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Abstract

This paper utilises a general class of long memory model that allows a time series process
to be fractionally integrated at both the zero and seasonal frequencies. This model is
advantageous because it avoids the need for seasonally adjusting data and allows a wider
range of long run behaviour to be incorporated into the modelling process. It is shown that
a frequency domain maximum likelihood estimator easily and adequately estimates all of
the parameters in this model. An important application is made by estimating seasonal
ARFIMA models for quarterly US and UK unemployment rates. It is found that the
data appear to be non-mean reverting when taking into consideration fractional levels of
integration at the zero and seasonal frequencies, thus supporting the hysteresis hypothesis.
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1 Introduction

The emergence of the autoregressive fractionally integrated moving average (ARFIMA) class of

models has lead to a widespread re-examination of many empirical relationships in economics;

some well known applications being, for example, Diebold and Rudebusch (1989) who examine

persistence in aggregate output; Diebold, Husted and Rush (1991) and Cheung and Lai (1993)

who find that purchasing power parity is a valid long run concept; Diebold and Rudebusch

(1991) who examine the excess smoothness of income within the context of the permanent

income hypothesis; Cheung (1993) who finds foreign-exchange rates are fractionally integrated;

and Hassler and Wolters (1995) who find that inflation can be characterised as a fractionally

integrated variable. A comprehensive survey of empirical applications and recent developments

of the ARFIMA model can be found in Baille (1996).

These studies share a common theme in that they examine long run relationships at the zero

frequency. The existence and widespread use of quarterly and monthly data in empirical work

suggests that some account should be made of the seasonal nature of many economic data sets.

Wilkins (1998) finds the existence of a seasonal frequency and or the seasonal adjustment of a

time series process can distort the estimates obtained using the variance ratio and range over

standard deviation tests for long memory. This follows work by Ghysels (1990) and Ghysels and

Perron (1993) who find seasonality and seasonal adjustment adversely affects unit root tests;

see also Olekalns (1994) for further evidence of this.

Rather than try to remove the impact of any seasonality from a time series process before

analysis takes place, this paper explicitly incorporates the seasonal frequency into the estimation

procedure and allows it to be integrated of a fractional order, the same way that behaviour at the

zero frequency is allowed to be fractionally integrated in the ARFIMA model. This follows the

earlier work of Gray, Zhang and Woodward (1989) and Viano, Deniau and Oppenheim (1995)

who generalize the fractional model to allow long memory relationships at frequencies other
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than zero and also Porter-Hudak (1990) who applies a seasonal fractional differencing model

to monetary aggregates. Other recent empirical applications using the fractionally integrated

seasonal model include Franses and Ooms (1997) who examine UK inflation, Gil-Alana and

Robinson (2001) who examine UK and Japanese consumption and income and Gil-Alana (2002)

who examines national output. See also Lildholdt (2002) who provides a justification for seasonal

long memory based on an argument similar to that of Granger (1980) for long memory at the

zero frequency.

Estimation of the seasonal ARFIMA model can be achieved easily by specifying the likeli-

hood function in the frequency domain, and thus, the estimation procedure is an extension of

the likelihood function in Fox and Taqqu (1986). To judge the performance of this maximum

likelihood estimator, a simulation experiment is undertaken to obtain its small sample proper-

ties. The results indicate that the frequency domain maximum likelihood estimator is able to

differentiate between the fractional differencing parameters at the different frequencies as well as

being able to identify any autoregressive or moving average parameters in the data generating

process.

In the second half of the paper, an application is made to quarterly US and UK unemployment

rates to help distinguish between the natural rate and hysteresis hypotheses of unemployment

rate behaviour. The natural rate of unemployment, or the nonaccelerating inflation rate of

unemployment (NAIRU), is that rate of unemployment that is consistent with an inflation rate

that displays no tendency to change. This is the underlying rate of unemployment that the

economy gravitates towards after an exogenous shock pushes it away. In contrast, hysteresis

describes path dependency in the dynamic behaviour of a time series process. The hysteresis

hypothesis asserts that there is no constant long run natural rate of unemployment and that

the effect of an exogenous shock does not dissipate within some finite time horizon.

The traditional methodology of analysing unemployment rates has relied on the non-rejection

of the unit root model as an indicator of the hysteresis hypothesis, while rejection of the unit
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root model has been used as an indicator of the natural rate hypothesis. In time series terms,

it has been presupposed that the level of integration, d, is integer valued and that shocks either

die away almost instantaneously; d = 0, or infinitely persist; d = 1. The fractional model allows

a compromise between these two extremes by avoiding the d = 0, 1 dichotomy. When d < 1 the

natural rate hypothesis is supported as the process obeys mean reversion, whereas for d ≥ 1,

the hysteresis hypothesis is supported as no mean reversion is displayed. Given the strong

seasonal nature of unemployment rates, it seems sensible to incorporate, rather than remove,

the seasonality present in quarterly or monthly unemployment time series data. Therefore the

seasonal ARFIMA model is a suitable choice of model to use when examining the long run

behaviour of quarterly unemployment rates.

The rest of this paper is structured as follows. Section 2 presents the seasonal ARFIMA

model and briefly discusses some of its time and frequency domain properties. Section 3 reports

the results of a simulation experiment to obtain the small sample properties of the frequency

domain maximum likelihood estimator for the seasonal ARFIMA model. Section 4 applies the

methodology to estimating long memory at the zero and seasonal frequencies in quarterly US

and UK unemployment rates. Section 5 concludes the paper.

2 The SARFIMA Model

The seasonal ARFIMA (SARFIMA) model is a straightforward extension of the non-seasonal

ARFIMA model, see Granger and Joyeux (1980) and Hosking (1981) for the original contri-

butions on the ARFIMA model. The zero mean SARFIMA(p, d0, dk, q) model is most simply

expressed as

Φ(L)(1− Lk)dk(1− L)d0yt = Θ(L)εt (1)

where Φ(L) =
∑p

j=0 φjL
j and Θ(L) =

∑q
j=0 θjL

j are lag operator polynomials in L of order

p and q respectively with φ0 = θ0 = 0, (1 − L)d0 is the zero frequency fractional differencing

filter, εt is a T × 1 sequence of independently and identically distributed random numbers with
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distribution (0, σ2) and (1− Lk)dk is the seasonal frequency fractional differencing filter, where

k denotes the periodicity of the possibly greater than one seasonal components. For example,

monthly data may have cycles at both the quarterly and monthly frequencies so that k = 4 and

12. For simplicity, it will generally be assumed that only one seasonal frequency operates. The

expression for the seasonal frequency fractional differencing filter can be obtained from that for

the zero frequency;

(1− Lk)dk =
∞∑

j=0

Γ(j − dk)

Γ(j + 1)Γ(−dk)
Lk·j (2)

where the lag operator Lk·j ensures that only the kth lag of yt is fractionally differenced.

When a time series process has only a long memory component at the seasonal frequency, that

is d0 = 0, then (1) will be called a pure SARFIMA model and be denoted as SARFIMA(p, 0, dk, q).

A general SARFIMA model has d0 6= 0 and, of course, when dk = 0, (1) simplifies to the

ARFIMA(p, d, q) model. The SARFIMA model therefore is more general than the ARFIMA

model because it is now possible to look at cases where long memory is present in the zero and

non-zero frequencies. To a certain extent, capturing long memory at a seasonal frequency will

require the seasonal component to behave in a manner similar to that of a deterministic cycle.

This should not cause too much of a problem because of the regularity of the seasonal frequency.

It is worth noting however, that capturing long memory over a business cycle is problematic in

theory because this cycle is more stochastic in nature, as well as being problematic in practice

because of limitations in available sample sizes.

For covariance stationarity of (1) to hold, a necessary but not sufficient condition is d0, dk <

0.5. Setting the ARMA lag operator polynomials to zero for simplicity and assuming only one

seasonal frequency at, for example, k = 4 allows the model to be written as

(1− L4)d4(1− L)d0yt = εt (3)

This can be rearranged to give

(1− L)d0+d4(1 + L)d4(1 + L2)d4yt = εt (4)
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from which it can be seen that the behaviour of yt at a frequency of zero is determined not

only by d0 but by the quantity d0 + d4. For a more general SARFIMA model, the exponent

becomes d0+
∑

i dki
where i indexes seasonal frequency. Accordingly, the necessary and sufficient

conditions for covariance stationarity are now

max{d0, dki
} < 0.5 and d0 +

∑

i

dki
< 0.5 (5)

while the conditions for mean reversion are

max{d0, dki
} < 1 and d0 +

∑

i

dki
< 1 (6)

2.1 Time and Frequency Domain Properties

Theoretical results for related fractional processes can be found in Gray, Zhang and Woodward

(1989) and Viano, Deniau and Oppenheim (1995). This section outlines some results relevant

for the SARFIMA model currently being considered.

2.1.1 Autocorrelation Function

The autocorrelation function for the pure SARFIMA(0, 0, dk, 0) model can be obtained directly

from the autocorrelation function for the conventional ARFIMA model but with zero coefficients

at the non-seasonal lags. The autocorrelation function for the general SARFIMA(p, d0, dk, q)

model is a more complicated expression containing the long memory parameters for more than

one frequency as well as the autoregressive and moving average parameters representing the

“short memory” characteristics of the process. The spectral representation of the autocovariance

function for such a model is

γj =
σ2

π

∫ π

0
eijλ|1− e−iλ|−2d0|1− e−ikλ|−2dk |θ(e−iλ)|2|φ(e−iλ)|−2dλ (7)

which is a complex function of d0, dk, φi and θi for i = 0, . . . , p or q. For illustrative purposes,

the averaged estimated autocorrelation function (ACF) for 100 simulated quarterly processes of
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sample size T = 200 observations are graphed in Figure 1a for d0 = 0.0, d4 = 0.4 and all ARMA

parameters set equal to zero. The dashed horizontal line is an approximate 95% confidence

interval. The long memory at the seasonal frequency is clearly evident as every fourth lag is

quite significant.

2.1.2 Impulse Response Function

The fractional cumulative impulse response function (CIRF) gives an indicator of the time

required for a time series process to revert to its mean value after an exogenous shock perturbs

the series. Given that the SARFIMA model contains two parameters that determine long range

behaviour, interpretation of the fractional levels of integration is most clearly made with respect

to the CIRF. For the zero mean SARFIMA process, the CIRF can be formally defined as

(1− L)yt = Φ−1(L)(1− Lk)−dk(1− L)1−d0Θ(L)εt = Ψ(L)εt (8)

where the moving average coefficients Ψ = {Ψ1, Ψ2, . . . , Ψ∞} yield the entire history of responses

with Ψi denoting the individual cumulative response of yt in the ith period to a shock in period

0. The limiting behaviour of Ψ is determined by the large lag values in the expansion of

(1− L)1−(d0+dk) which is obtained using (4).

2.1.3 Spectrum

The spectrum for the SARFIMA(p, d0, dk, q) model with fractional levels of integration at the

zero and kth seasonal frequencies is

I(λj) =
σ2

2π

|θ(e−iλj)|2
|1− e−iλj |2d0|1− e−ikλj |2dk |φ(e−iλj)|2 (9)

where λj = 2πj/T for j = 1, 2, . . . , T/2 is the jth Fourier frequency. The existence of fractional

integration at a seasonal frequency implies that the spectrum may now have more than one

point of discontinuity.
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Panel b of Figure 1 graphs an estimate of the theoretical spectrum for a quarterly SARFIMA

process where d0 = 0.0 and d4 = 0.4. This figure clearly suggests the discontinuity at a fre-

quency of 0.25, as well as the existence of a harmonic at a frequency of 0.5. Unfortunately,

it is difficult to see clearly what is happening in the spectrum when d4 is positive due to the

spike at the 0.25 frequency overwhelming all other frequencies. Panel c of Figure 1 illustrates

the allowable behaviour in the model by graphing the theoretical spectra for four quarterly

SARFIMA processes with d0 = 0.0 and d4 = −0.1,−0.2,−0.3 and −0.4. Negative values for d4

clearly illustrate the behaviour possible in the spectrum that is not attainable in the ARFIMA

or ARMA class of models. As a further illustration, Panel d of Figure 1 graphs the spectra for

a number of monthly SARFIMA(0, 0, d12, 0) processes with d12 ranging between -0.4 and 0.0.

2.2 Estimation

The simplest estimation procedure for (1) is maximum likelihood estimation in the frequency

domain, see Fox and Taqqu (1986). This is because the frequency domain likelihood function

can easily accommodate fractional integration at a non-zero frequency. Equation (9) allows

specification of the log likelihood function

ln L(Π; p(λj)) = − 1

2π

T/2∑

j=1

p(λj)

I(λj)
(10)

where Π = {d0, dk, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ
2} is a 3 + p + q × 1 parameter vector and

p(λj) is the periodogram estimated using conventional methods. As shown in Fox and Taqqu

(1986), maximisation of (10) results in asymptotically normal estimates of Π. Cheung and

Diebold (1994) show that the small sample properties obtained using (10) and the small sample

properties obtained using the exact time domain maximum likelihood estimator due to Sowell

(1992) are similar in samples of the size considered here. However, the small sample properties

of (10) when there are two fractional integration parameters are unknown. The next section

investigates this issue using simulation methods.

8



3 Monte Carlo Experiment

3.1 Simulation Design

The Monte Carlo experiment investigates the adequacy of the likelihood function in (10), spec-

ified using (9), when estimating the parameters of the pure and general SARFIMA models.

Small sample bias and root mean squared error (RMSE) statistics are reported. A sample size

of T = 200 observations is implemented which corresponds to 50 years of quarterly data. This

is approximately equivalent to the available sample sizes for the quarterly US and UK unem-

ployment rates investigated in Section 4. A total of R = 1000 replications are performed. The

data are simulated by expanding the fractional differencing operators (1 − Lk)dk and (1− L)d0

up to a lag of l = 1000 and then simulating an AR(l + p) process, using if necessary an MA(q)

error process, θ(L)εt; see Martin and Wilkins (1999) for more details on a long lag simulator for

the ARFIMA(p, d, q) model.

Two data generating processes (DGPs) are considered. The DGP for the SARFIMA(0, d0, d4, 0)

experiment is

(1− L4)d4(1− L)d0yt = εt (11)

with parameter values d0 = {−0.4,−0.2, 0.2, 0.4} and d4 = {0.0, 0.2, 0.4}. Positive correlation at

seasonal frequencies suggests that only positive values for d4 should be considered, but negative

values for d0 are included because it is commonplace to first difference data before estimation.

(The argument here is if the level of integration of the process at the zero frequency is less than

one, then the corresponding integration level of the first differenced series will be negative.) The

second DGP is the SARFIMA(1, d0, d4, 1) model, which can be expressed as

(1− φ1L)(1− L4)d4(1− L)d0yt = (1 + θ1L)εt (12)

with parameter values d0 = {−0.3, 0.3}, d4 = {0.2, 0.4}, φ1 = 0.7 and θ1 = 0.3. All computations

are undertaken using Gauss version 3.2. The Gauss code is available from the author on request.
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3.2 Simulation Results

The results for the twelve different combinations of d0 and d4 are reported in Table 1 for the

simple fractional seasonal noise model in (11). For all values of the fractional differencing

parameter (at the zero or quarterly frequencies) the small sample bias levels are below an

absolute level of 0.09 while the RMSE values are below 0.12, and most are below 0.09. This

clearly shows that (10) has no difficulty identifying two fractional differencing parameters. Note

that these results are quite consistent with the results obtained using the frequency domain

maximum likelihood estimator for the non-seasonal ARFIMA(0, d, 0) model, see Cheung and

Diebold (1994) for example.

Table 2 reports the results for the four different combinations of parameter values for the

more complicated SARFIMA(1, d0, d4, 1) model in (12). Once again, the small sample properties

of the frequency domain maximum likelihood estimator are quite good, and are comparable to

the small sample properties obtained for the simpler non-seasonal ARFIMA(1, d, 1) model, see

Martin and Wilkins (1999) for example. There are one or two concerns however, and these

principally revolve around the small sample bias on d0, which remains greater than -0.15 for all

four specifications. The small sample bias levels for the ARMA parameters are much lower in

comparison and the RMSE values for all parameters seem reasonable. To investigate the bias

levels on the fractional parameters in more detail, the simulations were re-performed using a

sample size of T = 2000 observations with R = 100 replications. A smaller number of replications

were performed because of the increased computational time associated with the larger sample.

For this new specification, the bias did not exceed an absolute value of 0.04, while the RMSE

only exceeded 0.10 once with a value of 0.114 for d0 in the d0 = 0.3, d4 = 0.4, φ1 = 0.7, θ1 = 0.3

specification. These results indicate that the larger sample behaviour of the frequency domain

maximum likelihood estimator for the SARFIMA model approaches the asymptotic results in

Fox and Taqqu (1986).

In general, the results of the Monte Carlo experiments suggest that the frequency domain
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maximum likelihood estimator is a consistent estimator of the parameters in the SARFIMA

model. The small sample properties of the estimator would also appear to be quite acceptable,

given the complexity of the model. With these results in mind, the SARFIMA model is now

applied to modelling long run behaviour in unemployment rates.

4 Long Memory in Unemployment Rates

4.1 Time Series Modelling of Unemployment Rates

Despite the volume of research that has been undertaken into unemployment rate behaviour over

the recent past, there is still much debate as to the validity of the natural rate and hysteresis

hypotheses; see for example the symposium on the natural rate of unemployment in a recent

issue of The Journal of Economic Perspectives (Winter 1997). This debate can be traced back

to Blanchard and Summers (1986, 1987) who develop models for hysteresis in unemployment

rates using the paradigm of wage setting in insider-outsider models before finding evidence of

hysteresis effects in European unemployment rates. More recently, the existence of hysteresis is

one interpretation that can be placed on the results of Crosby and Olekalns (1996) who find that

the NAIRU for Australia has consistently increased since 1959. Mitchell and Wu (1995) find

that quarterly unemployment rates for the OECD countries exhibit behaviour that is consistent

with fractionally integrated variables. However, their estimates of the level of integration differ

from country to country and there is no clear support for either hypothesis.

Consider the stationary filtered time series representation of the unemployment rate, U∗
t ,

that can be modelled as the ARMA(p, q) process

U∗
t = Φ′ (L)−1 (α + Θ′ (L) εt) (13)

where Φ′ (L) and Θ′ (L) are lag operator polynomials of degree p′ and q′ respectively, α is

a constant and εt ∼ iid (0, σ2). In its original form, unemployment, Ut, follows a difference
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stationary model if

∆Ut = Φ′ (L)−1 (α + Θ′ (L) εt) (14)

where U∗
t = ∆Ut with ∆ = (1− L) denoting integer differencing; and a trend stationary model

if

Ut = Φ′ (L)−1 (α + βt + Θ′ (L) εt) (15)

where U∗
t = Ut − Φ′ (L)−1 βt with t denoting a linear time trend. Combining (14) and (15) and

assuming that the level of integration of unemployment rates is not I(2) or greater, it is possible

to obtain the more general model

Ut =
(
1− I(0,1)

)
Ut−1 + Φ′ (L)−1

(
α + I(0,1)βt + Θ′ (L) εt

)
(16)

where I(0,1) is the indicator function, defined according to

I(0,1) =

{
1 d = 0
0 d = 1

(17)

Equation (16) represents a compact formulation of the two models that can be verified

empirically through integer based integration testing. This approach has the inherent restriction

that the level of integration is restricted to being either I(0) or I(1). As noted in the introduction,

these two cases exhibit the extreme behaviour where shocks either die out almost instantaneously

or persist with a unit effect into the infinite future. In contrast to this, the ARFIMA and

SARFIMA models allow varying “shades of stationarity” to be modelled through d0 and dk

and therefore varying responses to once off exogenous shocks, while simultaneously modelling

short run deviations around the long run trajectory through the ARMA parameters. For the

ARFIMA model, the empirical model for unemployment rates can be expressed in a manner

similar to that in (13) but now U∗
t = ∇dUt where ∇d is taken to represent the zero frequency

fractional differencing filter. For the SARFIMA model, two fractional levels of integration must

be taken into account. The stationary filtered time series representation for unemployment

rates is now U∗
t = ∇dk∇d0Ut where ∇dk is the seasonal frequency fractional differencing filter.

The advantage of these specifications is that more flexibility is allowed into the modelling and

estimation procedure.
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4.2 Empirical Results

The empirical analysis uses seasonally unadjusted and adjusted quarterly US and UK unem-

ployment rates for the period 1947:Q1 to 2002:Q2 (T = 222 observations) obtained from the

Yearbook of Labour Statistics, The International Labour Office. The seasonally adjusted data

were obtained using the ratio to moving average de-seasonalisation procedure. The seasonally

unadjusted time series for both countries are graphed in panels a and b of Figure 2. Panels

c and d of Figure 2 contain the periodograms of the first differenced series. Note that both

periodograms have significant spikes at a frequency of 0.25, corresponding to the seasonal cycle

of 4 quarters.

A visual inspection of Figure 2 does appear to suggest that shocks to unemployment rates

take a while to dissipate. For example, apart from the obvious seasonality, the US time series is

strongly characterised by what looks like a business cycle that consistently causes a sharp rise

in unemployment rates before a more gradual fall. For the UK, there was a very sharp rise in

unemployment rates in the early 1980s, followed by a sharp fall in the late 1980s. This type of

long run behaviour is consistent with the behaviour that can be captured with the fractional

model.

4.2.1 Estimation of ARFIMA and SARFIMA Models

Both ARFIMA and SARFIMA models are estimated for US and UK unemployment rates to

facilitate comparison between the seasonal and non-seasonal models. In all cases, estimation is

conducted for the first differenced series, thus avoiding the problems of estimating nonstationary

models. Hypothesis testing concerning the level of integration at the zero frequency is also

conducted on the first differenced series. For example, to test the hypothesis that d0 = 1 in the

original series involves testing the hypothesis that d0− 1 = 0 in the first differenced series. This

avoids the problem of a non-standard limiting distribution in the hypothesis testing procedure.

The results obtained using the ARFIMA models are discussed first.
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The estimated ARFIMA(p, d, q) models for p, q = 0, 1 are reported in Table 3, while the max-

imised value of the log likelihood function and the Akaike (AIC) and Schwarz (SIC) information

criteria are reported in Table 4. The conventional frequency domain likelihood function was

implemented for the ARFIMA models. For reasons of comparison, the ARFIMA models were

estimated for both the seasonally unadjusted and adjusted series. Concentrating first on the

unadjusted series, the AIC chosen model for US unemployment rates is the ARFIMA(0, d, 1)

model with a d estimate of 0.635 that is significantly less than one at conventional levels of

significance. The AIC chosen model for UK unemployment rates is the ARFIMA(1, d, 0) model

with a d estimate of 1.517 that is significantly greater than one at conventional levels of signifi-

cance. These estimates would appear to be consistent with a visual inspection of the data and

are also consistent with the Geweke and Porter-Hudak (GPH) (1983) estimates of d which are

(using the first m = 15 frequencies and with estimated standard errors in parentheses); 0.571

(0.181) for the US and 1.334 (0.245) for the UK. Also note that all point estimates of d for US

unemployment rates are below one and all point estimates for UK unemployment rates, with

one exception, are above one.

For the seasonally adjusted data, the estimate of d in the AIC chosen ARFIMA(1, d, 0)

model for US unemployment rates is 0.227, and the estimate of d for the seasonally adjusted

UK unemployment rates in the AIC chosen ARFIMA(0, d, 1) model is 1.028. The GPH estimates

of d are remarkably similar to those obtained for the unadjusted series, and are; 0.571 (0.178)

for the US and 1.332 (0.253) for the UK. The seasonal adjustment procedure appears to have

neither increased or decreased the estimates of d uniformly across model or country. There

are however, one or two noticeable differences in parameter values, the ARFIMA(1, d, 1) model

being the best example of this.

The estimated SARFIMA(p, d0, d4, q) models for p, q = 0, 1 for US and UK unemployment

rates are reported in Table 5, and the maximised value of the log likelihood function and the

Akaike and Schwarz information criteria are reported in Table 6. SARFIMA models were es-
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timated only for the seasonally unadjusted series. For the US, the AIC chosen model is the

SARFIMA(1, d0, d4, 0) model with a level of integration at the zero frequency, 0.463, that is

reasonably consistent with the level of integration obtained using the AIC chosen model for the

unadjusted data in Table 3. The level of integration at the seasonal frequency for this model is

0.428, and this is very consistent across model. This is no doubt due to the fact that d0 and the

ARMA parameters are largely independent of this band of the spectrum and so the specification

of these parameters has little impact on d4. In contrast, it is now well known that the estimate

of the level of integration at the zero frequency is sensitive to the specification of the ARMA

parameters and this is why the estimates of d0 fluctuate more widely than the estimates of d4.

Invoking the mean reversion condition in (6) yields d0 + d4 = 0.891, which is insignificantly less

than one. Thus, the conditions for mean reversion are violated when incorporating long memory

at a quarterly frequency in US unemployment rates.

The AIC chosen model for UK unemployment rates is also the SARFIMA(1, d0, d4, 0) model.

Here the point estimates of d0 = 0.492 and d4 = 0.496 are both individually well below one,

but once again the combined effect of d0 + d4 = 0.988 implies a non-mean reverting DGP. This

result, unlike that for the US, is consistent with the ARFIMA estimates in Table 3 which also

imply a non-stationary DGP for the UK.

As a final estimation check, a variant of the GPH estimator is applied to the data. This

involves estimating the GPH regression over the quarterly seasonal band of the spectrum only.

The regression model can be expressed as

ln p(λj) = δ − d4 ln{|1− e−i4λj |2}+ εj (18)

where j indexes frequency over the seasonal band. The determination of the length of this

band is, of course, quite arbitrary. Different bandwidths were experimented with but the results

for only two are presented as these are representative of the results in general. When j =

43, 44, . . . , 57, representing a truncation parameter of approximately m = T 0.5, the estimates

obtained using (18) are; d4 = 0.765 (0.104) for the US and d4 = 0.511 (0.136) for the UK.
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Expanding the bandwidth to j = 40, 41, . . . , 60, the estimates are; d4 = 0.673 (0.111) for the US

and d4 = 0.475 (0.128) for the UK. Note that the UK estimates of d are very similar to those

obtained using the frequency domain maximum likelihood estimator.

Unfortunately, these GPH estimates must be interpreted with some caution. While the

asymptotic properties will follow from those established in earlier research, see for example

Geweke and Porter-Hudak (1983), the small sample properties are unknown, although Porter-

Hudak (1990) presents some results for a small scale Monte Carlo experiment on a related issue.

In addition, there is potential for any ARMA parameters in the DGP to bias the estimate of

d4. This might be the case for the US for example. The GPH results do however reinforce the

estimation results presented earlier for the frequency domain maximum likelihood estimator.

The negative small sample biases on the fractional parameters reported in the simulation

results in Table 2 suggest that the maximum likelihood estimation procedure tends to underesti-

mate the true level of integration at the zero and seasonal frequencies for a sample size of T = 200

observations. Using the small sample bias results in Table 2 and the estimation results in Ta-

ble 5 as a guide, another simulation experiment was performed for the SARFIMA(1, d0, d4, 0)

model with parameter values d0 = 0.6, d4 = 0.5 and φ = 0.674 corresponding approximately

to the US parameter estimates and d0 = 0.6, d4 = 0.6 and φ = 0.858 corresponding approxi-

mately to the UK. The DGP parameter values for d0 and d4 have been increased slightly with

respect to the estimates in Table 5 to allow for any possible small sample bias when estimating

the parameters of this particular model. As the values for d0 imply covariance non-stationary

DGPs, the simulated processes were first differenced before estimation. All other details are

the same as in Section 3. For the first “US” DGP, the bias (RMSE) values are, for φ1; 0.059

(0.143), for d0; -0.113 (0.193) and for d4; -0.026 (0.075). For the second “UK” DGP, the bias

(RMSE) values are, for φ1; -0.012 (0.086), for d0; -0.031 (0.130) and for d4; -0.017 (0.075). This

suggests that the estimates in Table 5 only marginally understate the true level of long memory

at the zero and seasonal frequencies and certainly less than that implied by Table 2 for the
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SARFIMA(1, d0, d4, 1) model.

Overall, the evidence suggests that US and UK unemployment rates are both non-mean

reverting, although this appears to be somewhat stronger for the UK. For the AIC chosen

SARFIMA models, the individually estimated levels of integration are significantly different

from zero and one at conventional levels, thus supporting the proposition that unit root type

specifications are mis-specified. More long memory behaviour is found to be present in the

estimated SARFIMA models than in the ARFIMA models. This result is not surprising given the

strong seasonality of the time series. Finally, the results imply that the hysteresis hypothesis is a

more empirically valid model of unemployment rate behaviour than the natural rate hypothesis.

4.2.2 Impulse Response Functions

Given that there are two long memory parameters in the DGPs for US and UK unemployment

rates, statements about the long run behaviour of the processes and the degree of mean reversion

present can be made more clearly by examining the fractional impulse response functions. The

AIC and SIC chosen models of the previous section are used to calculate CIRFs for US and UK

unemployment rates. The impulse responses are calculated over 40 quarters, or 10 years and

are graphed in Figure 3.

Panels a and c of Figure 3 graph the impulse responses for the US, while Panels b and d graph

the impulse responses for the UK. Note that because the SARFIMA models were estimated only

for the seasonally unadjusted data, the impulse responses using the SARFIMA model for the

US in Panels a and c are the same, as are the SARFIMA impulse responses for the UK in

Panels b and d. They are included in both panels for each country for reasons of comparison.

The ARFIMA based impulse responses differ in each panel due to the seasonally adjusted or

unadjusted data being used. Lastly, where there is disagreement between the model selection

criteria in Tables 4 and 6, the impulse responses are appropriately labelled to indicate whether

the CIRF is based on the AIC or the SIC chosen model.
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The following points can be made. For the US there is somewhat conflicting evidence as

to the mean revertibility of unemployment rates. The SARFIMA based CIRF clearly suggests

the US data is non-mean reverting, whereas two of the three ARFIMA based CIRFs suggest

mean reversion. Of course, this just reflects the conflicting results in Tables 3 and 5 between the

ARFIMA and SARFIMA models for the US unemployment data. For the UK, the picture is

far clearer. All of the calculated CIRFs indicate the non-mean reverting nature of the DGP for

UK unemployment rates. In particular, for the SARFIMA-SIC chosen model, the DGP appears

to be quite explosive. This is not surprising, as for this model d0 + d4 = 1.847.

5 Conclusion

This paper has addressed the issue of obtaining an estimate of the level of integration of the

DGP for a time series process at a frequency other than that of zero. It has been justified

that given the widespread use of seasonal data in empirical applications, it is only natural that

long memory relationships at other frequencies be examined because of the useful economic

information they may contain. A general model has been utilised, a straightforward estimation

procedure using frequency domain tools has been suggested and small sample results reported

for a range of DGPs. Due to the strong seasonality present, an application has also been made to

modelling US and UK unemployment rates. Recent applied time series work has attempted to

distinguish between hysteresis and natural rate models of unemployment rate behaviour using

the integer based integration dichotomy. This paper has improved upon the methodological

approach by allowing a wider range of long run behaviour to be modelled by using the ARFIMA

and SARFIMA methodologies.

It has been found that the SARFIMA model is a useful one for capturing long memory

relationships in time series data. The estimates of the level of integration in US and UK

unemployment rates have been found to be significantly different from the relatively restrictive

I(0) and I(1) cases at the zero and seasonal frequencies. This result has implications for the

18



policy management of unemployment in these two countries. Under the natural rate model,

unemployment is able to revert to its long run equilibrium level, and so, government intervention

to assist the adjustment process is unnecessary from a long run point of view. The hysteresis

model asserts that the short run equilibrium level is directly dependent on past actual levels

of unemployment. Increases in actual levels of unemployment increase the equilibrium level,

with no tendency for reversion to the original level. Accordingly, the finding of hysteresis effects

in unemployment rates supports the argument for more activist government policies to reduce

actual unemployment, and therefore, the equilibrium level. The findings in this paper support

the proposition that US and UK unemployment rates are best characterised within this hysteresis

framework.
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Table 1: Small Sample Summary Statistics for the SARFIMA Maximum Likelihood Estimator:
SARFIMA(0, d0, d4, 0) DGP with T = 200 and R = 1000

DGP d0 = −0.4 d4 = 0.0 d0 = −0.4 d4 = 0.2 d0 = −0.4 d4 = 0.4
Bias -0.021 0.025 -0.005 -0.070 -0.007 -0.076

RMSE 0.066 0.031 0.064 0.092 0.066 0.106

d0 = −0.2 d4 = 0.0 d0 = −0.2 d4 = 0.2 d0 = −0.2 d4 = 0.4
Bias -0.024 0.025 -0.007 -0.071 -0.007 -0.076

RMSE 0.067 0.030 0.064 0.092 0.066 0.106

d0 = 0.2 d4 = 0.0 d0 = 0.2 d4 = 0.2 d0 = 0.2 d4 = 0.4
Bias -0.025 0.025 -0.004 -0.070 0.004 -0.075

RMSE 0.067 0.030 0.064 0.092 0.068 0.106

d0 = 0.4 d4 = 0.0 d0 = 0.4 d4 = 0.2 d0 = 0.4 d4 = 0.4
Bias -0.022 0.025 0.005 -0.070 0.028 -0.083

RMSE 0.066 0.030 0.067 0.092 0.084 0.112

Note: The simulation design is outlined in Section 3.1.
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Table 2: Small Sample Summary Statistics for the SARFIMA Maximum Likelihood Estimator:
SARFIMA(1, d0, d4, 1) DGP with T = 200 and R = 1000

DGP d0 = −0.3 d4 = 0.2 φ1 = 0.7 θ1 = 0.3
Bias -0.177 -0.086 0.092 0.057

RMSE 0.267 0.104 0.180 0.112

d0 = 0.3 d4 = 0.2 φ1 = 0.7 θ1 = 0.3
Bias -0.180 -0.097 0.098 0.026

RMSE 0.274 0.110 0.187 0.105

d0 = −0.3 d4 = 0.4 φ1 = 0.7 θ1 = 0.3
Bias -0.166 -0.100 0.082 0.054

RMSE 0.273 0.128 0.196 0.112

d0 = 0.3 d4 = 0.4 φ1 = 0.7 θ1 = 0.3
Bias -0.178 -0.158 0.093 -0.009

RMSE 0.301 0.183 0.237 0.125

Note: The simulation design is outlined in Section 3.1.
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Table 3: Frequency Domain Maximum Likelihood Estimates of ARFIMA(p, d, q) Models for
Unemployment Rates

ARFIMA

Model d̂ φ̂1 θ̂1 σ̂2

Unadjusted: United States
(0, d, 0) 0.873 (0.097) - - 0.541 (0.050)
(1, d, 0) 0.626 (0.178) 0.331 (0.187) - 0.516 (0.049)
(0, d, 1) 0.635 (0.095) - 0.404 (0.087) 0.490 (0.047)
(1, d, 1) 0.612 (0.136) 0.042 (0.216) 0.389 (0.122) 0.490 (0.047)

Unadjusted: United Kingdom
(0, d, 0) 1.193 (0.072) - - 0.178 (0.029)
(1, d, 0) 1.517 (0.115) -0.456 (0.112) - 0.164 (0.027)
(0, d, 1) 1.507 (0.180) - -0.381 (0.167) 0.171 (0.028)
(1, d, 1) 0.623 (0.227) 0.939 (0.060) -0.448 (0.174) 0.166 (0.028)

Adjusted: United States
(0, d, 0) 1.052 (0.093) - - 0.309 (0.038)
(1, d, 0) 0.227 (0.197) 0.837 (0.135) - 0.293 (0.036)
(0, d, 1) 0.947 (0.127) - 0.128 (0.123) 0.305 (0.037)
(1, d, 1) 0.344 (0.472) 0.789 (0.244) -0.079 (0.266) 0.293 (0.037)

Adjusted: United Kingdom
(0, d, 0) 1.204 (0.083) - - 0.216 (0.031)
(1, d, 0) 1.116 (0.125) 0.144 (0.149) - 0.213 (0.031)
(0, d, 1) 1.028 (0.085) - 0.354 (0.103) 0.205 (0.036)
(1, d, 1) 1.073 (0.104) -0.158 (0.213) 0.440 (0.145) 0.204 (0.031)

Note: Estimated standard errors are in parentheses.
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Table 4: The Akaike and Schwarz Information Criteria and Maximised Value of the Log Likeli-
hood Function for the ARFIMA(p, d, q) Models in Table 3

ARFIMA
Model L(Π; P (λj)) AIC SIC

Unadjusted: United States
(0, d, 0) -22360.915 44725.830 44732.627
(1, d, 0) -22358.757 44723.513 44733.708
(0, d, 1) -22356.002 44718.004† 44728.199‡

(1, d, 1) -22355.983? 44719.967 44733.560

Unadjusted: United Kingdom
(0, d, 0) -22298.989 44601.978 44608.775
(1, d, 0) -22293.718? 44593.435† 44603.630‡

(0, d, 1) -22296.085 44598.171 44608.365
(1, d, 1) -22295.686 44599.373 44612.965

Adjusted: United States
(0, d, 0) -22329.567 44663.135 44669.931‡

(1, d, 0) -22327.991 44661.981† 44672.176
(0, d, 1) -22329.171 44664.343 44674.537
(1, d, 1) -22327.935? 44663.870 44677.463

Adjusted: United Kingdom
(0, d, 0) -22309.434 44622.867 44629.664
(1, d, 0) -22308.903 44623.806 44634.000
(0, d, 1) -22306.915 44619.831† 44630.025‡

(1, d, 1) -22306.612? 44621.225 44634.817

Note: The AIC is calculated according to −2 ln L(·)+2n and the SIC is calculated according to −2 ln L(·)+2n ln T
where n denotes the number of model parameters equal to 2+p+q. ? denotes maximised value of the log likelihood
function, † denotes minimum AIC and ‡ denotes minimum SIC.
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Table 5: Frequency Domain Maximum Likelihood Estimates of SARFIMA(p, d0, d4, q) Models
for Unemployment Rates

SARFIMA

Model d̂0 d̂4 φ̂1 θ̂1 σ̂2

United States
(0, d0, d4, 0) 1.184 (0.111) 0.407 (0.066) - - 0.314 (0.038)
(1, d0, d4, 0) 0.463 (0.180) 0.428 (0.067) 0.674 (0.134) - 0.280 (0.036)
(0, d0, d4, 1) 0.904 (0.146) 0.404 (0.069) - 0.294 (0.122) 0.299 (0.037)
(1, d0, d4, 1) 0.276 (0.246) 0.432 (0.070) 0.716 (0.143) 0.164 (0.146) 0.275 (0.035)

United Kingdom
(0, d0, d4, 0) 1.377 (0.088) 0.470 (0.076) - - 0.106 (0.022)
(1, d0, d4, 0) 0.492 (0.130) 0.496 (0.078) 0.858 (0.085) - 0.100 (0.021)
(0, d0, d4, 1) 1.447 (0.185) 0.464 (0.077) - -0.079 (0.178) 0.106 (0.022)
(1, d0, d4, 1) 0.721 (0.259) 0.480 (0.078) 0.815 (0.104) -0.216 (0.196) 0.100 (0.021)

Note: Estimated standard errors are in parentheses.
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Table 6: The Akaike and Schwarz Information Criteria and Maximised Value of the Log Likeli-
hood Function for the SARFIMA(p, d0, d4, q) Models in Table 5

SARFIMA
Model L(Π; P (λj)) AIC SIC

United States
(0, d0, d4, 0) -22329.115 44664.230 44674.425
(1, d0, d4, 0) -22324.090 44656.180‡ 44669.773‡

(0, d0, d4, 1) -22327.020 44662.040 44675.633
(1, d0, d4, 1) -22323.539? 44657.078 44674.069

United Kingdom
(0, d0, d4, 0) -22268.648 44543.295 44553.490‡

(1, d0, d4, 0) -22266.907 44541.814‡ 44555.406
(0, d0, d4, 1) -22268.547 44545.093 44558.686
(1, d0, d4, 1) -22266.247? 44542.495 44559.486

Note: The AIC is calculated according to −2 ln L(·)+2n and the SIC is calculated according to −2 ln L(·)+2n ln T
where n denotes the number of model parameters equal to 3+p+q. ? denotes maximised value of the log likelihood
function, † denotes minimum AIC and ‡ denotes minimum SIC.
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Figure 1: Time and Frequency Domain Properties of the Pure SARFIMA(0, 0, dk, 0) Model
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Figure 2: US and UK Unemployment Rates and Periodograms of the First Differences: Season-
ally Unadjusted Data
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Figure 3: Fractional Impulse Response Functions for US and UK Unemployment Rates
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