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Abstract

In this paper, we investigate how investors who face both equity risk
and credit risk would optimally allocate their financial wealth in a dy-
namic continuous-time setup. We model credit risk through the default-
able zero-coupon bond and solve the dynamics of its price after pricing
it. Using stochastic control methods, we obtain a closed-form solution
to this investment problem and characterize its variation with respect to
different factors in the economy. We find that non-zero recovery rate of
the credit-risky bond affects investors’ decision in a fundamental way. Be-
cause of this, investors try to time the market conditions in their decision
making process. It also induces hedging term in this setup of otherwise
deterministic investment opportunity set. Through numerical examples,
we show that the inclusion of credit market is able to enhance investors’
welfare.
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1 Introduction

Default risk is no stranger to investors. The past few years have seen many
investment-grade companies slide into junk status in the U.S.. Default risk not
only affects the corporate world, but also strikes the sovereign side. Japan was
once downgraded three times by leading credit rating agencies and Argentina
declared bankruptcy and defaulted on its debt obligations. On the other hand,
during the years of bear equity market, despite the bleak investment climate
worldwide, the fixed income markets (including both treasury bonds and corpo-
rate bonds) have shown robustness, giving “conservative” investors decent rates
of return on their investment.

Surprisingly, finance theory says little about how to optimally allocate assets
when default risk cannot be neglected anymore. The “classical” approach of dy-
namic asset allocation (or optimal consumption and portfolio choice) literature
is to study a representative agent dynamically allocating his/her wealth into sev-
eral asset categories, usually consisting of a (risk-free) bond, and equity (stock
index). This is often done by specifying the dynamics of stock (index) price
and other relevant variables, and by employing the Hamilton-Jacobi-Bellman
(HJB hereafter) equation to solve the problem.1 The main theme in this lit-
erature is how to efficiently allocate wealth among several financial assets in
order to achieve utility maximization in the presence of different risk-return
combinations.

Default risk, however, has not been studied in this context.2 Default risk
is an intrinsic factor in the fixed-income market. Literature on fixed-income
market mainly deals with stochasticity of interest rate or its risk premium, not
with default risk. Rational investors would hedge against or speculate on this
risk in addition to exposing to equity markets. Thus incorporating fixed-income
markets in the analysis not only recognizes the current reality of the financial
world, but also contributes to the literature of asset allocation by explicitly
investigating the impact of default risk on the investment decisions.3 The tra-
ditional approach mainly focuses on the changes of investment opportunity as a
result of market risk (or equity risk in the case of deterministic risk-free interest
rate). During the past couple of years, sophisticated investors know well that
bond markets are potentially profitable, especially in the downturn of stock mar-
kets. Investors look for returns from their corporate bond holdings that could
be higher than from stock or money markets investment. Some institutional

1Alternatively, such problems can be solved through martingale approach advanced by Cox
and Huang (1989) and Karatzas et al. (1987).

2One exception is a paper by Walder (2001). He uses affine state variable techniques to
investigate how to invest among a treasury bond and a portfolio of corporate zero-coupon
bonds in addition to a money market account. However, he does not consider equity market
while equity investment is an integral part of the portfolios of many institutional investors.
We formally include equity market into the asset allocation model. Whereas Walder resorts
to affine functionals of unidentified state variables, the current paper explicitly specifies the
state variables and gives intuition for the impact of such tangible factors on investors’ portfolio
decision.

3Default risk can be roughly thought of as synonym of credit risk in a simplified model
where credit migration risk and correlation risk are absent.
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investors, like pension funds, are also raising their allocations to this sector. For
example, Calpers, the largest US pension fund, doubled the amount of money it
invests in high-yield bonds during a market downturn.4 On the other hand, the
presence of credit risk can potentially expand investors’ risk and return fron-
tier, and provide an opportunity to enhance their economic welfare by achieving
greater diversification.

To formally investigate this problem, we study the optimal investment de-
cision by investors in the framework of Merton (1971). We model an investor
with power utility function trying to maximize her terminal utility in a par-
tial equilibrium setup. There are two kinds of financial markets she can invest
in: one is the equity market, the other the credit market. This is to reflect
the realistic investment opportunities investors face. To facilitate analysis, we
focus on the corporate zero-coupon bonds market, even though credit mar-
kets include coupon bonds and various credit derivatives. The very nature of
defaultable bonds makes modeling rather involved even with the zero-coupon
bond, the simplest security in credit market. Following the so-called “reduced-
form” approach, we start from specifying information structure of the economy
and derive the pricing equation of the defaultable zero-coupon bond using the
recovery scheme of market value (RMV) of Duffie and Singleton (1999).

For simplicity, we assume a constant riskless interest rate and model the
credit spread as an Ornstein-Uhlenbeck process. As a result, the dynamics of the
defaultable zero-coupon bond can be readily derived. Literature on corporate
bond pricing usually assumes zero-recovery to simplify analysis.5 We show that
this modeling feature neglects important aspects in defaultable bond pricing.
Non-zero recovery rate induces an adjustment in the drift term under the risk-
neutral measure. It resembles a dividend rate process even though the security
is a zero-coupon bond. More importantly, this adjustment term is stochastic
and has similar dynamics as that of credit spread under the assumption of
constant writedown rate. Consequently, it becomes one of the state variables
in the investor’s asset allocation problem. Besides this uncertainty, we assume
there are two correlated risk factors in the form of Wiener process driving the
two markets respectively.

We solve investor’s optimal investment problem and derive the closed-form
solution. The optimal investment weight of equity market consists of only the
myopic demand, since the investment opportunity set in this economy is de-
terministic. It is not the case for the defaultable bond investment, however.
Because of the stochasticity of the risk premium in defaultable bond, there is
hedging demand by investors for that. If the recovery rate is zero, the risk pre-
mium will be deterministic and no hedging demand exists. This highlights the
importance of recovery rate in the investment in defaultable securities. Unlike
many papers in the literature, a state variable (besides time) also appears in
the optimal weights. As a result, investors in this model try to time the market
and make investment decisions accordingly.

4Financial Times, Jan 14, 2002
5For example, Jarrow et al. (2005) and Walder (2001).
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In order to get a sense of how large the effects of theoretical result are, we
perform numerical analysis by specifying relevant parameter values. We either
adopt other authors’ estimates of some parameters or specify the rest of them
by ourselves. In doing so, we also provide some robustness tests by computing
interesting quantities over economically reasonable intervals of some parameters.
We find that behaviors of myopic demands and those of hedging demands can
be very different. For example, hedging demands may not decrease as investors’
risk-aversion increases. We verify that by investing in credit market, investors
can achieve significant welfare improvement. This result is quite robust with
respect to various parameter profiles.

The rest of the paper is organized as follows. Section 2 presents the pricing
result of the defaultable zero-coupon bond using RMV assumption, formally
describes the risk structure of the economy and derives the SDEs of equity
and defaultable bond under relevant measures. Section 3 solves the optimal
investment problem in closed-from. Implications of the analytic result for asset
allocation are discussed in Section 4. Section 5 carries out numerical exercises
by taking parameter values from literature. Section 6 summarizes the results
and concludes the paper. Proofs are collected in Section 7.

2 A Model with Defaultable Bond

In the extant asset allocation literature, only market risk or cognitive risk associ-
ated with market risk (in the incomplete information case) is considered. Credit
risk is almost totally ignored. Credit risk is another kind of risk investors have to
face on top of market risk. Simply put, credit risk can be identified with default
risk, the possibility that a counterparty in a financial contract fails to fulfil a
contractual commitment. Many financial instruments are credit-risk sensitive:
corporate bonds, vulnerable claims, credit derivatives, some sovereign debts,
and so on. We only consider corporate bonds in this asset allocation setup.
Corporate bonds by definition bear credit risk (and possibly other risks such
as liquidity risk), since the obligors (bond issuers) may fail to repay coupons
and/or principals of the debt. Credit risk consists of many sub-risks, such as
default risk, recovery risk, correlation risk (in portfolios of credits), migration
risk etc. Default risk is the most fundamental one. In modeling default risk, we
adopt the so-called “reduced-form” approach advocated by Jarrow and Turnbull
(1995), Madan and Unal (1998) and Duffie and Singleton (1999), among others.

2.1 Information Structure

To begin with, we assume financial assets are traded continuously in a frictionless
market. Investors in this economy are price takers, so that their individual
decisions would not affect price formation in a direct or obvious way. Taken as
primitive is a finite time span T :=

[
0, T

]
, where T ∈ (0,∞), and a complete

probability space (Ω,G, Q), endowed with a reference filtration F=(Ft)t≥0 which
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satisfies the usual conditions.6 Assume that Ft ⊆ G for any t ∈ T . The
probability measure Q is a martingale probability measure in this paper, which
is assumed to be equivalent to the statistical (real-world) measure P .7 For the
convenience of analysis in the following two sections, we will start with the
measure Q. All the processes defined in this paper live on the probability space
(Ω,G, Q). Since we are also concerned with investors’ welfare besides pricing,
we will keep track of the physical probability measure P as well in later sections.

Let τ be a non-negative random variable on this space. It represents de-
fault time of the corporate bond considered in this paper. For the sake of
convenience, assume Q (τ = 0) = 0 and Q (τ > t) > 0 for any t ∈ T . Define
a right-continuous process H with H (t) := 1{τ≤t} where 1{τ≤t} is the indi-
cator function. Denote by H the associated filtration on the same probability
space, with Ht = σ (H (u) : u ≤ t) for all t ∈ T . Now, let G be another filtra-
tion (satisfying the usual conditions as well) on the probability space such that
G = F ∨H, that is, Gt = Ft ∨ Ht for any t ∈ T . Such information structure
is standard in the reduced-form approach literature. The default time τ is a
G− stopping time, more precisely, a surprise stopping time (Duffie and Sin-
gleton (1999), Madan and Unal (1998)).8 This is motivated by the argument
that it is theoretically more desirable to characterize the default likelihood than
to pinpoint when defaults would happen according to some easily misspecified
conditions. In most cases, the filtration F represents the information flow of
(observable) state variables available to investors over time. By observing such
information, investors can reach their judgement about the default likelihood
of the corporate bonds concerned. Without additional information, represented
by H, however, they may not be able to tell if a default has happened or not.
In mathematical terms, default time τ is a G−stopping time but may fail to be
an F−stopping time. Of course, when they are equipped with information set
of G, they can tell whether a default has happened. Therefore, the default time
τ is assumed to be outside of the span of F := FT but adapted to G.9

2.2 A Defaultable Bond Pricing Model

Since this paper mainly deals with dynamic asset allocation, a standard pricing
model of defaultable corporate bonds is presented briefly in this section. We
assume that the only financial asset that is subject to default risk is a corporate
(that is, defaultable) zero-coupon bond (or a portfolio of zero-coupon bonds
issued by identical firms whose default times are independent). It is possible
to include more general corporate bonds such as coupon bonds in this frame-
work and derive similar pricing results. For the sake of clearest intuition and
implications, however, we consider the simplest defaultable bond here.

6A filtration F is said to satisfy the usual conditions if it is right-continuous and F0 contains
all the Q− negligible events in F := FT .

7A probability measure Q is said to be equivalent to another probability measure P if the
two probabilities have the same measure zero sets.

8τ is called a stopping time with respect to a filtration G if the event {τ ≤ t} ∈ Gt for
every t.

9A process X is said to be adapted to G if X (t) is measurable with respect to Gt, ∀t ∈ T .
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The maturity date of the defaultable zero bond is T1 ∈ T . Other contractual
features of this bond include: the promised principal, F ; default time τ ∈
T ∪ (T ,∞], that is, if τ ∈ (T1,∞], by definition there is no default during
the life time of the corporate bond; at the time of default, a payment z (τ) is
recovered in fulfillment of the corporate debt obligation. It is common that
only a fraction of the promised amount will be recovered upon default. Since
we consider the defaultable zero-coupon bond, the coupon process in this paper
is identically zero. Formally, a defaultable zero-coupon bond can be defined as
a vector DZB = (F, z, τ, T1), components of which are presumed adapted to
the filtration G.

Definition 1 The cumulated cash-flow process D of a defaultable zero-coupon
bond DZB = (F, z, τ, T1) is defined as

D (t) = F × 1{t≥T1} +
∫

(0,t]

z (u) dH (u)

It is apparent that the second term in the above definition accounts for the
recovery upon default, since

∫
(0,t]

z (u) dH (u) = z (τ)× 1{t≥τ}.
There exists a money market account in this economy starting with $1,

represented by process b, given by

b (t) = ert (1)

where the short-term interest rate process r is assumed to be a constant process.
It is well-known in finance theory (Duffie (1996), for example) that the ab-

sence of arbitrage opportunities holds when there exists a martingale measure Q
equivalent to P under which the discounted (using money market account) gains
processes for all assets are martingales. One easily gets the following pricing
formula for DZB = (F, z, τ, T1) whose price is denoted by p (t, T1)

p (t, T1) = ertEQ

(∫
(t,T1]

e−rudD (u)

∣∣∣∣∣Gt

)
(2)

= ertEQ

(∫
(t,T1]

e−ruz (u) dH (u) + e−rT1 (1−H (T1))F

∣∣∣∣∣Gt

)
where EQ is the expectation operator under the probability measure Q.10

Definition 2 The F−hazard rate (or intensity) process h is an F− progressively
measurable, non-negative stochastic process such that

M (t) := H (t)−
∫ t

0

(1−H (u−))h (u) du

10More precisely, equation (2) is a definition of the defaultable bond. The validity of ar-
bitrage pricing relies crucially on the replicatability (or attainability) of the contingent claim
using primitive assets in the economy. Since in general, the default time τ is not an F -stopping
time, where the filtration F is generated by some tradable assets, the issue of replicability of de-
faultable bonds is not obvious a priori. Nonetheless, we assume the arbitrage pricing method
is applicable and suitable self-financing trading strategies can replicate the defaultable bond.
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is a G-martingale under Q, where H (u−) := lims↑u H (s) = 1{τ<u}.11

It is understood that over a short period of time (t, t + dt) the probability
of default is approximately h (t) dt provided that no default has yet occurred
by time t.12 h is a compensator to H only up to (and including) the default
time, and h in this context is the risk-neutral hazard rate process. Artzner and
Delbaen (1995) show that the default time τ has a hazard rate process under
Q. Then it is well-established that the price of DZB = (F, z, τ, T1) admits the
following representation:13

p (t, T1) = 1{τ>t}EQ

(∫ T1

t

exp
(
−
∫ u

t

(r + h (s)) ds

)
z (u)h (u) du

∣∣∣∣∣Ft

)

+1{τ>t}EQ

(
exp

(
−
∫ T1

t

(r + h (s)) ds

)∣∣∣∣∣Ft

)
× F (3)

It should be noted that compared to (2), (3) eliminates the jump terms
associated with process H (except the obvious indicator function outside of ex-
pectations) and that the conditioning filtration is F instead of G. This simplifies
the following analysis (and pricing in the first place) considerably.

To put the above results into perspective, we adopt the recovery of market
value (RMV hereafter) assumption according to Duffie and Singleton (1999),
that is,

z (t) = (1− ω (t)) p (t−, T1) (4)

where ω is an F-predictable process of the write-down proportion (or loss rate) of
the debt and it is customary to assume ω ∈ (0, 1] Q−a.s. Under this convention,
a neat result due to Duffie and Singleton (1999) is as follows:

p (t, T1) = 1{τ>t} × F × EQ

exp

−∫ T1

t

(r + h (s)ω(s)︸ ︷︷ ︸)
=:δ(s)

ds


∣∣∣∣∣∣∣Ft

 (5)

= 1{τ>t}v (t, T1)× F

where δ(t) is the credit spread; v (t, T1) := EQ
(

exp
(
−
∫ T1

t
(r + δ(s)) ds

)∣∣∣Ft

)
is the pre-default value of the DZB = (1, z, τ, T1).

11Such F-adapted hazard rate process (also called intensity process) is called F-martingale
hazard rate process.

12It should be emphasized that such probability of default is under the risk-neutral prob-
ability measure Q and in general not equal to its counterpart under the physical probability
measure P unless the market prices of default risks (both default timing risk and default
recovery risk) are zero.

13Heuristically, one may show as in Madan and Unal (1998) that EQ[1 − H (u) |Ft and
τ > t] = exp

�
−

R u
t h (s) ds

�
and then use iterated expectations in (2), (3) immediately follows.

For rigorous proof, see Bielecki and Rutkowski (2001), for instance.
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Apparently, RMV model fails to distinguish write-down rate from the inten-
sity rate, as shown by the multiplicative term h×ω in expression (5). But if one
is willing to parameterize the recovery rate, one can effectively differentiate the
impacts of hazard rate and recovery rate from corporate bond data. Besides this
shortcoming, there is yet another theoretical deficiency, pointed out by Madan
(2000): RMV effectively transfers early dollars in default to terminal dollars at
maturity using a risky bond with the same contractual features as the original
corporate bond that has defaulted. Such method fails to replicate the exact
cost of the original promise at maturity as there may be another default. In
contrast, other recovery schemes, such as recovery of treasury (or RT for short,
that is, transferring early dollars using default-free treasury bond with the same
face value and maturity), are consistent in replicating the cost of the original
promise at maturity. For the theoretical considerations and empirical perfor-
mance of different recovery schemes, we refer interested readers to Bakshi et al.
(2001) for detailed discussions. Despite the above-mentioned imperfections of
RMV, we still adopt it in this paper for its simplicity in analysis.

2.3 Asset Universe in the Economy

To fully explore the impact of default risk on the investors’ portfolio choice,
we assume constant interest rate.14 Given the theme of this paper, we note
that Leland and Toft (1996), Longstaff and Schwartz (1995), Kim et al. (1993),
among others, show that interest rate uncertainty can only affect credit spreads
marginally in their theoretical models. As a result, defaultable bond prices
should not be affected substantially by the absence of interest rate randomness.
On the other hand, it is hoped that such abstraction will isolate the effects of
default risk and give the cleanest intuitions about agents’ economic behavior.

The critical variable in a defaultable zero-coupon bond’s pricing formula (5)
is the instantaneous credit spread δ. Once we pin down the credit spread, the
price of a DZB is determined correspondingly under the recovery of market value
scheme. We assume that the instantaneous credit spread δ follows Ornstein-
Uhlenbeck process:

dδ (t) = κδ (θδ − δ (t)) dt + σδdwδ (t) (6)

where wδ is a standard Brownian motion under Q; κδ, θδ, σδ are determinis-
tic processes. Assume κδ, σδ > 0. κδ is the reversion speed of credit spread
towards its long-term mean θδ > 0. This is admittedly a rather simple model
of default risk. The reason for this model is that it not only lends itself to
simplifying analysis, but also is motivated by empirical evidence and modeling
by other authors. For instance, the literature recognizes that credit spreads in
general may depend on some firm-specific (or industry-specific) distress factors,
such as book-to-market ratios, leverages, stock prices, profitabilities, and oth-
ers. Bakshi et al. (2005), for example, model these firm-specific factors using

14Based on this paper’s framework, one of the authors of this paper, Yuanfeng Hou, extends
this research and takes into account of interest rate risk in one of his recent papers called
“Integrating Market Risk and Credit Risk”.
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Ornstein-Uhlenbeck processes and find such modeling quite robust in empirical
studies. Collin-Dufresne and Goldstein (2001) also assume the log-leverage ra-
tio following such process in a structural credit spread model. Together with
the Vasicek-type of interest rate dynamics and a linear model, one can derive a
model for credit spread similar to (6).15

There is a non-dividend-paying equity in this economy, whose price process
is S. Assume

dS (t) = rS (t) dt + σS (t) S (t) dwS (t) (7)

where wS is another standard Brownian motion under measure Q, σS the deter-
ministic instantaneous volatility of diffusive equity returns. Brownian motion
wS (the equity risk) may correlate with default risk , that is dwSdwδ = ρdt,
with deterministic correlation coefficient ρ.

Given the risk structure in this economy, dynamics of δ and S under the
physical measure P can be derived given the specifications of the market prices of
risks. Such transformation between risk-neutral measure and physical measure
is necessary since investors in this paper are risk-averse and derive utility under
the physical measure.

One can use Girsanov theorem to do the drift adjustment. Girsanov theo-
rem originally applies to the case of independent Brownian motions. It can be
easily extended to correlated cases, however. Given that the dynamics of credit
spread δ, and of equity price S under the risk-neutral probability measure Q
are described as (6) and (7) respectively, with dwδdwS = ρdt, the corresponding
dynamics under the physical probability measure P are given by:

dδ (t) = [κδ (θδ − δ (t)) + σδ(λδ (t) + ρλS (t))︸ ︷︷ ︸
=:λδ(t)

]dt + σδdwP
δ (t) (8)

dS (t) = [r + σS(ρλδ (t) + λS (t))︸ ︷︷ ︸]S (t)

=:λS(t)

dt + σSS (t) dwP
S (t) (9)

where λδ is the deterministic market price of default risk, λS the deterministic

market price of equity risk, and wP =
(
wP

δ , wP
S

)′
is a vector Brownian motion

under P with the same correlation structure.
It should be emphasized that the change in the drift term in each SDE in-

cludes exposures to both risk sources in this economy provided the correlation
is non-zero. This is intuitive since the risk drivers (represented by the Brown-
ian motions) are in general correlated and exposure to one naturally induces
exposure to others, hence additional risk premia are demanded by investors.
These risks are systemic in that each of them cannot be diversified away by
holding appropriate well-diversified portfolios. For simplicity, we assume all the

15One may add orthogonal jumps to (6) as in Akgun (2001) and Collin-Dufresne and Solnik
(2001) to adapt sudden changes of credit spreads from turbulent market conditions or from
credit rating changes. The jump feature is not considered in this paper, however.

Duffee (1999) models the risk-neutral hazard rate h as a translated single-factor square-root
process plus two other components tied to the default-free interest rate factors.
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market prices of risks are deterministic in this paper; as a result, λδ and λS are
deterministic too.16

In the context of asset allocation, the dynamics of the defaultable zero-
coupon bond (that is, its SDE) must be derived. This is shown in the following
proposition:

Proposition 1 Without loss of generality, set F = 1. Let the price of the
defaultable zero coupon bond p (t, T1) be given by (5). Then p (t, T1) must satisfy
the following SDE:

dp (t, T1) = p (t−, T1) [(r + δ (t)) dt + σP (t, T1) dwδ]− v (t, T1) dHt (10)

where σP (t, T1) := − 1−exp(−κδ(T1−t))
κδ

σδ.

Proof. See Appendix.
The last term in the SDE (10) accommodates the default event. In the event

of default, the price of the defaultable bond drops to zero, which is exactly
shown by v (t, T1) dHt evaluated at default time. This is true irrespective of
recovery specification, that is, even in the case of non-zero recovery, the price
of defaultable bond drops to zero, as evidenced by the indicator function in (5).
This holds since upon default the corporate bond ceases to exist, though the
partial recovery is assumed to be in the form of pre-default value of the bond.
As the discussion after equation (5) shows, RMV is not perfect in transferring
early dollars to maturity date. Such imperfection could cause misunderstanding
of the above result. One key thing to understanding (10), however, is that
the corporate bond vanishes upon default (hence its price drops to zero), no
matter what recovery scheme (RMV, RT or others) or recovery specification
(zero or non-zero) is used, as shown precisely by the last jump term. Except
the last term, the defaultable bond behaves like a treasury bond (which is not
introduced in this paper as interest rate is constant), except that: first, the drift
term incorporates credit spread of the bond. The credit spread enters the drift
term as we adopt RMV method. If there is zero recovery at default, h instead of
δ will appear in the drift. Second, the default risk (represented by the Brownian
driver wδ in addition to dH term) shows its force in the dynamics. Note that
(10) is specified under the risk-neutral measure Q, so one should expect the
risk-premia associated with equity risk and credit risk would show up under the
physical probability measure P since there is non-zero correlation between the
two risk drivers in general.

Before the dynamic asset allocation problem is formulated, another impor-
tant issue concerning investors is: will some specific risk be compensated in the
market? If some risk is not systemic and hence not priced in the economy, no
one would like to take such risk as long as she could avoid it. Note that ( 10)
can be written as

dp (t, T1)
p (t−, T1)

= [(r + δ (t)− h (t)) dt + σP (t, T1) dwδ]− dMt (11)

16Walder (2001) considers the time-varying risk premia of the CIR-type.
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up to (and including) default time. In the case of zero recovery, Jarrow et
al. (2005) show that when assuming there exist a countably infinite number of
identical firms whose default times are independent of each other in the economy,
the martingale term dM can be diversified away.17 Using this argument, the
price of a well-diversified portfolio of the defaultable bonds in this limit economy
has the following dynamics

dP (t, T1)
P (t−, T1)

= [r + δ (t)− h (t)︸ ︷︷ ︸
=:−η(t)

]dt + σP (t, T1) dwδ (t) (12)

where P (t, T1) is the price of this diversified portfolio. Note that the Q− mar-
tingale term dM disappears from (12) as a result of diversification. In other
words, the idiosyncratic default risk is not priced in this limit economy under
mild technical conditions. This result, though a bit stringent for its diversifica-
tion argument, simplifies the analysis considerably.18

As (12) shows, taking recovery (not necessarily recovery risk) into account,
the drift of the return of defaultable zero-coupon bond may deviate from r even
under the risk-neutral probability measure Q! Walder (2001) assumes zero re-
covery following Jarrow et al. (2005). Zero-recovery approach, however, may
overlook this drift effect. In this paper, the defaultable zero-coupon bond (port-
folio) has a distinct drift term and different risk exposure from other assets.
This still holds when idiosyncratic default risk has been eliminated. (12) actu-
ally shows that under the current assumptions, systemic (not the idiosyncratic)
default risk affects the defaultable bond portfolio in a rather different way from
other risks. One may view η as the dividend rate the defaultable bond pays
before default, even though the bond is actually a zero-coupon bond. This fact
highlights the difference between the corporate zero-coupon bond and its trea-
sury counterpart. We would emphasize that such result is a consequence of
RMV scheme adopted in this paper, as the appearance of the credit spread δ is
from this very assumption.

For simplicity, we assume that the write-down rate ω is constant. The fact
that η is a function of δ and ω indicates that the η is also a stochastic process
and has the same SDE as the credit spread δ as we assume ω to constant. From
the definition of η, it is easy to show that η =

(
1−ω

ω

)
δ, with ω ∈ (0, 1]. From

(8), the dynamics of η is simply

dη = [κδ(
1− ω

ω
θδ︸ ︷︷ ︸

=:θη

− η (t)) +
1− ω

ω
σδλδ]dt +

1− ω

ω
σδ︸ ︷︷ ︸

=:ση

dwP
δ (t) (13)

17Correspondingly, the information structure has to be updated. This is shown in Jarrow
et al. (2005). The essence, however, is the same as in Section 2.1.

18In the concurrent work by Walder (2001), he also invokes this conditional diversification
argument.
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3 Optimal Asset Allocation Solution

We assume that an investor in this economy tries to maximize her vNM utility
of terminal wealth by dynamically allocating her financial wealth into a money
market account, a well-diversified portfolio of corporate zero-coupon bonds in
the sense of Jarrow et al. (2005), and an equity (index). She has no intermediate
consumption and no human-capital income to support her purchase of financial
assets.

Her utility function is assumed to be the following standard form:

U (W ) =
{ 1

1−γ W 1−γ ,

−∞,

if W > 0
if W ≤ 0 (14)

where γ > 0 is the Arrow-Pratt relative risk-aversion coefficient. When γ = 1,
U (W ) = log W if W > 0. When W is below zero, her utility is set at minus
infinity, thus effectively restricting her wealth W from falling below zero. As
shown by Dybvig and Huang (1988), this constraint rules out the arbitrage
opportunity described by Harrison and Kreps (1979).

The investor is endowed with a positive initial wealth W0. Given the financial
assets she can invest, she chooses to invest a vector π whose elements are the
fraction of her wealth in risky (both market-risky and credit-risky) assets each
time t ∈ [0, T ] so as to maximize her expected utility of terminal wealth. Assume
T < T1. The percentage of wealth invested in the money market account is given
by 1−π′1, where 1 is a vector of ones with the same dimension as π. The trading
strategy is restricted to be self-financing. As a result, the wealth dynamics can
be written as

dWπ (t) = Wπ (t)
[
r + π (t)′ (µ (t)− r1) dt + π (t)′ Σ (t) dwP (t)

]
(15)

Wπ (0) = W0 > 0

where µ :=
(
r + σSλS , r − η + σP λδ

)′
is the vector of instantaneous expected

returns of risky assets under the physical measure P , Σ :=
(

σS 0
0 σP

)
is the

volatility matrix of risky assets, and wP =
(
wP

S , wP
δ

)′
.

Let A (W0) be the set of admissible trading strategies19 defined by

A (W0) =
{
π (·)∈ R2 : Wπ (t) > 0 P − a.s. for t ∈ [0, T ]

}
Now the optimization problem the investor faces can be formulated as

max
π(·)∈A(W0)

EU (Wπ (T )) (16)

subject to (15). Where E in (16) is the expectation operator under the physical
measure P at time 0.

19Additional technical conditions have to be satisfied. See Fleming and Rishel (1975) for
general exposition. Or see Korn and Kraft (2001) for conditions under similar setup (stochastic
interest rates).
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To facilitate the exposition, we list the dynamics under the physical mea-
sure P of the financial assets in this economy below. In particular, we assume
deterministic processes (except σP ) in this paper are in fact constant processes
in the following analysis.

dS (t)
S (t)

=
(
r + σSλS

)
dt + σSdwP

S (t)

dP (t, T1)
P (t−, T1)

=
[
r − η (t) + σP (t, T1)λδ

]
dt + σP (t, T1) dwP

δ (t)

and for the money market account

db (t)
b (t)

= rdt

To solve this optimization problem, we use stochastic control method which
has been employed extensively in the literature. Assuming ω, the write-down
rate when default happens, is constant has an implication that the “dividend”
rate process η is a state variable in addition to wealth W . This is also moti-
vated by the fact that credit spreads are observable in markets, which makes η
observable in this economy when ω is assumed to be constant. Indeed, Collin-
Dufresne et al. (2002) empirically find that a “market spread factor” probably
can proxy for credit market conditions. Following Merton (1971), define the
indirect utility function as

J (W,η, t) = max
{π(s)∈A(W ),t≤s≤T}

EU (Wπ (T )| Ft) (17)

The Hamilton-Jacobi-Bellman (HJB) equation for this indirect utility func-
tion is as follows

max
π(t)∈A(W ),0≤t<T

DπJ (W,η, t) = 0 (18)

with J (W,η, T ) =
W 1−γ

1− γ
(19)

where

DπJ (W,η, t) = Jt +
(
κδθη + σηλδ − κδη

)
Jη

+W [πSσSλS + πP (−η + σP λδ) + r]JW

+Wση (πSσSρ + πP σP ) JWη +
1
2
σ2

ηJηη (20)

+
1
2
W 2[π2

Sσ2
S + π2

P σ2
P + 2πSπP σSσP ρ]JWW

and Jt, Jη, JW , JWη, Jηη, and JWW are partial derivatives with respect to appro-
priate variables. For notational brevity, we suppress the parameters’ dependence
on time and other state variables above. The standard technique used for this
problem produces the following result.
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Theorem 1 In this economy, assume all the deterministic processes (except
σP ) in the text are in fact constant processes. The indirect utility function J is
given by

J (W,η, t) =

{
g (t) exp

(
k (t) η + 1

2 l (t) η2
)

W 1−γ

1−γ

lnW

γ 6= 1
γ = 1 (21)

where g (t) , k (t) and l (t) are deterministic functions and given by (35), (33)
and (31) respectively in the appendix. The optimal portfolio weights are given
by

π∗S (t) =
1
γ

[
λS

σS (1− ρ2)
− λδσP − η (t)

σP σS (1− ρ2)
ρ

]
(22)

π∗P (t) =
1
γ

[
λδσP − η (t)
σ2

P (1− ρ2)
− λS

σP (1− ρ2)
ρ

]
−1− ω

ω

k (t) + l (t)× η (t)
γ

κδ

1− e−κδ(T1−t)
(23)

Proof. See Appendix.20

The significance of Theorem 1 is to give a rather clear picture of this optimal
asset allocation problem when default risk is an intrinsic risk in the economy.
Closed-form solutions, though obtained under some specific assumptions, can
be employed to provide clear insights and greatly facilitate numerical exercises.
Even though the pricing of defaultable bonds is an uneasy task in general, given
the simplified framework laid out here, we can solve the problem in a rather
standard way.

When γ = 1, that is, the investor has logarithmic utility, the indirect utility
function J reduces to J (W, t) = lnW, which is independent of η. In this case, the
investor acts myopically and her derived utility function is just the one-period
utility function. The corresponding demands reduce to myopic terms only, as
the functions k and l become identically zero when γ = 1.

When γ 6= 1, there are two components in the demand for defaultable bond
while there is only one in the demand for equity. The second component in
π∗P is indeed a hedging term. Detailed interpretations are provided in the next
section.

4 Implications for Asset Allocation

In this section, we investigate in detail the implications of Theorem 1 for asset
allocations.

4.1 Dependence of Optimal Demands on State Variables

Inspection of the optimal portfolio weights given in (22) shows some interesting
features. The portfolio weights are not independent of state variables as η

20Verification of theorem is also discussed in the appendix.
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appears in both assets’ demand functions. It should also be noted that terms in
the square brackets are myopic demands as shown in the proof in the Appendix.
This shows that state variable η appears not only in the hedging term in π∗P
but also in myopic demands for both assets provided that there is non-zero
correlation between equity market and corporate bond market (Even if ρ = 0,
η still appears in π∗P ). In other words, even myopic investors find valuable
information in the term structure of credit spreads in their investing decisions.
Therefore investors may try to time the market when making their investment
decisions. This is equivalent to the investors’ timing the market by observing the
credit spread because the information content of state variable η is the same as
that of credit spread δ according to equation (14), provided that the write-down
rate is a constant. For example, investors may try to predict η in order to make
investment decisions. The shapes of the term structure of credit spreads thus
contain valuable market information to investors. This result is from the fact
that under RMV scheme adopted in this paper, η is part of the return process of
the defaultable bond portfolio as shown in (12). Thus, it directly enters mean-
variance considerations of investors. As usual, homogeneity of wealth makes the
result independent of W .

4.2 Optimal Equity Demand

The demand for equity contains only the so-called “myopic” term. It is out
of the mean-variance considerations investors make. This is because equity
is not directly subject to default risk and the interest rate is assumed to be
deterministic. In other words, the optimal asset allocation shows some form of
separation in that each asset is used to hedge the unique risk it faces. This
makes the life of investors much easier in making investment decisions in this
setup. Such separation may not hold in general when risk structure becomes
more complicated.

As usual, the myopic demand decreases as the risk-aversion coefficient γ
increases. There are two terms in this myopic demand for equity. The first
term, λS

σS(1−ρ2) , is the pure demand for equity given its market price of equity

risk, adjusted by a second term λδσP−η(t)
σP σS(1−ρ2)ρ involving the correlation between

risk sources represented by Brownian motions in this economy. If the correlation
coefficient between the two sources of risks is zero, then the first term in the
bracket is simply the Sharpe ratio of equity normalized by equity’s volatility
and the second term vanishes. The presence of the second term is because of
non-zero correlation between the two markets as reality suggests. A position
in equity market indirectly induces a position in credit market due to common
factors in their risk structure.

4.3 Optimal Demand for Defaultable Bond

As expected, the optimal portfolio weight of defaultable bonds contains both
a myopic term and a hedging term provided that the investor does not behave
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myopically and that the recovery rate is not zero. Terms in the myopic demand
have the same interpretation as in equity’s case. The hedging term is not the
usual one which is used to hedge against stochastic changes in the investment
opportunity set. In fact, the deterministic volatilities of financial assets and
deterministic interest rate in this economy make the investment opportunity set
deterministic over time. As a result, there is no hedging demand for it.

As shown in Theorem 1, there are two possibilities that the hedging term
can be zero. One is when the investor behaves myopically, that is, when γ = 1,
the hedge term vanishes as k (t) = l (t) = 0,∀t. The other is that the write-
down rate ω equals one. In this case, there is no stochastic variability in the
risk premium of defaultable bond, eliminating the hedging demand. This fact
indicates the relevance of recovery effect of defaultable securities on investors’
optimal asset allocation decision. This hedge demand is used by the investor to
hedge against or speculate on the stochastic variability of the risk premium of
the defaultable bond. Note that the demand for the level of η is contained in the
myopic term as usual. The hedging demand depends on the planning horizon.
As terminal day approaches, the investor has less need to hedge against the
default risk ceteris paribus, as reflected in the fact that k (T ) = l (T ) = 0. This
can be called horizon effect. Figure 1 shows the optimal hedging demand for
a given path of the credit spread. Since credit spread is random, the hedging
demand also varies across time randomly. It becomes zero, however, at the
terminal date as predicted by the horizon effect.

Since in this paper, default risk is represented by the Brownian driver wδ,
and defaultable bond return’s volatility σP is closely linked with credit spread’s
volatility σδ, 1 − e−κδ(T1−t) term in the denominator therefore is proportional
to the shares of defaultable bond used to hedge unit default risk at any given
time. The effectiveness of the defaultable bond for hedging default risk (defined
by
∣∣∣ σδ

σP

∣∣∣) is monotonically declining as time to maturity shortens, since the ratio
of its return volatility over credit spread volatility decreases over time. This
mitigates the decrease in the (absolute) magnitude of hedging demand caused
by the horizon effect.

4.4 Correlation between Markets

We also note that the correlation coefficient ρ plays an important role in this
simple setup. To begin with, the hedging demand depends on ρ through the
dependence of k and l on ρ. Further inspection shows that terms in k and l

that depend on ρ are symmetric about ρ except of the term d := (1−γ)(λδ−ρλS)
γσP (1−ρ2) .

For an average risk-averse investor who has γ > 1, and a positive equity risk
premium, d decreases as ρ changes symmetrically from a negative value to a
positive one. This leads to an increase in k. As a result, the hedging term de-
creases algebraically as the ratio ση

σP
< 0, keeping other things constant. Given

the typical parameter values (see Section 5), this statement can be strength-
ened further: when ρ’s change from negative values to positive values in the
neighborhood of 0, the hedging demand decreases algebraically but increases
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in absolute value. See the top left panel of Figure 2. This is quite intuitive
since when the two markets become positively correlated instead of negatively
correlated, investors’ ability to diversify risks deteriorates, hence their hedging
ability. This induces an increase (in absolute terms) in the hedging demand
ceteris paribus.

Secondly, the change of the correlation coefficient also affects the myopic
demands. In this paper, we assume the volatility of credit spread, σδ, is pos-
itive, as a result, the volatility of defaultable bond return, σP , is negative.21

If assume the adjusted risk premium of the defaultable bond is positive,22 and
risk premium for equity risk is positive, when ρ > 0, it can be shown that the
myopic demand for defaultable bond has negative relationship with ρ and the
myopic demand for equity has positive relationship with ρ. The sign of changes
of both myopic terms is unclear in general when ρ changes if ρ < 0, the case
that is very probable as shown by the extant empirical work.

4.5 Default Risk in Asset Allocation

Default risk affects investors’ decision both through its market price λδ, the
“dividend” rate, η, and the stochastic variability of η. By definition, η = h−δ =(

1−ω
ω

)
δ. It is thus clear that default risk affects investors in a rather unique way

from other risks such as equity risk which usually affects investors’ decision only
through market price of risk. It should be noted that even if default recovery
risk is absent, that is, when there is no uncertainty in the write-down rate ω
as in this paper, the fact that there is partial recovery of defaultable bond in
the event of default still affects agents’ investment in defaultable bonds as long
as η 6= 0. On top of this recovery level effect, uncertainty of recovery may also
change investor’s behavior. This is not modeled in this paper, however. These
features highlight the difference of investment with defaultable securities in the
opportunity set of investors from the usual problem when default risk is absent.
These insights are not available in Walder (2001) since he assumes zero recovery
rate of defaultable bond. As shown above, the correlation between equity market
and credit market induces adjustment term in the myopic demand for equity.
Consequently, default risk also indirectly affects equity’s demand through the
presence of η.

4.6 Welfare Effects of Investing in Credit Market

An integral part of the optimal asset allocation problem is to investigate how
investors allocate their wealth in such a way as to achieve optimality of their
utility. This subsection deals with this welfare issue when agents can invest in
credit market.

21This is clearly an anology to Treasury bond’s case when interest rate risk is present. See,
for example, Musiela and Rutkowski (1998).

22This condition must hold, for investors demand positive risk premium for exposures to
default risk; otherwise, defaultable bond in this economy would be dominated by the money
market account which would have higher rate of return and no risk. Equilibrium argument
then eliminates the very presence of defaultable bonds in this economy.
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Following Liu and Pan (2003), we define the certainty equivalent wealth Wce

as follows

J (W0, η0, 0) =

{
W 1−γ

ce

1−γ

lnWce

γ 6= 1
γ = 1 (24)

given initial values of the state variables. It can be shown that

Wce =

{
W0g (0)

1
1−γ exp

(
1

1−γ

[
k (0) η0 + 1

2 l (0) η2
0

])
W0

γ 6= 1
γ = 1 (25)

When credit market is not open to investors or investors do not choose to
invest in it for some reason, investors have the classical asset allocation problem
of Merton (1971). It is well known that in this case when only equity market
and a money market account are available, the indirect utility is

J (W, t) =

{
W 1−γ

1−γ exp
([

1−γ
2γ λS

2
+ (1− γ) r

]
(T − t)

)
lnW0

γ 6= 1
γ = 1

The certainty equivalent wealth in this case is given by

WM
ce =

{
W0 exp

([
1
2γ λS

2
+ r
]
T
)

W0

γ 6= 1
γ = 1

We adopt the measure Liu and Pan (2003) have defined:

RW :=
lnWce − lnWM

ce

T

which measures the portfolio improvement in terms of the annualized, contin-
uous compounded return in certainty equivalent wealth of one scenario (credit
market available) against another (no credit market available). Thus we have
shown the following proposition:

Proposition 2 Given the model’s setup, the portfolio improvement of an in-
vestor in terms of certainty equivalent wealth from investing in credit market
is

RW =

{
1

T (1−γ)

[
ln g (0) + k (0) η0 + 1

2 l (0) η2
0

]
−
(

1
2γ λS

2
+ r
)

0
γ 6= 1
γ = 1 (26)

Note that RW does not depend on interest rate r, though (26) suggests so.
In fact, g (0) contains a term involving r (see (35) in the appendix). After
cancelation, it is easy to verify the preceding statement.
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5 Numerical Examples

In order to quantify asset allocations and welfare improvement and to investigate
parameter sensitivities of interesting variables, we perform numerical analysis
in this section. We follow the usual practice in the literature to specify relevant
parameter values. For those that we do not have much confidence of their
exact values (and which literature is silent on their values), we try to do some
robustness examples while changing those parameters in a reasonably interval.
All the parameter values below are annual statistics.

5.1 Parameter Values

Collin-Dufresne and Solnik (2001) contains maximum likelihood estimates of
credit spread parameters using investment grade corporate bonds data. We
follow their estimates and set the long-term mean of credit spread θδ = 0.0038,
the volatility of credit spread σδ = 0.0131, and the reversion speed of credit
spread κδ = 1.4248.

For simplicity, the risk-free interest rate r is set at 5%.
For parameters of equity market, it is rather straightforward to derive them

by calibrating to U.S. stock market, say. We set the stock volatility σS = 0.15,
and the market price of equity risk λS = 0.450667, which make the equity risk
premium equal to 6.76% annually, as shown in Liu and Pan (2003), for instance.

The correlation coefficient ρ between the two Wiener processes is also an
important parameter. As for the sign of ρ, one might expect that it is negative,
since common sense tends to suggest that when the credit of one firm deterio-
rates (that is, its credit spread δ increases) its stock price (if it’s listed in the
stock market) would decrease. Indeed, Kwan (1996) empirically finds that there
exists statistically significant negative correlation between individual stock re-
turns and same firm’s bond yields. The relation at the aggregate level, however,
is not that clear. For example, Campbell and Ammer (1993) use value-weighted
stock index from NYSE and AMEX and US Treasury securities and find the
correlation is rather weak. The empirical evidence of the correlation between
stock return and corporate bond yields at the aggregate level does not seem to
avail. We then follow Kwan (1996) to specify the value of ρ. For investment-
grade corporate bonds, we set ρ = −0.184; for non-investment-grade bonds, we
set ρ = −0.423. Besides the above baseline values, we also vary ρ in the interval
of [−0.5, 0.1].

Duffee (1999) uses Moody’s data, which suggests the recovery rate of senior
unsecured bonds is 44% on average. This translates to the write-down rate
ω = 0.56. For junior debt, the write-down rate could be even higher. In our
numerical exercise, we set ω = 0.8 for this debt category.

We set the planning horizon of the investor T equal to 1 year and assume
the maturity of the defaultable bond T1 to be 10 years. Table 1 summarizes
relevant parameters used in the analysis.
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5.2 Some Results

To illustrate the theoretical results, we adopt the parameter values of the last
subsection. We randomly draw a path of η and calculate the optimal asset
allocations given this path. To make some comparison, we specify two kinds of
corporate bonds, bond i (investment-grade bond) and bond j (junk bond), with
different initial credit spreads (70 basis points for bond i and 200 basis points
for bond j), different write-down rates (.56 for bond i and .8 for bond j) and
different λδ (-.35 for bond i and -.4 for bond j). Caution has to be taken in
interpreting results of bond j since other parameters of the credit spread process
such as θδ, κδ and σδ are obtained from investment-grade bonds. Literature has
been rare on their junk-bond counterparts.

The top panel of Figure 3 shows the equity demand over time for two de-
faultable bond scenarios. Since the equity demand is of myopic nature, it does
not vanish at terminal date as the hedging term does. It also depends on η
as shown in (22), generating stochastic variation over time. The middle and
bottom panels of Figure 3 show how the optimal equity demand changes with
parameters at the end of first quarter. As the write-down rate increases, the
equity demand decreases. This is because the risk premium of the defaultable
bond increases, making equity less attractive. This argument is also shown in
the relation between the equity demand and λδ. The relationship between eq-
uity demand and correlation coefficient ρ is in general ambiguous as shown in
Figure 3, depending on the values of other parameters such as ω and λδ. With
typical parameter values, the equity weight is roughly between 0 and 1.

Figure 4 illustrates the behavior of the myopic bond demand. The magnitude
of the myopic demand for corporate bond can be several times of that for equity
and it is the dominant part of the whole demand for corporate bond (see the
bottom panels of Figure 2). Campbell and Viceira (2001) also find similar
results with nominal and index bonds. As the write-down rate increases or λδ

decreases, the risk premium of the corporate bond increases, making it more
appealing to investors.

There are several interesting features of the hedging demand for the corpo-
rate bond. Unlike the myopic demand, the hedging demand may not depend
on the risk-aversion coefficient γ monotonically, as shown in the top right panel
of Figure 2. This is because k and l also depend on γ, generating non-linearity
of the hedging term in γ. This fact highlights the different natures of myopic
demand and hedging demand: myopic demand is mainly out of mean-variance
considerations while hedging demand concerns stochasticity in investment op-
portunity set. The hedging demand decreases as the write-down rate increases,
as the increasing write-down rate reduces the stochastic variability of η, provid-
ing less incentive to hedge. See Figure 2.

Figure 5 demonstrates the welfare improvement over the case when investors
are not allowed to participate in defaultable bond markets. A common message
from the upper two panels of Figure 5 is that there exists non-trivial welfare
improvement for investors from investing in credit market. This result is quite
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robust with respect to different economic scenarios.23 For example, the lowest
level of RW (the annualized continuous rate of return in terms of certainty
equivalent wealth with credit market against that without credit market) is
roughly 2.22% over all parameter values except ω. The bottom left panel of
Figure 5 shows that the welfare improvement can easily achieve around 3% per
year with typical parameter values. Interestingly, comparing the bottom panels
of Figure 5 suggests that the welfare improvement from investing in junk bonds
may be overshadowed by that from investing in investment-grade bonds. This
is quite possible, since investors take into account not only the mean rates of
return of the bonds but also their riskiness when making decisions. Junk bonds
may appear “trashy” for investors with intermediate risk-aversions.

6 Conclusion

In this paper, we study the optimal investment in credit market in addition
to equity market. Given the importance of credit market, it is a natural ex-
tension of Merton (1971). We adopt the reduced-form approach in pricing the
defaultable zero-coupon bond and derive the closed-form solution to the asset
allocation problem.

Our analysis provides several important insights. First, state variables (be-
sides time) appears in the optimal weights (both in myopic demand and hedging
demand). Therefore, investors in this model try to time the market to maxi-
mize welfare. Second, non-zero recovery rate of defaultable bond induces an
adjustment term in the drift term under the risk-neutral measure, making the
risk premium stochastic. As expected, there is hedging demand for defaultable
bond as its risk premium is stochastic for non-zero recovery rate. This insight
has been neglected in the literature. As shown in the text, under RMV scheme,
the recovery rate (not necessarily recovery risk) is an integral part of defaultable
bond pricing and has nontrivial effects on investment behavior. Third, market
correlation is an important factor in the investment decision. The existence of
correlation between markets induces position in one market from a position in
the other. Furthermore, the investor’s ability to hedging against or speculate
on stochastic risk premium is also affected by correlation.

Finally, our numerical exercises show that investors can achieve substantial
welfare improvement by investing in credit market under various market con-
ditions. The rate of return in terms of the certainty equivalent wealth with
credit market versus without credit market is about 3% per annum for typical
investors. It is also shown that hedging demands may behave quite differently
from myopic demands. For example, hedging demand may depend on risk-
aversion in a complex way. This highlights the purpose of such demand which
is to hedge against stochasticity in investment opportunity set.

This paper is one of the first to study the optimal investment in credit
23Some spikes in the graphs may be due to the non-linearity of RW on some parameters

and/or to the computation algorithm. Nonetheless, the smooth part of the graphs are clear
enough for drawing meaningful conclusions.
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market. There is much to be done. For example, we deal with defaultable zero-
coupon bond for simplicity and do not study other credit market instruments
such as coupon bond, and credit derivatives. We also assume deterministic
interest rates. Interest rates, however, are an integral part of fixed-income
market and should be formally included in such analysis. Partial equilibrium
analysis is adopted in this paper, while equilibrium approach may generate more
insights. For instance, two heterogeneous agents may be modeled in this context.
Finally, we observe that RMV scheme is pivotal in our analysis. Analysis within
other recovery schemes should be conducted. This paper opens several research
avenues to be explored in the future.

7 Appendix

7.1 Proof of Proposition 1

Proof.
As in the text, set F = 1. From (5), p (t, T1) = H̃ (t) v (t, T1), where

H̃ (t) := 1 − H (t) = 1{τ>t}. Write v (t, T1) = b̃ (t)φ (t) , where b̃ (t) :=

exp
(∫ t

0
(r (s) + δ (s)) ds

)
, φ (t) := EQ

(
exp

(
−
∫ T1

0
(r (s) + δ(s))ds

)∣∣∣Ft

)
and

φ is an (F, Q)−martingale. Since b̃ is a finite-variation (FV) process, we have

dv (t, T1) = d
(
b̃ (t) φ (t)

)
= φ (t) db̃ (t) + b̃ (t) dφ (t)

= (r (t) + δ (t)) v (t, T1) dt + b̃ (t) dφ (t)

An application of Ito’s product rule to p (t, T1) yields:

dp (t, T1) = H̃ (t−) dv (t, T1) + v (t−, T1) dH̃ (t) +4v (t, T1)4H̃ (t)

= H̃ (t−)
[
(r (t) + δ (t)) v (t, T1) dt + b̃ (t) dφ (t)

]
+ v (t, T1) dH̃ (t)

where the assumption that the pre-default value v does not jump at default
time is used. Indeed, the pre-default value v given in (5) is continuous, hence
v (t−, T1) = v (t, T1) ,∀t ∈ [0, T1]. Then

dp (t, T1) = (r (t) + δ (t)) p (t−, T1) dt + H̃ (t−) b̃ (t) dφ (t)− v (t, T1) dH (t)

where p (t−, T1) = H̃ (t−) v (t−, T1) = H̃ (t−) v (t, T1) and dH (t) = −dH̃ (t).
Now we are about to derive dφ (t). Apparently, since φ is an (F, Q)−martingale,

its drift term under Q has to be zero. We only need to derive its diffusion term.
Write φ (t) = EQ

(
exp

(
−
∫ T1

0
(r (s) + δ(s))ds

)∣∣∣Ft

)
= C0 (t)φδ (t) ,

where C0 (t) := exp
(
−
∫ t

0
(r (s) + δ(s))ds

)
exp

(
−
∫ T1

t
r (s) ds

)
, and φδ (t) :=

EQ
(

exp
(
−
∫ T1

t
δ (s) ds

)∣∣∣Ft

)
. The process of δ is Gaussian under the measure
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Q. Under this specifications, φδ (t) can be easily derived.

φδ (t) = EQ

(
exp

(
−
∫ T1

t

δ (s) ds

)∣∣∣∣∣Ft

)

= exp

{
−EQ

(∫ T1

t

δ (s) ds

∣∣∣∣∣Ft

)
+

1
2
V arQ

(∫ T1

t

δ (s) ds

∣∣∣∣∣Ft

)}
= Cδ (t, T1) exp (ςδ (t, T1) δ (t))

where ςδ (t, T1) := exp(−κδ(T1−t))−1
κδ

and Cδ (t, T1) is a deterministic term. We
get

dφ (t) = φ (t) ςδ (t, T1) σδ (t) dwδ (t)

Plug this result into the SDE of p (t, T1), one easily has

dp (t, T1) = (r (t) + δ (t)) p (t−, T1) dt + H̃ (t−) b̃ (t) φ (t) ςδ (t, T1) σδdwδ (t)
−v (t, T1) dH (t)

= p (t−, T1) [(r (t) + δ (t)) dt + ςδ (t, T1) σδdwδ (t)]− v (t, T1) dH (t)

7.2 Proof of Theorem 1

Proof.
Assume JWW < 0. The first order conditions to HJB equation (18) can be

used to solve for optimal portfolio weights π∗ as a function of the indirect utility
function J and other parameters in this economy. After some straightforward
though tedious derivation, π∗ can be solved as follows.

π∗S = − JW

WJWW

[
λS − ρλδ

σS (1− ρ2)
+

ρ

σP σS (1− ρ2)
η

]
(27)

π∗P = − JW

WJWW

[
λδ − ρλS

σP (1− ρ2)
− 1

σ2
P (1− ρ2)

η

]
− JWη

WJWW

ση

σP

Inserting π∗ derived above into the HJB equation yields the following partial
differential equation (PDE):

0 = JtJWW + WrJW JWW + Γ1J
2
W +

[(
σηλδ + κδθη

)
− κδη

]
JηJWW

+
(

η

σP
− λδ

)
σηJW JWη +

σ2
η

2
JηηJWW −

σ2
η

2
J2

Wη (28)

with terminal condition:

J (W,η, T ) =
W 1−γ

1− γ

where

Γ1 :=
λδ − ρλS

σP (1− ρ2)
η − 1

2 (1− ρ2) σ2
P

η2 − λS
2 − 2ρλSλδ + λδ

2

2 (1− ρ2)
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Conjecture the solution J to the PDE (28) is of the form

J (W,η, t) = f (t, η)
W 1−γ

1− γ
with f (T, η) = 1 for ∀η ∈ R (29)

With this particular functional form, the PDE can be simplified as

0 = γfft−(1− γ) Γ1f
2+(1− γ)

σ2
η

2
f2

η +
1
2
γσ2

ηffηη−Γ2ffη+γ (1− γ) rf2−γκδηffη

(30)
with terminal condition f (T, η) = 1,∀η ∈ R and

Γ2 := (1− γ)
ση

σP
η − γκδθη − σηλδ

Assume

f (t, η) = g (t) exp
(

k (t) η +
1
2
l (t) η2

)
with terminal conditions g (T ) = 1, k (T ) = l (T ) = 0. Plugging this functional
into (30) and simplifying yields

0 =

{
γkt + σ2

ηlk −
[
(1− γ)

ση

σP
+ γκδ

]
k +

(
γκδθη + σηλδ

)
l −

(1− γ)
(
λδ − ρλS

)
σP (1− ρ2)

}
η

+

{
γ

2
lt +

σ2
η

2
l2 −

[
(1− γ)

ση

σP
+ γκδ

]
l + (1− γ)

1
2 (1− ρ2) σ2

P

}
η2

+γ
gt

g
+

σ2
η

2
k2 +

γσ2
η

2
l +
(
γκδθη + σηλδ

)
k + γ (1− γ) r

+
(1− γ)

(
λS

2 − 2ρλSλδ + λδ
2
)

2 (1− ρ2)

or 0 = C1η + C2η
2 +

(
γ

gt

g
+ C0

)
where definitions of C0, C1, C2 are self-evident.

The coefficients of η and η2 must be identically zero and last term also must
be zero. From C2 = 0, one can see that it is a Riccati equation which has the
following solution:24

l (t) =

 0
1−γ

γ(1−ρ2)σ2
P
× 2(eϑ(T−t)−1)h

ϑ+2(κδ+ 1−γ
γ

ση
σP

)
i
(eϑ(T−t)−1)+2ϑ

if γ = 1
if γ 6= 1 (31)

24This is not quite mathematically rigorous since σP is a deterministic time-varying func-
tion, making the coefficient not constant. However, with typical parameters used in this paper,
it is virtually constant since the maturity of the defaultable bond T1 is much larger than in-
vestor’s planning horizon T . For example, with T1 = 10, T = 1, and κδ = 1.4248, σδ = 0.0131,
it can be easily seen that σP (0) ≈ σP (1) = −0.00919427, which are indistinguishable from
each other up to 8 digits after point.
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where ϑ := 2
√

(κδ + 1−γ
γ

ση

σP
)2 − (1−γ)σ2

η

γ2(1−ρ2)σ2
P

.

From C1 = 0, we can solve for k (t), given l. Rewrite the equation as follows:

k (t)′ = −
σ2

η

γ︸ ︷︷ ︸
=:a

l (t) k (t) + [
(1− γ)ση

γσP
+ κδ]︸ ︷︷ ︸

=:b

k (t)

−
(

κδθη +
σηλδ

γ

)
︸ ︷︷ ︸

=:c

l (t) +
(1− γ) (λδ − ρλS)

γσP (1− ρ2)︸ ︷︷ ︸
=:d

(32)

Define q (t) := a× l (t) + b (t), if ω 6= 1, then the solution to (32) is given by

k (t) =

{
0

exp
(
−
∫ T

t
q (s) ds

) [
c
a −

∫ T

t

(
d (s)− b(s)c

a

)
exp

(∫ T

s
q (u) du

)
ds
]
− c

a

if γ = 1
if γ 6= 1

(33)
In the case of ω = 1, a = c = 0, b = κδ since ση = θη = 0. Then equation (32)
is reduced to

k (t)′ = κδk (t) + d

The solution is
k (t) =

d

κδ

(
e−κδ(T−t) − 1

)
(34)

Note that the apparent difference between (33) and (34) does not mean there is
discontinuity of k with respect to ω. In fact, it can be easily shown that when
ω = 1, (33) indeed becomes (34) after cancelling terms. In sum, function k is
given by

k (t) =


0

d
κδ

(
e−κδ(T−t) − 1

)
exp

(
−
∫ T

t
q (s) ds

)
[ c
a −

∫ T

t

(
d (s)− b(s)c

a

)
× exp

(∫ T

s
q (u) du

)
ds]− c

a

if γ = 1
if γ 6= 1 and ω = 1

if γ 6= 1 and ω 6= 1

From γ gt

g + C0 = 0, it is easy to derive that

g (t) =


1

exp{
∫ T

t
[σ2

η

2γ k (s)2 +
(
κδθη + σηλδ

γ

)
k (s) + 1

2σ2
ηl (s)

+ (1− γ) r + (1−γ)(λS
2−2ρλSλδ+λδ

2
)

2γ(1−ρ2) ]ds}

if γ = 1

if γ 6= 1 (35)

Now the indirect utility is

J (W,η, t) =

{
g (t) exp

(
k (t) η + 1

2 l (t) η2
)

W 1−γ

1−γ

lnW

γ 6= 1
γ = 1

with g (t) , k (t) and l (t) given by (35), (33) and (31) respectively.
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Finally, the optimal portfolio weights are given by

π∗S =
1
γ

[
λS − ρλδ

σS (1− ρ2)
+

ρ

σP σS (1− ρ2)
η

]
π∗P =

1
γ

[
λδ − ρλS

σP (1− ρ2)
− 1

σ2
P (1− ρ2)

η

]
+

k + l × η

γ

ση

σP

Note that σP := − 1−e−κδ(T1−t)

κδ
σδ and ση :=

(
1−ω

ω

)
σδ, these facts give the

expressions shown in the text.
An integral part of this “guess-prove” approach to solving this stochastic

control problem is verification. The standard verification theorems (see, for
example, Fleming and Rishel (1975)) need to impose Lipschitz and growth con-
ditions to ensure the existence and uniqueness of the solution to the controlled
SDEs of the state variables ( in this case, the SDEs of W and η). Because of the
stochasticity of η, the standard regularity conditions are not satisfied. However,
Korn and Kraft (2001) study the case of stochastic interest rate and have shown
that under mild regularity conditions, J (W, r, t) is indeed the value function.
Their arguement can be applied to this paper. We refer the interested readers
to the original paper for further details and proofs.
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Figure 1: Simulated Paths of Optimal Hedging Demand for Defaultable Bond

This figure shows simulated paths of the optimal hedging demand for defaultable bonds of
distinct credit quality, once a path of the credit spread is simulated. The optimal hedging
demand for a defaultable bond is given in equation (23).
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Figure 2: Optimal Hedging Demand for Defaultable Bond

The top left panel shows how the optimal hedging demands for defaultable bonds change with
ρ, the correlation coefficient between the risk factors in the economy, at the end of the first
quarter given a simulated credit spread path. The top right panel shows how this demand
varies with γ, the relative risk aversion of the investor. The bottom left panel shows how the
hedging demand for an investment grade bond varies with ω, the writedown rate in the event
of default, and with ρ. The bottom right panel shows how this demand varies with λδ , the
market price of the default risk, and ρ. The optimal hedging demand for a defaultable bond
is given in equation (23).
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Figure 3: Optimal Demand for Equity

The top panel shows simulated paths of the optimal equity demand when either an investment
grade bond or a junk bond is included in the opportunity set, once a path of the credit spread
is simulated. The middle panel shows how the equity demand when an investment grade bond
is included in the opportunity set varies with ω, the writedown rate in the event of default,
and with ρ, the correlation coefficient between the risk factors in the economy, at the end of
the first quarter. The bottom panel shows how this demand varies with λδ , the market price
of the default risk, and ρ. The optimal equity demand is given in equation (22).
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Figure 4: Optimal Myopic Demand for Defaultable Bond

The top panel shows simulated paths of the optimal myopic demand for defaultable bonds
demand of distinct credit quality, once a path of the credit spread is simulated. The mid-
dle panel shows how the myopic demand for an investment grade bond varies with ω, the
writedown rate in the event of default, and with ρ, the correlation coefficient between the
risk factors in the economy, at the end of the first quarter. The bottom panel shows how
this demand varies with λδ , the market price of the default risk, and ρ. The optimal myopic
demand for a defaultable bond is given in equation (23).
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Figure 5: Welfare Improvement with Defaultable Bond

The welfare improvement measures the portfolio improvement in terms of the annualized,
continuous compounded return in certainty equivalent wealth when an investor can invest in
credit market. δ0 is the initial credit spread. λδ is the market price of the default risk. ρ is
the correlation coefficient between the risk factors in the economy. ω is the writedown rate in
the event of default. The bottom panels show how the welfare improvement from investing in
an investment grade bond or in a junk bond varies with λδ and ρ. The welfare improvement
is given in equation (26).
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