unit activity and inflation shocks are 

displayed in figure 3. The effect of the inflation shock causes real activity to move in opposite 

directions. Initially the covariance response is negative and significant although the effects die out 

within a year. On the other hand, the response to the activity shock is more volatile and dissipates 

within a year.  

                                                                                                                                                                                                                       
9 Hence, the effect of a shock to the conditional volatility of output growth, for example, is not isolated from having a 
contemporaneous impact on the conditional variance of inflation and vice versa. See Lee and Pesaran (1993) and 
Pesaran and Shin (1998) who consider composition dependence in (multivariate) conditional mean equations. 
10  See Granger and Teräsvirta (1993, Ch. 8), and Koop et al (1996) for detailed descriptions of the various methods that 
can be used. 
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Computation of the asymmetry measures for an activity (inflation) shock to the conditional 

variance and covariance of the activity and inflation series highlight the pernicious effects of bad 

news. A negative growth shock results in more persistent growth volatility (statistic=-0.13669, t-

ratio = -27.5535), more persistence in covariance (statistic =-0.02083, t-ratio = -27.9532) and more 

persistence in inflation volatility (-0.026908, t-ratio=6.78044) than an unexpected positive activity 

shock of equal magnitude. Contractionary activity shocks lead to higher and more persistent 

uncertainty about inflation and activity. 

Bad news about inflation, that is a shock that results in an increase to the inflation rate, leads to 

less activity volatility (statistic = -0.02664, t-ratio = -4.4769) more persistence in covariance 

(statistic = 0.188342, t-ratio 10.62642) and more persistence in inflation volatility (statistic = 

1.2260, t-ratio = 10.97492) relative to an unanticipated reduction in inflation of equal magnitude.  

In contrast to bad news about growth, an unexpected inflationary shock actually leads to less, 

rather than more, persistence in growth volatility. This may be suggestive of the stabilising effects 

of monetary policy in response to an increase in inflation and inflation uncertainty. However, in 

general these asymmetry measures are small in magnitude relative to the size of the initial shock 

and are therefore perhaps unlikely to be of great economic significance. The possible exception is 

the measure of asymmetry in the response of inflation volatility to an inflationary shock. This 

measure is sufficiently large to have economic and statistical significance. Bad news about inflation 

leads to a higher level of inflation and more inflation volatility. 

 

6. Conclusions  

In this paper, we provide an extremely general empirical characterization for real economic activity 

and inflation. Particular attention has been paid to estimating a fairly unrestricted specification for 

the conditional second moments of the data. Given the central role that uncertainty plays in many 

macroeconomic models, it is of primary importance that second moment restrictions not supported 

                                                                                                                                                                                                                       
11 Note that the number of replications (R) is set to a relatively small number given the hugely time -consuming nature of 
the computations. However, the large number of histories employed, and the precision with which the impulse response 
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by the data be avoided at all costs in macroeconometric modeling. Indeed, we find that GARCH 

models of inflation and real activity will be misspecified unless asymmetries and uncertainty 

spillovers are incorporated into the empirical specification. Failure to do so must raise concerns 

about any inferences made on the basis of these models. 

An additional cont ribution of the paper has been to document considerable persistence in the 

response of uncertainty to macroeconomic shocks using Variance Impulse Response Functions. For 

example, it can take up to three years before the uncertainty generated by a shock to economic 

activity dissipates. To our knowledge, this persistence in uncertainty has not been documented 

elsewhere. 

Finally, our Variance Impulse Response analysis demonstrates that macroeconomic uncertainty 

responds asymmetrically to macroeconomic shocks, with the arrival of bad news having a more 

significant effect on uncertainty than good news. Bad news, that is positive shocks to inflation and 

negative shocks to growth, leads to higher and more persistent volatility than would result from 

good news of similar magnitude. In particular, inflation uncertainty displays an asymmetric 

response to inflationary shocks that is both statistically significant and economically meaningful.  

                                                                                                                                                                                                                       
functions have been estimated, both serve to mitigate the concerns over the size of R.. 
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Table 1: Summary Statistics 

 Mean Variance Skewness Excess 
Kurtosis 

Bera-
Jarque 

Normality 
y 
 

3.6054 155.7047 0.2428 4.5962 562.4889 
[0.0000] 

 
π  3.0559 37.5103 1.1579 4.4310 658.2563 

[0.0000] 
      

Unit Root and Stationarity Tests 
 ADF(µ) ADF(τ) ADF KPSS(µ) KPSS(τ) 

 
y -12.4483 -12.4438 -11.6179 0.07595 0.03498 

 
π  -5.4309 -5.3842 -4.3728 0.4664 0.3975 

 
5 % C.V. -3.4191 -2.8664 -1.9399 0.463 0.146 

      
Tests for Serial Correlation and ARCH 

 Q(4) Q(12) Q2(4) Q2(12) 
 

ARCH(4) 

y 165.3173 
[0.0000] 

192.0829 
[0.0000] 

88.1327 
[0.0000] 

97.4497 
[0.0000] 

 

52.1685 
[0.0000] 

π  321.3849 
[0.0000] 

682.6248 
[0.0000] 

136.8077 
[0.0000] 

463.0983 
[0.0000] 

62.7177 
[0.0000] 

      
Tests for Asymmetry in Variance 

 Sign Neg. Size  Pos. Size  Joint 
 

 

y 0.2418 
[0.0159] 

-7.19740 
[0.0000] 

3.2857 
[0.0011] 

83.3489 
[0.0000] 

 

 

π  -0.9672 
[0.3338] 

0.5698 
[0.5690] 

8.6105 
[0.0000] 

72.2217 
[0.0000] 

 

 

Note: Marginal significance levels displayed as [.] 
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Table 2: The Multivariate Asymmetric GARCH-in-Mean Model 
Conditional Mean Equations  

1 1

1 11 1211 12

2 21 2221 22

, , 11 12

, 21 22,

; ; ; ;

; ;

p q

t i t i t j t j t
i j

i i
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t i i i
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j j
y t y t

t t j j j
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Y Y h
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h
h

h ππ

µ ε ε

µ ψ ψ
µ

π µ ψ ψ

ε θ θ
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ε θ θ

− −
= =

= + Γ + Ψ + Θ +∑ ∑

 Γ Γ     
= = Γ = Ψ =      Γ Γ      

     = = Θ =   
      

 

( )

( )

1.2584

0.0545

0.0913

0.0172

µ

 
 
 
 =
 
 
   

 

( ) ( )

1

0.4385 0.04768
(0.0121) (0.0102)

0.0072 0.7794

0.0053 0.0047

 
 
 
 Γ =
 
 
  

 2

0.3339 0.1126
(0.0117) (0.0109)

0.0233 0.1939
(0.0045) (0.0046)

− 
 
 
 Γ =
 
 
  

 

( ) ( )

1

0.2525 0.1897
(0.0243) (0.0467)

0.0012 0.6225

0.0085 0.0246

− − 
 
 
 Θ =
 − 
    ( ) ( )

2

0.3131 0.0170
(0.0274) (0.0559)

0.0171 0.2006

0.0075 0.0241

− 
 
 
 Θ =
 − − 
    

( )

( ) ( )

0.23850.0846
(0.0065) 0.0113

0.0036 0.0209

0.0017 0.0037

− 
 
 
 Ψ =
 
− − 

 
  

 

Residual Diagnostics 
 Mean Variance Q(4) Q2(4) Q(12) Q2(12) 

1,tε  0.0140 
[0.7225] 

0.9932 
[0.9969] 

2.8898 
[0.5764] 

6.1466 
[0.1885] 

21.4150 
[0.0446] 

11.7959 
[0.4622] 

2,tε  0.0265 
[0.5035] 

1.0088 
[0.9991] 

1.9639 
[0.7474] 

5.6143 
[0.2298] 

11.4304 
[0.4924] 

26.9583 
[0.0078] 

Moment Based Tests  

 , , ,( )y t t y tE hπ πε ε =  
 2

, ,( )y t y tE hε =  
0.6317 

[0.4267] 

2
, ,( )t tE hπ πε =  

3.6123 
[0.0574] 

2.0114 
[0.1561] 
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Table 2 Continued: Estimates of the Multivariate Asymmetric GARCH Model 
Conditional Variance-Covariance Structure  

*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11

, 1 , 1
1 1

, 1 , 1

min( ,0)
;

max( ,0)

t t t t t t

y t y t
t t

t t

H C C A A B H B D D

π π

ε ε ξ ξ

ε ε
ε ξ

ε ε

− − − − −

− −
− −

− −

= + + +

   
= =   

   

 

*
0

1.8064 0.6612
(0.0817) (0.1595)

1.2033
0

(0.0977)

C

 
 
 
 =
 
 
  

 

( )

*
11

0.9155 0.0024
(0.0026) (0.0213)

0.1414 0.8567
0.1088 (0.0064)

B

 
 
 
 =
 − − 
 
 

 

( )

*
11

0.0741 0.0627
(0.0255) (0.0139)

0.0202 0.3844
0.0818 (0.0179)

A

− 
 
 
 =
 
 
 
 

 

( )

*
11

0.5711 0.0123
(0.0147) (0.0176)

0.3409 0.2479
0.0745 (0.0518)

D

− 
 
 
 =
 
 
 
 

 

Diagonal VARMA 
0 12 21 12 21: 0i i i iH θ θΓ = Γ = = =  [0.0000] 

No GARCH-M 
0 : 0 for all ,ijH i jψ =  [0.0000] 

No asymmetry: H0:δ ij=0 for i,j=1,2 [0.0000] 
Diagonal GARCH * * * * * *

0 12 21 12 21 12 21: 0H α α β β δ δ= = = = = =  [0.0000] 

Notes: Standard errors displayed as (.). Marginal significance levels displayed as [.]. Q(p) and Q2(p) are 

Ljung_Box tests for p th order serial correlation in 
2
,, and tjtj zz respectively for j =yt,πt. 
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Table 3: Robust Conditional Moment Tests 
Indicator 2

, , ,y t y t y tv hε= −  , , , ,y t y t t y tv hπ π πε ε= −  2
, , ,t t tv hπ π πε= −  

1
ym  0.2002 

[0.6546] 
 

1.1889 
[0.2756] 

6.0239 
[0.0014] 

1mπ  0.0007 
[0.9789] 

 

0.5253 
[0.4686] 

0.1048 
[0.7461] 

,
2m− −  4.4018 

[0.0359] 
 

0.4363 
[0.5089] 

0.2990 
[0.5845] 

,
2m− +  0.8892 

[0.3457] 
 

2.4581 
[0.1169] 

1.2379 
[0.2659] 

,
2m+ −  1.2342 

[0.2666] 
 

1.4946 
[0.2215] 

1.4946 
[0.2215] 

,
2m+ +  0.0004 

[0.9844] 
 

0.1814 
[0.6701] 

1.7098 
[0.1910] 

,
3
y ym  0.1471 

[0.7014] 
 

1.5014 
[0.2204] 

 

4.3499 
[0.0370] 

,
3
ym π  0.1358 

[0.7125] 
 

0.1792 
[0.6721] 

3.2139 
[0.0730] 

,
3

ymπ  0.8974 
[0.3435] 

 

0.0001 
[0.9941] 

0.5373 
[0.4636] 

,
3mπ π  0.7223 

[0.3954] 
0.6679 

[0.4138] 
1.0869 

[0.2972] 
Sign Misspecification Quadrant 

Misspecification 
Size/ Sign 

Misspecification 

( )1 , 1 0y
y tm I ε −= <  ( ),

2 , 1 , 10, 0y t tm I πε ε− −
− −= < <

 
( ), 2

3 , 1 , 1 0y y
y t y tm Iε ε− −= <  

( )1 , 1 0tm Iπ
πε −= <  ( ),

2 , 1 , 10, 0y t tm I πε ε+ −
− −= > <

 
 

( ), 2
3 , 1 , 1 0y

y t tm Iπ
πε ε− −= <  

 ( ),
2 , 1 , 10, 0y t tm I πε ε− +

− −= < >
 
 

( ), 2
3 , 1 , 1 0y

t y tm Iπ
πε ε− −= <  

 ( ),
2 , 1 , 10, 0y t tm I πε ε+ +

− −= > >

 
( ), 2

3 , 1 2, 1 0t tm Iπ π
π πε ε− −= <  

Notes: All tests are distributed as χ2(1). Marginal significance levels displayed as [.]. The 
misspecification indicator is defined where I(*) takes the value 1 if the expression in the parentheses 
below is satisfied and zero otherwise. 
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Figure 1: VIRF for a unit growth shock on ,y th  and ,thπ  
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Figure 2: VIRF for a unit inflation shock on ,y th  and ,thπ  
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