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Abstract 
There has been a resurgence of interest in the effect of stock price changes on the real 
economy in the wake of the long stock market boom of the 1990s and the subsequent 
correction starting in 2000.  One of the primary variables linking the stock market and 
output is consumption expenditure, with the wealth effect being the traditional 
channel of influence.  More recently a number of other channels have been identified, 
in particular the signalling channel which sees stock prices as having simply a leading 
indicator effect. However, there has been little work which disentangles these 
channels empirically.  This paper makes a contribution to this question by 
distinguishing between the effects of changes in stock prices driven by fundamentals 
and those driven by speculation.  Since these two components of stock prices cannot 
be observed they must be generated by a model, and we use a decomposition recently 
applied by Black et al. (2003). Since any decomposition is likely to be controversial  
we experiment with various alternative decompositions.  We find that both 
components of stock prices influence consumption but that the fundamental 
component is consistently the least important, thus supporting the wealth rather than 
the signalling channel.   
 

JEL classification: E44 
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1. Introduction 

 The consumption function is the core of the Keynesian macro model in both 

its theoretical and econometric forms and it is therefore not surprising that is has been 

widely tested for various countries and time periods.1   In recent years there has been 

a resurgence of interest in the role of stock prices or stock-market wealth in 

determining consumption behaviour.  While early empirical work such as that by 

Bhatia (1972) and Peek (1983) included capital gains as part of income in the 

consumption function, recent empirical work has included stock-market wealth or 

stock prices as a wealth term.  This recently renewed interest has followed and was no 

doubt stimulated by the long boom in stock prices in the 1990s  as well as by a falling 

saving rate.  Moreover, as stock prices faltered and then fell from the middle of 1999, 

there was understandable concern that consumption, aggregate demand and 

subsequently output would follow. 

 The traditional influence of stock prices on consumption is via a wealth effect; 

the standard theory of consumption makes consumption depend on (permanent) 

income and wealth with wealth being positively related, inter alia, to stock prices.  

However, as early as 1990, Romer (1990) suggested an alternative explanation for the 

decline in consumption following stock price falls during the Great Depression.  She 

argued that, in contrast to the standard wealth effect, the stock market collapse 

resulted in increased consumer uncertainty which, in turn, caused them to defer 

expenditure on consumer durables.   

More recently, Poterba and Samwick (1995), Poterba (2000) and Ludwig and 

Sløk (2002) have identified further channels.  Poterba and Samwick distinguish 

between the wealth effect and a signalling effect where stock prices rise in 

                                                 
1 See Hymans (1970) for an early evaluation of the consumption function in econometric models; for a 
recent and critical review of time-series consumption functions see Attanasio (1999). 
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expectation of output increases in the manner of a leading indicator, a purpose for 

which stock prices have often been used.  Ludwig and Sløk set out two forms of the 

wealth effect – the realised and unrealised wealth effects (which are not distinguished 

in the standard consumption theory with no borrowing constraints) – as well as a 

liquidity-constraint effect and a stock-option value effect.  As a fifth channel they list 

Romer’s consumer confidence effect. 

Empirical work on the stock-price-consumption relationship has included 

cross-section, time-series and mixed (panel) studies.  An example of a cross-section 

study is the one by Parker (1999) who directly addresses the question of whether the 

rise in stock prices in the 1990s could have contributed to the fall in the saving rate 

over the same period.  Starr-McCluer (2002) used cross-section survey data in an 

attempt to disentangle Poterba and Samwick’s two channels and found some support 

for the traditional wealth effect, particularly for households with substantial 

stockholdings.   

Time-series studies include the seminal paper by Poterba and Samwick (1995) 

and subsequent work by Ludvigson and Steindel (1999), Shirvani and Wilbratte 

(2000), who investigate the possibility of asymmetrical effects, Edison and Sløk 

(2002), who distinguish between “new” and “old economy” stocks, and Bertaut 

(2002) who examines the stock-price-consumption relationship for a number of 

industrial countries.  An early study based on panel data is the one by Mankiw and 

Zeldes (1991) which focusses on the equity-premium puzzle which they examine 

separately for stockholding and non-stockholding consumers.  More recently and 

more directly related to the interest of the present paper, Ludwig and Sløk (2002) and 

Case et al. (2001) use a combination of cross-section and time-series data, the latter to 
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investigate the relative strength of stock-market and housing wealth effects on 

consumption. 

The general consensus is that there is an effect of changes in stock prices on 

consumption, that it is significant but relatively small (clearly weaker than the effects 

of change in the value of housing wealth and insufficient to explain all of the recent 

fall in the saving rate) and that the effect is probably asymmetrical.  There has been 

little success in disentangling the various possible channels.  Romer’s (1990) work on 

consumption during the Great Depression depended mainly on the timing of 

consumption and stock price changes and on measures of stock-price uncertainty to 

suggest the relative importance of the uncertainty channel.  Poterba and Samwick 

(1995) used disaggregated consumption and stock-holding data to argue that the 

wealth effect was likely to be small relative to the signalling effect.  However, as 

various authors such as Ludwig and Sløk (2002) have pointed out, different channels 

have quite different implications for policy, making it important to sharpen our 

empirical knowledge of their relative importance.   

This study contributes to progress in this direction by following a suggestion 

by Poterba and Samwick that distinguishing the wealth and the signalling effects 

requires an empirical identification of fundamental stock prices since only 

fundamentals are relevant for the signalling channel.  Since fundamental and non-

fundamental (we call them speculative) components of stock prices are not 

observable, they must be generated by a model and, given the state of modelling stock 

prices, the subsequent decomposition will not be uncontroversial, as Poterba (2000, p. 

106) has pointed out.  We use a method recently applied to US stock price data by 

Black et al. (2003) which is a macroeconomic application of the linearised dividend-

discount model developed by Campbell and Shiller (1987, 1988, 19989).  It identifies 
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fundamentals as depending on future output and discount rates and uses the model to 

impose restrictions on a vector autoregressive (VAR) model which is used to generate 

a series for fundamentals.  We go on to explore the sensitivity of our results to this 

particular decomposition of stock prices by using three alternative, less sophisticated 

methods: a regression-based approach and two decompositions based on financial 

ratios, the price/earnings ratio and the dividend yield.   

Whichever decomposition method is used, we use a two-stage approach in 

which the decomposition of stock prices is effected first and the two components are 

then used as regressors in a vector error-correction model (VECM) in which shocks to 

the two components are separately simulated. 

The structure of the paper is as follows.  The next section sets out the model 

and discusses the data used to estimate the model.  Section 3 reports on the estimated 

model while the following section discusses the results of model simulation.  

Conclusions are presented in the last section. 

 

2. The Model and the Data 

The focus of the paper is on the analysis of the relationship between 

consumption and stock prices and we therefore begin with a simple model relating 

real consumption expenditure to real personal disposable income, an interest rate and 

stock prices.  We also experimented in a limited way with other variables such as the 

unemployment rate (following Bertaut, 2002) but restrict reporting of our results to 

the core model.  The form of the relationship used was in the spirit of the simple 

specification in recent papers by Ludvigson and Steindel (1999), Shirvani and 

Wilbratte (2000), Bertaut (2002) and Ludwig and Sløk (2002).  As in most of the 
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recent literature, we analyse the relationship between these variables in a framework 

which accounts for the possibility of non-stationarity and cointegration. 

After estimating the basic model, we go on to decompose the stock price 

variable into two components, one capturing fundamentals and the other non-

fundamentals or the speculative component, as we call it.  Since these two 

components can not be observed, they must be generated from a model.  We use the 

output from a model by Black et al. (2003) but since such modelling is likely to be 

controversial, we experiment with several alternatives to assess the sensitivity of our 

results to the method of decomposition used.  We therefore use four alternative 

approaches: 

(a) the decomposition by Black et al. (2003) based on the application to 

macroeconomic data of the Campbell and Shiller (1987, 1988, 1989) 

linearised version of the dividend-discount model.  The data for the 

fundamental component is taken from their paper (updated to the end of 2002) 

and the  speculative component is then simply the residual after subtracting the 

fundamental component from actual stock prices. 

(b) a regression based approach where stock prices are regressed on output and an 

interest rate variable chosen to represent the two main components of the 

dividend-discount model, output being reflected in profits and hence dividends 

and the interest rate influencing wealth-holders’ discount rate.  The explained 

part of stock prices is then taken as the fundamental component with the 

regression residuals capturing the speculative component. 

(c) an approach based on the assumption, implicit in much popular discussion of 

the stock market that in the long run the earnings/price ratio is constant.  We 

compute the fundamentals as the level of stock prices which would have been 
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observed if the price/earnings ratio had been constant at its long-run average 

and the speculative component is then again the residual. 

(d) an approach based on a similar assumption that the dividend/price ratio is 

constant in the long run. 

 

For these four alternatives, we need data for real consumption, real disposable 

income, real interest rates, the unemployment rate, real stock prices, real output, the 

Black et al. (2003) fundamental real stock price series, real earnings and real 

dividends.  Data used and sources are as follows: 

• real consumption: real personal consumption expenditures, 1996 dollars, 

seasonally adjusted; source: FRED data base, Federal Reserve Bank of St 

Louis. 

• real disposable income: real personal disposable income, 1996 dollars, 

seasonally adjusted ; source: FRED data base, Federal Reserve Bank of St 

Louis. 

• real interest rate: inflation-adjusted 3-month Treasury bill rate; source: 

Ibbotson Associates. 

• unemployment rate: civilian unemployment rate, seasonally adjusted, average 

of  monthly rates; source: FRED data base, Federal Reserve Bank of St Louis. 

• real stock prices: inflation-adjusted S&P500; source: Ibbotson Associates. 

• real output: real Gross Domestic Product; source: Ibbotson Associates. 

• earnings: real earnings; source: “Irrational Exuberance” file, updated, from 

Robert Shiller’s web-site, http://aida.econ.yale.edu/~shiller. 

• dividends: real dividends; source: “Irrational Exuberance” file, updated, from 

Robert Shiller’s web-site, http://aida.econ.yale.edu/~shiller. 
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We begin our analysis by checking for stationarity of the data to be used in the core 

equation.  ADF statistics are reported in Table 1.   

 

Table 1: Stationarity 

Test lc ly ls u r 

No trend  

ADF(0) -0.9386 -1.7342 -1.6343 -2.1148 -8.6220
ADF(1) -0.9244 -1.7522 -1.6864 -4.2230 -6.2307
ADF(2) -0.8217 -1.6867 -1.6477 -3.5513 -4.5975
ADF(3) -0.8194 -1.6444 -1.6732 -3.1060 -3.9797
ADF(4) -0.8693 -1.8846 -1.6978 -2.8274 -4.4959

Trend 

ADF(0) -1.6584 -1.5222 -1.7707 -2.0642 -9.0850
ADF(1) -1.6996 -1.4994 -1.9176 -4.4015 -6.5989
ADF(2) -2.3411 -1.5646 -1.8546 -3.6872 -4.7327
ADF(3) -2.3763 -1.5974 -1.8986 -3.1990 -4.0021
ADF(4) -2.0096 -1.3005 -1.9408 -2.8912 -4.6592

Notes: lc, ly, and ls represent the logs of real consumption, real disposable income and real stock 
prices, u denotes the unemployment rate and r the real Treasury Bill rate.  The 5% critical value for the 
ADF statistic in the case without trend is –2.8748 and for the case with trend it is –3.4314 
 

 

The evidence shows that the three variables lc, ly and ls are clearly non-stationary 

irrespective of whether a trend is present in the “Dickey-Fuller equation” or the 

number of lags.  Tests of stationarity for their first-differences (not reported) show 

that they are unambiguously I(1).  On the other hand, r is clearly I(0), irrespective of 

the number of lags or the presence of a trend term.  The results for the unemployment 

rate are less clear-cut – stationarity is sensitive to both the number of lags and the 

presence of a trend term.  We, therefore, investigated the significance of the trend 

term and the number of lagged terms necessary to eliminate autocorrelation in the 

residuals of the testing equation.  Both with and without trend, two lags are necessary 
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to eliminate autocorrelation from the residuals and in both these cases u is stationary.  

The trend term is not significant in any of the equations for u.  Thus, we conclude that 

the logs of real consumption, real disposable income and real stock prices are all I(1) 

and that the unemployment rate and the real Treasury Bill rate are both I(0) and 

proceed to model accordingly. 

We proceed to an analysis of the possibility of cointegration of lc, ly, and ls  

for which we use the Johansen procedure. A preliminary matter is the choice of the 

number of lags in the VAR used as a framework for the Johansen tests.  Standard lag 

length selection criteria for a VAR in the first differences produce some conflicting 

indications but a model with three lags and no trend is free of autocorrelation in the 

individual equation residuals at 5%.  At 3 lags both the Akaike and Schwatz criteria 

suggest shorter lags but tests for autocorrelation at lag 2 show some autocorrelation in 

the output equation.  The trend proved not to be significant in the VAR in first 

differences so that we will include it in the VECM only via the cointegrating vector 

(if one exists).  We therefore use a lag of three in the first differences which translates 

to a lag of four in the VECM if the variables are cointegrated. 

Tests for cointegration in a model with 4 lags and trend only in the 

cointegrating vector produced clear evidence of one cointegrating vector whether the 

maximum-eigenvector or trace test was used as can be seen in the results reported in 

Table 2.  The single cointegrating vector has plausible coefficients: 

lct = 0.6594 lyt + 0.0081 lst + 0.0029 trendt 

A test for the restriction that the trend coefficient is zero produces a prob value of 

0.000.  
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Table 2: Cointegration 

Maximum-eigenvalue test 

H0 HA Statistic 95% CV 90% CV 

r = 0 r = 1 26.7235 25.42 23.1

r<= 1 r = 2 12.7248 19.22 17.18

r<= 2 r = 3 3.9253 12.39 10.55

Trace test 

r = 0 r>= 1 43.3736 42.34 39.34

r<= 1 r>= 2 16.6501 25.77 23.08

r<= 2 r = 3 3.9253 12.39 10.55
Note: r represents the number of cointegrating relationships between lc, ly and ls. 

 

The cointegrating vector reported above is similar to that produced by a simple OLS 

regression: 

 lct = 1.9338 + 0.6959 lyt + 0.0159 lst + 0.0026 trendt 

We also experimented with a model which included r as an endogenous I(0) 

variable.  There was no change in conclusions regarding cointegration and the 

inclusion of r in the VECM showed that it was significant only in the equation for the 

first-difference in the log of stock prices but had little effect on the IRFs.  We 

therefore proceed to use a model only with the three basic variables: lc, ly and ls.   
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3. Model Estimation 

The estimated VECM is reported in Table 3.  The explanatory power of the 

equations is modest, especially that for stock returns.  It should recalled, though, that 

the equations for consumption and disposable income are in first difference form so 

that low values for R2 are not unexpected.  Further, the low explanatory power of the 

stock-return equation is consistent with the Efficient Markets Hypothesis.  The ecm 

term is significant in two of the three equations, confirming the cointegration 

conclusions derived earlier.  The diagnostics for the equations show that they are all 

free from autocorrelation, and heteroskedasticity and that their functional form is 

appropriate.   

In the consumption equation at least one of the lags of each of the explanatory 

variables is significant and in all cases the sum of the coefficients is of the right sign – 

positive for each variable.  Of particular interest for the purpose of the present paper is 

the result that two of the three lagged stock return terms are significant and positive.    

The magnitude of the sum of the coefficients is similar to those reported for the US in 

Bertaut (2002) for a shorter sample period and a more elaborate model.  Using only 

the consumption growth equation and ignoring the ecm term (taken into account 

below), we find that a 10 percentage-point sustained increase in stock returns 

increases consumption growth by approximately 0.57 percentage points.  This 

compares to a figure of 0.64 reported by Bertaut (2002).  We therefore have enough 

confidence in the results reported above to proceed with our main exercise of 

examining the consequences of decomposing stock returns into fundamental and 

speculative components.   
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Table 3: The VECM 

Equation  

Regressor dLC dLY dLS 

const 0.2371 -0.3239 1.7954
 [0.012] [0.007] [0.071]
dLC1 -0.0599 0.2454 0.5541
 [0.443] [0.013] [0.501]
dLY1 0.0804 -0.1193 -1.0901
 [0.173] [0.110] [0.080]
dLS1 0.0268 0.0254 0.0765
 [0.000] [0.003] [0.277]
dLC2 0.2659 0.0465 0.8331
 [0.000] [0.625] [0.294]
dLY2 0.1072 -0.0135 -0.7895
 [0.075] [0.858] [0.214]
dLS2 0.0173 0.0122 -0.0581
 [0.015] [0.172] [0.435]
dLC3 0.1150 0.0948 0.3030
 [0.108] [0.294] [0.687]
dLY3 -0.1202 -0.0672 -0.4243
 [0.034] [0.345] [0.475]
dLS3 -0.0051 -0.0063 0.0276
 [0.473] [0.484] [0.715]
ecm1 -0.0186 0.0265 -0.1430
 [0.014] [0.006] [0.074]
R2 

0.2682 0.1684 0.0436
AC [0.704] [0.183] [0.340]
FF [0.539] [0.379] [0.026]
Het [0.360] [0.016] [0.919]
Notes: dLCi is the ith lag of the first difference of the log of real consumption, dLYi is the ith lag of the 
first difference of the log of real disposable income and dLSi is the ith lag of the first difference of the 
log of real stock prices.  The term “ecm1” is the first lag of the cointegrating regression residual.   The 
numbers in brackets below coefficients are prob values for the hypothesis that the coefficient is zero.  
The numbers in the AC, FF and Het rows are also prob values – in the AC row for an LM test for first- 
to fourth-order autocorrelation, in the FF row for the RESET test of functional form and in the  Het  
row for an LM test of heteroskedasticity. 
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4. Model Simulation 

We report simulation results in terms of impulse response function (IRFs) 

which capture the effects of a shock when all equations and the ecm terms are taken 

into account.  In particular, we use the generalised IRFs devised by Koop et al. (1996) 

and Pesaran and Shin (1998).  The nature of the IRF and the distinction between the 

generalised IRF and the more common form based on the Choleski decomposition is 

most conveniently exposited in a standard VAR model as follows. 

 Denoting the vector of variables in the VAR by x, the model can be written as: 

(1) xt = Φ(L)xt + εt ,    t = 1,1,…,T 

where Φ(L) is a pth-order matrix polynomial in the lag operator, L, where Lnxt ≡ xt-n.  

We assume that xt is stationary and that E(εtεt’) = Σ is a positive definite matrix.  We 

have ignored a constant (and other deterministic terms) for ease of exposition.  

 The IRF is easily derived from the vector moving-average (VMA) form of the 

model which can be obtained from (1) as: 

(2) xt = A(L)εt, 

where A(L) = (I-Φ(L))-1, an infinite-order matrix polynomial in L.  One way of 

generating IRFs from (4) is to set one of the elements of εt at a non-zero value 

(usually its historical standard error) and all the others at zero and then trace the 

effects through successive values of xt.  However, this ignores the fact that the 

elements of εt will generally be correlated so that historically a shock to one of the 

elements of εt will be associated with changes in other of its elements.  A common 

method of overcoming this difficulty is to re-define the error terms to make them 

orthogonal so that they can be shocked independently.  This is generally achieved by 

using the Choleski decomposition of the contemporaneous covariance matrix of the 
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errors, Σ.  Since Σ is positive definite there exists a lower-triangular matrix (not 

necessarily unique), Q, such that 

(3) QQ’ = Σ 

The model can then be written in terms of the transformed errors, ξt = Q-1εt, which are 

orthogonal.  In this case the value of the IRF for the ith element of x following a 

shock to the jth error term n periods after the shock is given by 

(4) IRFij(n) = ei’AnQej,   i,j = 1,2,…,m; n = 0,1,2… 

where ei is the ith unit vector and An is the nth matrix in the matrix polynominal A(L).  

While this is a popular procedure, it has the weakness that the orthogonalisation is not 

unique and the resulting IRFs are not unique but depend on the order in which the 

variables enter the model.  The main alternative method, the generalised IRF, is to 

shock a particular error and then to shock all other errors in a way which preserves the 

historical relationship between them (or some other assumed correlations).  Pesaran 

and Shin (1998) show that his involves computing the counterpart to (4) as: 

(5) IRFij
G(n) = σjj

-1ei’AnΣej  i,j = 1,2,…,m; n = 0,1,2… 

where σjj is the jth diagonal element of Σ.  The advantage of the use of the generalised 

IRFs is that they not affected by the ordering of the variables in the model.  However, 

since the shocks in this case are not orthogonal, the IRFs cannot simply be added as 

they can in the conventional Choleski case.  This is not usually a serious weakness 

since they are generally inspected one at a time.   

 Consider now the application of derivation of IRFs from the estimated VECM 

reported in section 3, beginning with the base case where no distinction is made 

between fundamental and speculative components of stock prices. 
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(a) Base case 

We begin by reporting the impulse response function (IRF) for the effect of a 

stock price shock on consumption using the base model reported in section 3.  With 

three equations, the VECM generates nine IRFs but, rather than report all nine, we 

focus on the effects on consumption of a one-standard-error shock to stock prices 

which is shown in Figure 1. 

 

    Generalized Impulse Response(s) to one S.E. shock in the equation for LS

 LC           

Horizon

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20 2525

 

Figure 1: The IRF for log consumption following a stock price shock. 

 

The effect of a one standard-error shock to the stock price equation error is clearly to 

increase consumption with the strength of the effect rising steadily over the first year 

before subsiding and reaching a steady state at a level of about 75% of peak after 

about four years.  Taking into account the magnitude of the standard error of the dls 

equation (0.0796), the implied long-run elasticity of consumption with respect to real 

stock prices is approximately 0.05 which is similar to the magnitude of the long-run 

effect calculated from the dlc VECM equation in isolation, although in interpreting 

this result we should keep in mind that the generalised IRFs are based on 

simultaneous shocks to all equations.    
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Consider now the consequence of splitting up stock prices into fundamental 

and speculative components.  As explained above, we focus on a decomposition based 

on recent work by Black et al. (2003) before proceeding to an assessment of the 

sensitivity of our results by using alternative decompositions. 

 

(b) Consumption and the Black et al. (2003) decomposition of stock prices 

Black et al. based their decomposition of stock prices on an application to 

macroeconomic data of a linearised version of the dividend-discount model due to 

Campbell and Shiller (see Campbell and Shiller, 1987, 1988, 1989).  While Campbell 

and Shiller work with traditional financial inputs into the model such as dividends and 

earnings, Black et al. use real GDP and interest rates to derive an aggregate 

decomposition of the inflation adjusted S&P500 index for the period.  They start with 

the dividend-discount model in the form: 
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where S denotes a real stock price index, Qt = β.Yt, Y is real output, β is a scaling 

constant and ρ* is the real discount rate.  This equation is log-linearised, using the 

procedure of Campbell and Shiller, and written in terms of the log “price-dividend” 

ratio, πt = st – qt-1, where s and q are the logs of S and Q, as: 
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where K is a linearisation constant, rt+j is the continuous discount rate and its 

expectation is interpreted as shareholders’ required return.  In order to use (8) to 

generate a series for π*t, the price-output ratio implied by the model and from it the 

implied or fundamental stock price, s*, Black et al. followed Campbell and Shiller 
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and used a VAR model to generate expected real output growth, ∆qt; for the expected 

real discount rate they made three alternative assumptions: a constant discount rate, a 

discount rate with a time-varying risk premium and a discount rate incorporating a 

time-varying risk-free component.  Since their results were not sensitive to the 

treatment of the discount rate, we use only the first and simplest of these.  In this case 

the third term in (8) is incorporated into the constant K to obtain: 
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The VAR used to forecast output growth is a two-variable one.  Define the vector zt = 

(πt ,∆qt-1)′; the VAR is then written as: 

 zt+1 = Azt + εt+1      (9) 

where A is a (2x2) matrix of coefficients and ε is a vector of error terms.  Using the 

VAR for forecasting, implies that expected growth can be written as: 

  Et∆qt+j = e2′Ajzt      (10) 

where e2 = (0,1)’.  Hence the value of πt generated by the combination of the present-

value model and the forecasting assumptions (denoted π*) is: 
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which is the equation they use to generate π* and hence the fundamental stock price 

series once they have estimated the VAR coefficients and the constant K’.  Finally, 

the (log of) fundamental stock prices is computed as: 

  st* = πt* + qt-1      (12) 
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Returning now to the empirical application to our consumption model, actual 

and fundamental log share prices derived from the Black et al. procedure, denoted ls 

and lsfb,  are shown in Figure 2. 

 

  

 LS            

 LSFR          

Quarters

4

5

6

7

8

1947Q1 1959Q3 1972Q1 1984Q3 1997Q1 2002Q4

 
Figure 2: Actual and fundamental log stock prices: Black et al.(2003) approach 

 

 

It shows long swings in stock prices relative to their fundamentals – for much of the 

1950s and 1960s stock prices exceeded their fundamental level while they were below 

fundamentals for most of the 1970s and 1980s.  The recent long boom in the 1990s 

had prices above fundamentals only for the second half of the decade. 

The VECM equation for the first difference in log real consumption using this 

decomposition is: 

dlct = 0.2319 – 0.1019 dlct-1 + 0.1258 dlyt-1 + 0.0427 dlssbt-1 – 0.0929 dlsfbt-1 
 (2.00)    (1.26)   (2.12)    (3.89)       (1.64) 
 
 + 0.3734 dlct-2 + 0.1742 dlyt-2 + 0.0503 dlssbt-2 – 0.1679 dlsfbt-2 
   (4.43)      (2.73)      (4.13)          (2.95) 
 
 + 0.2768 dlct-3 – 0.0408 dlyt-3 + 0.0059 dlssbt-3 – 0.0721 dlsfbt-3  
 (3.34)      (0.65)      (0.60)  (1.65) 

 
– 0.0144 ecmt-1  
 (1.96) 

  
R2 = 0.3148, AC prob = 0.029, FF prob = 0.387, Het prob = 0.665 
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where absolute values of t-statistics are shown in parentheses.  The explanatory power 

of the equation is noticeably improved as shown by the value of R2 and the 

diagnostics show an absence of heteroskedasticity and functional form mis-

specification although there is evidence of autocorrelation at 5%.  The coefficients of 

the two components of stock prices are of opposite sign; three are significant at 5% 

and a further two at 10%.  We can test whether the restriction implicit in the use of 

total stock returns is consistent with the data by testing for the equality of the 

coefficients of the two components at each lag; not surprisingly, such a test results in 

the rejection of the restriction (a Wald statistic of 14.87 with a prob value of 0.002) 

and the same is true of a test of the restriction that coefficients at corresponding lags 

are equal but of opposite sign (a Wald statistic of 8.43 with a prob value of 0.038).  

Both sets of coefficients are jointly significant – prob values for the joint hypothesis 

that three coefficients are zero are 0.000 and 0.008 for dlssb and dlsfb.  It appears, 

therefore, that the decomposition of stock prices into their two components improves 

the ability of the equation to explain consumption behaviour. 

If we examine the consumption equation in isolation and ignore the ecm term, 

we find a positive long-run effect of a shock to the speculative component of stock 

returns and a negative effect of a shock to fundamentals, both of magnitudes much 

greater than in the base case.  If we take the whole model into account using the 

generalised IRFs, we obtain the following time-profile for the effect on log real 

consumption of a one standard-error shock to the speculative and fundamental 

components, respectively: 
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   Generalized Impulse Response(s) to one S.E. shock in the equation for
LSSB
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(a) The effect of a speculative shock 

 

   Generalized Impulse Response(s) to one S.E. shock in the equation for
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(b) The effect of a fundamental shock 

Figure 3: IRFs for lc using decomposed stock price: the Black et al. approach 

 

The IRF for the speculative shock is very similar in shape but somewhat 

smaller in magnitude to that for the shock to total stock prices derived from the base 

case and pictured in Figure 1. This suggests that the effect in the base case is largely 

driven by the speculative component.  The smaller magnitude of the effect is 

surprising, though, since the coefficients for the speculative component in the VECM 

equation for dlc  are consistently larger than for total returns in the base case.  

Moreover, the effect of a fundamental shock is in surprising contrast to that suggested 

by the signs of the estimated coefficients which are all negative. To interpret these 
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effects we need to keep in mind the nature of the generalised IRFs as well, of course, 

as the fact that the IRFs are for (log) levels whereas the equation is for the growth 

rate.  The standard error for the speculative component is larger than that of its 

fundamental counterpart – almost fivefold in this case – and the equation residuals are 

positively correlated (with a correlation coefficient of 0.77). Recalling that the 

generalised IRFs are based on a shock to all errors that preserve historical 

correlations, we can see that the generalised IRF for a fundamental shock is 

dominated by the speculative effects which accounts, at least partly, for its unexpected 

sign.  Indeed, if we break this relationship between the shocks by generating IRFs 

based on the Choleski orthogonalisation, we find that the effect of a speculative shock 

is similar to the generalised IRF while the effect of the fundamental shock is negative 

for approximately four years before turning slightly positive. 

Thus we find that the nature of the IRF for a speculative shock does not 

depend on whether the generalised or orthogonalised version is used but that this 

choice does affect the shape of the IRF for a fundamental shock.  Whichever we use, 

it is clear that the effect of the speculative component dominates that of the 

fundamental component and gives the distinctive shape to the IRF for consumption 

following a shock to total stock prices pictured in Figure 1.   

We now proceed to an assessment of the sensitivity of our conclusions to the 

type of decomposition used by repeating the analysis with three alternative 

decompositions – starting with a regression-based approach. 

 

(c) Consumption and a regression-based decomposition of stock prices 

Consider now the effects of splitting up share prices into fundamental and 

speculative components using a regression approach common in the literature on 
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investment and stock prices.2  In this approach stock prices are regressed on variables 

thought to capture the fundamentals according to a simple dividend-discount model in 

which real output drives profits and so dividends and an interest rate captures changes 

in investors’ discount rate.  This is similar to the model underlying the approach used 

by Black et al. discussed above but uses a simple regression rather than using a 

restricted VAR.   

We therefore regress the log of real stock prices on four lags of the log of real 

GDP and the current value and four lags of the inflation-adjusted Treasury Bill rate.3  

The equation explains about 59% of the variation in the log of real stock prices.  The 

fitted values from this regression are taken as fundamentals and the residuals as the 

speculative component.  The logs of actual and fitted stock prices, ls and lsfr, are 

pictured in Figure 4. 
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Figure 4: Actual and fundamental log real stock prices: regression approach 

 

The general pattern of the fundamental component is similar to that derived 

from the more formal approach above although there appears to be more volatility in 

fundamentals in the present case. 

                                                 
2 Blanchard et al. (1993) and Galeotti and Schiantarelli (1994) are examples of this approach. 
3 We use the current value of the interest rate since interest rates are known instantaneously whereas 
real output is known only with a lag. 
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We include the fundamental and speculative components denoted by lsfr and 

lssr as separate variables in the VECM.  We report only the consumption equation 

since that is our main focus.  It is (with absolute values of t-statistics in parentheses):  

 

dlct = 0.2036 – 0.1055 dlct-1 + 0.1194 dlyt-1 + 0.0278 dlssrt-1 + 0.0373 dlsfrt-1  
 (3.48)     (1.35)   (1.95)    (4.21)        (3.05) 
  

+0.3371 dlct-2 + 0.1413 dlyt-2 + 0.0190 dlssrt-2 + 0.0115 dlsfrt-2  
    (3.61)     (2.26)      (2.70)       (0.91) 
  

+0.2416 dlct-3 – 0.1107 dlyt-3 – 0.0052 dlssrt-3 – 0.0035 dlsfrt-3 + 0.0253 ecmt-1 
    (2.68)    (1.88)     (0.73)         (0.31)         (3.39) 
  

R2 = 0.3045,   AC prob = 0.177,  FF prob = 0.055,  Het prob = 0.509. 
 

The value of R2 has risen marginally compared to the base case, suggesting 

that the decomposition better describes the data although not as well as the Black et 

al. decomposition does.  The diagnostics show an absence of autocorrelation, 

heteroskedasticity and misspecification of functional form and the ecm term is 

significant.  In contrast to the results derived from the Black et al. decomposition, the 

coefficients of the two components of real stock returns are the same sign at each lag, 

signs which correspond to those of ls in the base case.  There is also a remarkable 

similarity in magnitudes which suggests that there was little point in identifying the 

two components separately if this decomposition is used.  A Wald test that the 

coefficients of corresponding lags are equal produced a prob value of 0.660 providing 

strong evidence against the decomposition.  The sums of the coefficients are also 

similar – the long run effects of a sustained increase in the fundamental and 

speculative components of stock returns are 0.0790 and 0.0860 respectively compared 

to a figure of 0.057 for the base case.  All this suggests that both components 
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significantly affect consumption and in very similar ways.  This is not, however, 

borne out by the general IRFs which are pictured in Figure 5. 

 

    Generalized Impulse Response(s) to one S.E. shock in the equation for
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(a) Effect of a shock to the speculative component 

   Generalized Impulse Response(s) to one S.E. shock in the equation for
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(b) The effect of a shock to the fundamental component 

 Figure 5: IRFs for lc using decomposed stock prices: regression decomposition 

 

Notwithstanding the similarity of the coefficients in the consumption equation, the 

effects of the two shocks are dramatically different once the entire model is taken into 

account.  In order to interpret the effects, it is again important to recall the 

characteristics of the IRFs – they represent the effects of one standard-error shocks, 

they are generalised IRFs and they include the effects of the whole model, the ecm 

terms included.  The first source of difference may be the differences in the variability 
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of the two stock-price components – the equation standard error for the fundamentals 

equation is 0.0411 while that for the speculative equation is more than twice as large 

at 0.0894.  Second, the generalised IRFs impose historical correlations between the 

equation errors when formulating the shock.  The correlation between the residuals of 

the two stock-price component equations is – 0.4441.  Thus the negative effect of the 

fundamental shock, despite the overwhelmingly positive coefficients in the 

consumption equation, reflect the combined effect of the historical negative 

correlation between the two shocks and the fact that the speculative shock has a 

standard error more than twice that of the fundamental shock.  If we use 

orthogonalised IRFs then the effect of the speculative shock is little changed 

(although a little larger) and the effect of the fundamental shock is also positive 

initially but considerably smaller than the effect of the speculative shock.  Finally, 

there is the usual consideration when moving from an inspection of individual 

equation to an IRF which is that the latter takes into account all the interactions in the 

model – all three equations plus the cointegrating vector.  But, whether we use the 

generalised or orthogonalised IRFs and whether we use the regression-based 

decomposition or the Black et al  procedure, the broad implications are similar: the 

speculative or non-fundamental component of stock prices has a greater effect on 

consumption, pointing to the wealth-effect rather than the signalling explanation of 

the response of consumption to stock price changes.   

We continue with our assessment of the robustness of this conclusion by 

considering two decompositions of stock prices based on commonly used financial 

ratios. 
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(d) Consumption and a price/earnings decomposition of stock price 

The financial press, market analysts and many academics commonly discuss 

share valuation in terms of financial ratios and use measures such as the price-

earnings (P/E) ratio, the dividend yield or dividend-price ratio (D/P) and the book-to-

market (B/M) ratio to determine whether shares are underpriced or overpriced.  The 

P/E ratio is perhaps the most commonly cited.  The underlying assumption of such 

analysis is that there is some long-term value to which the ratio returns. This can be 

based on the Gordon model of share valuation and has also been the subject of 

empirical work.  Thus, Campbell and Shiller (1998, 2001) show that periods of high 

P/E ratios tend to be followed by falls in share prices over the next 10 years.  In this 

sense, the P/E ratio gives an indication of the fundamental value of shares and can be 

used to predict long run share market performance.4 The evidence also gives weight to 

arguments that low P/E ratios in the late 1970s indicated that the market was 

underpriced; and that the record high values in the late 1990s signalled an overvalued 

share market that was headed for a substantial correction. 5    

It has been argued recently that share-price behaviour of the 1990s has been 

unusual with the implication that there has perhaps been a shift in the long-term P/E 

ratio (amongst other things) due to structural changes in the economy.  There has, 

however, been no convincing explanation of why this shift has occurred, with most 

analyses managing to explain only a part of the long bull run in the 1990s.  Campbell 

and Shiller (2001, p.12) articulate this argument well by outlining a number of the 

ways the US economy has changed during the twentieth century.  They note that 

throughout all past innovations in transport, communication and business, the P/E and 
                                                 
4 Blielberg (1989, p. 31) notes that this predictive power cannot be used to time the market because an 
overvalued market can ‘do well’ for a long time. Rather the P/E ratio can be used as a mild indicator of 
the likely changes in share returns over the next several years. 
5 See for example Kopcke (1997), White (2000) and Cole, Helwege and Laster (1996) for further 
discussion of this argument. 
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D/P ratios have stayed remarkably stable.  There is no reason to think that the ‘new 

economy’ warrants a permanent break from the long-term relationship between 

prices, earnings and dividends.  Perhaps the most compelling evidence of this can be 

seen by observing the dramatic falls in the stock market since early 2000, bringing 

valuation ratios more in line with historical averages.  Figure 6 shows the annual 

values for the P/E ratio for the S&P500 for our sample of 1947-2002 taken from 

Robert Shiller’s web-site.6  
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Figure 6. Quarterly P/E ratio, 1947(1)-2002(4) 

 

This evidence shows that over a long period the P/E ratio fluctuated substantially over 

time, but tends to gravitate towards its mean of around 14 and even the historically 

high levels of the 1990s are subsiding.  

Given these data and the unresolved nature of the debate, we use the assumed 

long-term constancy of the P/E ratio to estimate fundamental share prices.  We have 

no information on the “normal” level of P/E but this is not a problem for the purposes 

of our empirical work.  Denoting the normal level by k, we write the log of real 

fundamental stock prices using this definition as: 

  lsfpet = log(k) + log(earnings)t 

                                                 
6 At http://aida.econ.yale.edu/~shiller 
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so that the value we choose for the normal level of P/E affects only the level of the log 

fundamentals and so will be immaterial for the VECM slope coefficients and the 

IRFs.  We therefore set it at zero in our model estimation.  Figure 7 plots the logs of 

real fundamental and actual share prices over the period based on this procedure.7 The 

graph supports many commonly held beliefs regarding share price behaviour over the 

last three decades. Firstly, we can see a period of undervaluation during the second 

half of the 1970s and the early 1980s. The 1990s, characterized by strong economic 

growth and an emerging ‘equity culture’, represents a decade of persistent 

overvaluation of the S&P 500 followed by the correction in the last two years of the 

sample.  
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Figure 7: Actual and fundamental real stock prices: P/E based decomposition 

 

The VECM equation for dlc based on this decomposition is: 

 

 

 

 

 

 

 

                                                 
7 The log of the mean of the P/E ratio has been added to lsfpe ( which is then labelled lsfpem) to 
maintain comparability with earlier diagrams. 
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dlct = 0.1915 – 0.0857 dlct-1 + 0.0731 dlyt-1 + 0.0272 dlsspet-1 + 0.0567 dlsfpet-1 
 (1.82)   (1.07)    (1.21)     (4.02)         (2.30) 
 
 + 0.2612 dlct-2 + 0.1132 dltt-2 + 0.0180 dlsspet-2 – 0.0366 dlsfpet-2 
     (3.37)      (1.85)     (2.54)          (0.99) 
 
 + 0.1294 dlct-3 – 0.1138 dlyt-3 – 0.0044 dlsspet-3 + 0.0097 dlsfpet-3  

    (1.75)      (1.99)      (0.62)    (0.40) 
 
– 0.0135 ecmt-1 

     (1.77) 
 
 R2 = 0.2681, AC prob = 0.852, FF prob = 0.755, Het prob = 0.545. 
 

The explanatory power of the equation for consumption growth is effectively the 

same as the base-case consumption equation which does not distinguish between the 

two components of stock prices, suggesting that the distinction is not useful.  Two of 

the speculative terms are significant and positive with coefficients of the same 

magnitude as those in the base case.  Only the first lag of the fundamental component 

is significant (and positive).  A test of equality of the coefficients of corresponding 

lags produces a Wald statistic of 3.9109 with a prob value of 0.271.  A test of the joint 

significance of the fundamental terms results in a  prob value of 0.091 so that they are 

significant at 10% but not at 5%.  The speculative terms, on the other hand, are highly 

significant with a prob value for a joint significance test of 0.000 (Wald = 24.4726).  

These results suggest that most of the explanatory power of real stock prices in the 

base-case equation come from the speculative component.  This is borne out by the 

IRFs of shocks to the two equations.  As was the case when we used the previous two 

decompositions, the effect of a speculative shock is substantial and of a similar shape 

to that of a stock price shock in the base case as shown in Figure 8(a) while the effect 

of a shock to the fundamental component is quite different and smaller. 
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   Generalized Impulse Response(s) to one S.E. shock in the equation for
LSSPE
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 (a) The effect of a speculative shock 

 

   Generalized Impulse Response(s) to one S.E. shock in the equation for
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(c) The effect of a fundamental shock 

Figure 8: IRFs for lc using decomposed stock prices: the P/E approach 

 

As in previous cases, the generalised IRF for the effect of a speculative shock is 

dominated by the correlated fundamental shock; if we use orthogonalised IRFs 

instead, the pattern and magnitude for the speculative shock are very similar while for 

the effect of the fundamental shock the pattern is preserved but the magnitude of the 

shock is reduced by about 50%.  We can conclude, therefore, that the speculative 

component has an effect which is similar in shape and magnitude to that of total stock 

prices in the base case but that the effect of a speculative shock is small, especially 

when we use the orthogonalised IRF. 
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 (e) Consumption and a dividend/price decomposition of stock prices 

We now consider our final decomposition, that based on the argument that in 

the long run the dividend yield is constant.  As in the case of a constant P/E ratio, we 

assume the existence of a long-run constant level although, again, the long-run level 

assumed affects only the intercept of the VECM and not the slope coefficients or the 

IRFs and so we set it at zero in our estimation of the model.  The implied fundamental 

(log) stock price index is pictured with the actual log stock price index in Figure 9. 
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Figure 8: Actual and fundamental stock prices: the D/P decomposition 

 

The overall shape is similar to that based on the P/E ratio although it is smoother.  The 

VECM equation based on this decomposition is: 

dlct =  0.2492 – 0.0404 dlct-1 + 0.0543 dlyt-1 + 0.0248 dlssdpt-1 + 0.0309 dlsfdpt-1 
 (3.04)    (0.51)     (0.89)     (3.64)           (0.77) 
  

+ 0.2766 dlct-2 + 0.0858 dlyt-2 + 0.0162 dlssdpt-2 + 0.0158 dlsfdpt-2 
     (3.63)      (1.39)      (2.27)            (0.33) 
  

+ 0.1255 dlct-3 – 0.1297 dlyt-3 – 0.0058 dlssdpt-3 + 0.0115 dlsfdpt-3 
     (1.73)     (2.28)    (0.80)          (0.28) 
  

- 0.0224 ecmt-1 
   (2.97) 

  
R2 = 0.2797, AC prob = 0.758, FF prob = 0.103, Het prob = 0.474 
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As was the case for the previous equations, the diagnostics show that the equation is 

free from autocorrelation, heteroskedasticity and misspecified functional form.  The 

value of R2 is similar to that for the equation estimated using total stock returns.  In 

this case fundamental stock returns are insignificant at all lags while the first two lags 

of the speculative component are significant and positive and of similar magnitude to 

the corresponding coefficients in the base-case equation suggesting, again, that the 

speculative component is the main driver of stock price effects on consumption.  This 

is borne out by the IRFs pictured in Figure 9. 
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(a) The effect of a speculative shock 
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(b) The effect of a fundamental shock 
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Figure 8: IRFs for lc using decomposed stock prices: the D/P approach 

 

The time-profile of the effect of a shock to the speculative component is again very 

similar in shape and magnitude to that for the effect of a shock to stock prices as a 

whole in the base model.  The effect of a fundamentals shock, by contrast, is  small 

and predominantly negative.  The sign of the fundamental IRF is largely driven by the 

correlation with the speculative component captured by the generalised IRF – if we 

use othogonalised IRFs instead, the picture for the speculative effect is little changed 

but the fundamentals shock has a predominantly positive effect although the shape of 

the IRF changes little.  Again, we can conclude that shocks to the speculative 

component have a similar effect to those which follow a shock to total stock prices in 

the base case and that fundamentals have a relatively minor effect on consumption. 

 

5. Conclusions 

This paper has been concerned with the effect of stock price changes on  

consumption.  Following the work of Poterba and Samwick (1995), the literature has 

identified two main channels through which the effect operates: the wealth effect and 

the signalling effect.  In the first, causation is clearly from stock price rises to 

consumption when households simply spend (part of) their increased wealth resulting 

from increases in its market value.  In the second, stock prices play the role of leading 

indicators and rise because underlying fundamentals rise and these stronger 

fundamentals are subsequently also reflected in rising consumption.   

In this paper we have explored an approach which allows us to distinguish the 

importance of these two channels empirically: we have used a decomposition of stock 

prices into fundamental and non-fundamental components and argued that the 

signalling channel would imply that most of the explanatory power of stock prices in 
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a consumption equation would operate through fundamentals and that the wealth 

effect implies that the speculative component is at least as important from the point of 

view of consumption. 

Since these two components are not observable, they must be model-

generated.  We focus on a procedure recently employed by Black et al. (2003) based 

on a linearised version of the dividend-discount model due to Campbell and Shiller 

(1987, 1988, 1989).  However, since the decomposition method is not likely to be 

uncontroversial, we also explore the consequences of the use of a number of 

alternative methods for measuring the fundamental component in order to gauge the 

sensitivity of our conclusions to the method of decomposition.  We use three 

alternative to the Balck et al approach, one based on regressing stock prices on 

fundamental variables and two based on financial ratios commonly used in the 

analysis of stock price movements.   

Our findings can be summarised as follows.  

• real consumption responds positively in both the short and long runs to a 

positive shock to total stock prices; the magnitude of the response is consistent 

with that found in earlier studies such as Bertaut (2002); 

• real consumption responds to a positive shock to the speculative component of 

real stock price with a pattern and magnitude which is similar to its response 

to total stock prices, suggesting that most of the effect of total stock prices is 

driven by its speculative component; this conclusion is not sensitive to 

whether generalised or Choleski-orthogonalised IRFs are used; and 

• the real consumption response to a shock to the fundamental component of 

stock prices is sensitive to the method of decomposition and to the type of IRF 

used but is in all cases smaller than the response to a speculative shock. 
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We conclude, therefore, that the wealth effect is alive and robust but that the 

signalling effect is fragile.  These findings are consistent with those of Starr-McCluer 

(2002) who used cross-section survey data but conflict with the conclusions reached 

by Poterba and Samwick (1995) who concluded that wealth effects on consumption 

were likely to be small relative to signalling effects.
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