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1 Introduction

Asset prices, such as house price and stock price, has been widely regarded as being erratic

and attract a great deal of attention from academic economists, policy makes, industry

practitioners, and the common mass. Among the interesting questions surrounding them

are how important are monetary policy in explaining the variability of asset prices, as

well as aggregate economic �uctuations, and how changes in the aggregate economy and

asset prices a¤ect the actions taken by the monetary policy maker. Questions of this

sort motivate the study in this paper, where we employ a structural vector autoregression

(SV AR) to study the dynamic interactions among monetary policy, asset prices, and the

aggregate economy under the standard recursiveness assumption. Monetary policy action

is modeled as the systematic reaction to the state of the economy, plus a random shock. We

undertake our analysis by investigating the impulse responses and variance decompositions

implied by the estimated SV AR.

Our major �ndings are as follows. Both real house price and real stock price declines in

response to a contractionary monetary policy shock, and that monetary policy is tightened

in reaction to positive shocks to asset prices. Monetary policy appears to have more

interaction with house price than with stock price. It also occurs that the importance of

house price in accounting for variations in stock price is greater than the magnitude in

the reverse direction. In addition, price level shocks are important for variations in both

house and stock prices. Finally, using a counterfactual experiment, we �nd that adopting

a passive monetary policy and not reacting to the state of the economy, contrary to what
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the Fed did historically, would not change the variability of asset prices much.

There has been recently a fast growing interest in studying the dynamic interaction

of the housing market and the aggregate economy. Of particularly relevance to our study

are papers that involve both monetary policy and house price within V AR frameworks.

For example, Del Negro and Otrok (2007) use a V AR to investigate the extent to which

expansionary monetary policy is responsible for the increase in house prices in the U.S.

for the period 2001�2005. They �nd that the impact of policy shocks on house prices to

be small in comparison with the magnitude of the change in house prices in that period.

Iacoviello and Minetti (2003) use vector autoregressions to study the role of monetary

policy shocks in house price �uctuations in Finland, Sweden, and U.K.. They �nd that

the response of house prices to interest rate surprises is bigger and more persistent in

periods characterized by more liberalized �nancial markets. These papers, however, do

not involve stock price and is therefore silent on the interaction between stock price and

house price.

There is also a large literature that studies the behavior of stock prices using V ARs.

However, to the best of our knowledge, this literature ignores the possible interaction

between house price and stock price. We believe that there are good reasons to treat house

price and stock price as dynamically related as they are both major forms of household

wealth. Decisions by optimizing investors on accumulation of house asset are unavoidably

interrelated with their decisions on purchases and sales of stocks. It also appears to us that

the kind of counterfactual experiment concerning the e¤ect of the systematic component of

monetary policy on asset prices, as is done in this paper, has been absent in the literature.
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The rest of the paper is organized as follows. Section 2 provides a brief overview of

using SV ARs to study the e¤ects of monetary policy, which can be skipped by readers

familiar with the subject. Section 3 introduces asset prices into an otherwise standard

SV AR and presents the impulse responses and variance decompositions. This is followed

by a counterfactual experiment in Section 4. The last section discusses future research.

2 Structural Vector Autoregressions and the E¤ects of Mon-
etary Policy: A Brief Overview

The framework of structural vector autoregressions (SV ARs) have become the workhorse

for empirical macroeconomics, especially the strand involving the investigation of the ef-

fects of monetary policy. This framework is relatively simple to describe. Let yt denote an

n�1 vector containing the values that n variables assume at date t. The reduced-form dy-

namics of yt are presumed to be governed by the pth-order Gaussian vector autoregression

(V AR):

yt = c+�1yt�1 +�2yt�2 + :::+�pyt�p + "t, (1)

with "t � i:i:d: N (0;
). For a variety of purposes including the computation of the

impulse response functions and variance decomposition we derive a vector moving average

(VMA) representation of (1):

yt = �+ "t +	1"t�1 +	2"t�2 + :::; (2)

where �
I � �1L� �2L2 � :::� �pLp

��1 � I +	1L+	2L2 + :::;
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and

� � (I � �1 � �2 � :::� �p)�1 c:

The matrix 	s, s = 1; 2; ::: contain the dynamic multipliers of the system.

A structural vector autoregression (SV AR) of order p takes the form

B0yt = k +B1yt�1 +B2yt�2 + :::+Bpyt�p + ut. (3)

Allowing B0 in (3) to be di¤erent from the identity matrix captures the simultaneity

among elements in yt. It is commonly assumed in the SV AR literature the structural

disturbances ut, a vector white noise, has a diagonal variance-covariance matrix D, while

the variance-covariance matrix of V AR disturbances "t, denoted by 
, is not necessarily

diagonal. It is easily seen that the parameters and disturbances of the SV AR and the

corresponding reduced-form V AR satisfy the following relationships: c = B�10 k; �s =

B�10 Bs for s = 1; 2; :::; p; and "t = B�10 ut; implying

B�10 DB�100 = 
. (4)

The orthogonalized impulse responses, i.e., the responses of y to the structural disturbances

ut, are contained in the matrices 	sA � @yt+s=@u0t, s = 1; 2; :::; p; where A � B�10 .

Identifying the structural parameters B0 and D from the reduced-form V AR variance-

covariance matrix 
 requires that B0 and D have no more unknown parameters than 
.

Given that 
 is symmetric and that D is diagonal, B0 can have no more than n (n� 1) =2

free parameters. A standard identi�cation assumption in the SV AR literature is the

(short-run) recursiveness assumption, according to which B0 is lower triangular with unit
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coe¢ cients along the principal diagonal. This restriction, together with the requirement

that D is diagonal, allows the structural model to be just identi�ed via triangular factor-

ization or Cholesky decomposition of the matrix 
: 
 = QQ0, where Q � AD1=2.

Recent literature has demonstrated considerable interest in identifying the e¤ects of

monetary policy on the behavior of various sorts of variables. A common approach adopted

in the literature is to postulate a monetary policy feedback rule, or reaction function, that

represents the central bank�s systematic policy responses to variations in the state of

the economy. As a practical matter, it is recognized that not all variations in central

bank policy can be accounted for as such reactions. The unaccounted variation is then

formalized with the notion of a monetary policy shock. In particular, monetary policy

setting is represented by an equation of the form

St = f (�t) + u
s
t . (5)

Here St is the instrument of the monetary authority, say the federal funds rate in the U.S.

context or some monetary aggregate, and f� the feedback rule� is a function that relates

St to the monetary authority�s information set �t. The random variable, ust , is a monetary

policy shock, which is i.i.d. with standard deviation �s. Integrating the monetary policy

equation (5) into an SV AR system for a set of macroeconomic variables, one obtains a

dynamic system that can be used to study the interaction of monetary policy and the

aggregate economy.

As Christiano, Eichenbaum, and Evans (1999, CEE henceforth) point out, it is unnec-

essary to assume that the matrix A � B�10 in (3) is strictly lower triangular to identify
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the e¤ects of a monetary policy shock on the economy. Rather, only a block recursiveness

assumption is needed, according to which monetary policy shocks are orthogonal to the

information set of the monetary authority. In particular, partition yt into three blocks:

the k1 variables, X1t, whose contemporaneous values as well as lagged values appear in

�t, the k2 variables, X2t, which only appear with lags in �t, and �nally, St itself, with

k1 + k2 + 1 = n, where n is dimension of yt. That is,

yt =

24 X1tSt
X2t

35 . (6)

The block recursiveness assumption places zero restrictions on Q, the Cholesky decompo-

sition of 
:

Q =

266664
a11

(k1�k1)
0

(k1�1)
0

(k1�k2)

a21
(1�k1)

a22
(1�1)

0
(1�k2)

a31
(k2�k1)

a32
(k2�1)

a33
(k2�k2)

377775 . (7)

The zeros in the middle row of this matrix re�ect the assumption that the policy

maker does not see X2t when St is set. The two zero blocks in the �rst row of Q re�ect

the assumption that the monetary policy shock is orthogonal to the elements in X1t as

the shock is assumed to have no contemporaneous e¤ect on each element in X1t. These

blocks correspond to the two distinct channels by which a monetary policy shock could

in principle a¤ect the variables in X1t. The �rst of these blocks corresponds to the direct

e¤ect of St on X1t, which under the recursiveness assumption is zero. The second block

corresponds to the indirect e¤ect that operates via the impact of a monetary policy shock

on the variables in X2t, which under the recursiveness assumption is also zero.

This block recursiveness assumption is not su¢ cient to identify all the elements of Q.
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However, it is su¢ cient to identify the dynamic response of yt to a monetary policy shock.

Speci�cally, one can establish that each member of the family of Q that satis�es QQ0 = 


generates precisely the same dynamic responses of the elements of yt to a monetary policy

shock. Furthermore, if we adopt the normalization of always selecting the lower triangular

Q matrix from this family, then the impulse responses of the variables in yt are invariant

to the ordering of variables in X1t and X2t.

In this paper, we builds on CEE and introduces asset prices to an SV AR system to

study the interaction between monetary policy, asset prices, and the aggregate economy.

We adopt CEE�s identi�cation strategy in order to just identify the parameters of our

SV AR. An immediate question is that the ordering of the variables X1t and X2t matter

for the estimated pattern of how non-monetary-policy shocks a¤ect asset prices, and vice

versa. Our strategy to deal with this concern is to experiment with di¤erent orderings of

the variables within X1t and X2t and to see whether robust patterns might emerge from

these experiments.

3 Asset Prices, Monetary Policy, and the Aggregate Econ-
omy: Dynamic Interactions

3.1 The Benchmark Speci�cation

Our benchmark speci�cation extends CEE�s benchmark where the federal funds rate is

regarded as the monetary policy instrument. Let Yt; Pt, PCOMt; FFt; NBRt; TRt; and

Mt denote the time t values of the log of real GDP, the log of the implicit GDP de�ator,

the log of the index of commodity prices, the federal funds rate, the log of nonborrowed
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reserves plus extended credit, the log of total reserves, and the log of either M1 or M2,

respectively. The CEE speci�cation of �t includes current and four lagged values of Yt; Pt;

PCOMt; as well as four lagged values of FFt; NBRt; TRt; and Mt. Using the notations

in (6), we have X1t = [Yt; Pt; PCOMt]
0 ; St = FFt; and X2t = [TRt; NBRt;Mt]

0. The

variable PCOM is included in order to resolve the so-called �price puzzle.�Without this

variable the general price level would rise, rather than fall, persistently after a monetary

contraction, contradicting the common sense. Adding this variable allows the monetary

authority to react quickly to changes in this leading indicator of the business cycle and

helps avoid producing the counterintuitive responses of the price level.

We add two variables� real house price and real stock price in the U.S., denoted by PHt

and PSt, respectively� into the system described above. In our benchmark speci�cation,

we use the Dow Jones Industrial Average index as our measure of stock price. Since we

are interested in the behavior of real stock price, we de�ate the nominal stock price index

by the GDP de�ator. As for house price, we use the O¢ ce of Federal Housing Enterprise

Oversight (OFHEO) house price index, again de�ated by the GDP de�ator. The OFHEO

index is a constant-quality house price index.

We append [PHt; PSt]
0 to the end of the vector X2t. Assigning asset prices to the

bottom of the list of variables yt in our system re�ects the notion that asset prices should

be allowed to react contemporaneously to a monetary policy shock. Asset prices, especially

stock price, are widely regarded as being �exible rather than sluggish. In fact, locating

asset prices this way in our system also allows them to react contemporaneously to all

shocks in the system, including non-asset-price shocks. Furthermore, placing PHt before
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PSt makes explicit the assumption that stock price reacts contemporaneously to all sorts

of shocks to the economy, while house price reacts contemporaneously to all shocks except

the shock to stock price, implying that stock price adjusts faster than house price. In

e¤ect, stock price is treated as the most responsive variable in our system, while real GDP

and the general price level are treated as the most sluggish. Treating real GDP and the

price level as sluggish captures the idea that changing the quantities and prices of most

goods and services is subject to various sorts of adjustment costs, as Sims and Zha (2006)

emphasize.

Our interpretation of the nature of the shocks in the SV AR system is as follows. The

disturbance in an equation represents the change in the variable corresponding to that

equation which can not be explained by (reactions to) innovations to all other variables.

Adopting this interpretation for the monetary policy equation, one would interpret the

monetary policy shock as the variation in the monetary policy instrument that can not

be explained by its reaction to shocks to all other variables in the system. Similarly,

applying this interpretation to the stock price equation, one would interpret the house

(stock) price shock as the variation in house (stock) price that is not explained by its

reaction to shocks to all other variables in the system. Similarly, the real GDP shock

could be interpreted as the variation in real GDP that is not explained by its reaction

to other shocks. This interpretation, however, is silent on whether the real GDP shock

originates from the demand side or the supply side.

In our benchmark speci�cation we use M2 for the variable Mt. The data are of

quarterly frequency, with the sample period being 1975Q1�2007Q4.
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3.2 Results

Figure 1 shows the impulse responses generated by our benchmark SV AR system. The

variable name on the top of each column indicates the structural disturbance the responses

to which we want to consider. The variable name to the left of each row indicates the

variable whose responses are plotted, along with the 70% con�dence bands.1 (This is the

level of con�dence used by Sims and Zha (2006) in reporting their results. Given that

there are so many parameters to estimate in the V AR system, the con�dence bands at

the conventional 90% level would be so wide that many impulse responses appear to be

statistically insigni�cant.) Therefore the �FF�column describes the dynamic responses of

all the variables in the system to a positive 75-basis-point shock to the federal funds rate.

Real GDP exhibits a hump-shaped contractionary response to the funds rate innovation.

The peak e¤ect (about 0:33% decline in output) is reached at about 8 quarters after

the shock to monetary policy. The price level increases slightly during the �rst year

after the shock and then declines. The de�ationary e¤ect of the monetary policy shock

becomes signi�cant only after the fourteenth post-shock quarter. Both the hump-shaped

response of output and the apparent �stickiness�of the price level are well known from the

V AR literature. Meanwhile, the index of commodity prices shows a consistently declining

pattern. Monetary aggregates, such as nonborrowed reserve and M2, contract after the

shock, though we are less certain about the response of total reserve. Most interestingly,

real house price declines with a hump-shaped pattern. The peak e¤ect� a 0:67% drop� is

reached 11 quarters after the shock. The fall in real stock price is larger, the peak e¤ect

1The con�dence bands are computed by the Monte Carlo method.
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being �1:40%. But the noise concerning the estimated responses of stock price is large.

In addition to its negative response to a contractionary shock to monetary policy,

real house price responds positively to innovations to real GDP and M2 and responds

negatively to innovations to the GDP de�ator, the index of commodity prices, nonborrowed

reserve, total reserve, and real stock price. Similarly, real stock price responds positively to

innovations to real GDP and negatively to innovations to the GDP de�ator and the index

of commodity prices. Its responses to innovations of monetary aggregates are, however, not

as certain. These results suggest that unexpected rises in aggregate economic activities

tend to be associated with increases in asset prices, while in�ationary shocks tend to

depress asset prices, as do contractionary monetary policy shocks. Of particular interest

is the cross responses of asset prices. Real house price responds negatively to an innovation

to real stock price, and vice versa. This suggests that house and stock are likely to be

substitutes in investors�portfolio.

The fourth row of Figure 1 depicts the responses of the federal funds rate to the shocks

in the system. It is evident that the federal funds rate increases in response to positive

innovations to real GDP, the GDP de�ator, the index of commodity prices, M2, real house

price, and real stock price, signifying that there is a monetary tightening when there is an

output expansion, an in�ationary shock, an expansion in money demand, and an increase

in asset prices.

Table 1 reports the variance decomposition of forecast errors. It is well known that the

mean squared error (MSE) of the s-period-ahead forecast of the vector y can be written

12



as the sum of n terms, one arising from each of the structural disturbances ujt:

MSE
�byt+sjt� = 
+	1
	

0
1 +	2
	

0
2 + :::+	s�1
	

0
s�1

=

nX
j=1

�
V ar (ujt)

�
aja

0
j +	1aja

0
j	

0
1 +	2aja

0
j	

0
2 + :::+	s�1aja

0
j	

0
s�1
�	
,(8)

where aj denotes the jth column of the matrix A and V ar (ujt) is the row j, column j

element of the matrix D. The term inside the braces on the right-hand side of (8) is the

contribution of the jth structural disturbance to the MSE of the s-period-ahead forecast

of y.

We are especially interested in the variance decomposition of the forecast errors asso-

ciated with asset prices. We see from Table 1-4 that over short forecast-horizons (within

a year), the MSE of the forecast errors for real house price is mainly attributable to the

shock to house price itself, which contributes roughly 50% to the MSE. The monetary pol-

icy shock explains about 10%. The M2 shock, interpretable as the money demand shock

given that the federal funds rate is speci�ed as the monetary policy instrument, contributes

about 15% to variations in the unforecastable component of real house price. The con-

tribution of the price level shock has a comparable magnitude with that of the monetary

policy shock. The contribution made by the real GDP shock is surprisingly small, com-

parable only to the contribution made by shocks to reserve aggregates. The contribution

from the shock to stock price is even less, down to the point of being negligible. Since

we interpret the shock to real house price as the variation that can not be explained by

its reaction to changes in other variables in the system, we conclude that roughly 50%

of the unforecastable real house price variations remain unexplained, aside from those
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explainable by changes in aggregate economic activities, the price levels, monetary policy

settings, money demand, and stock market situations. Among the non-house-price shocks,

the monetary policy shock assumes a weight of about 20% while the money demand shock

assumes a weight of about 30%.

Over the medium forecast horizons (2�3 years), the importance of the house price

shock declines gradually toward about 20% in accounting for the variations in real house

price. The federal funds rate shock becomes the largest source of non-house-price shocks

in explaining real house price variations. At the 3-year forecast horizon, the importance

of this shock becomes almost the same as the house price shock. The monetary policy

shock is followed in importance by price level shocks� shocks to the GDP de�ator and

the index of commodity prices. Shocks to reserve aggregates and M2 also assume a fair

amount of importance in explaining the variations in real house price. The importance

of the real GDP shock and the stock price shock are quite modest and remains so over

longer forecast horizons. At forecast horizons above 3 years, shocks to the GDP de�ator,

the federal funds rate, and non-borrowed reserve become more important than the house

price shock in accounting for the variations in real house price.

The limit of this variance decomposition, obtained by driving the forecast horizon

to in�nity, indicates that over the long-run, about 89% of the total variations in real

house price is explained by non-house-price shocks, i.e., shocks to output, price level,

the monetary policy instrument, monetary aggregates, and real stock price, the most

important source being the price level shock. The monetary policy shock assumes an

importance only second to that. Interestingly, real stock price shock is the least important
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in explaining the unconditional variations in real house price.

Like in the case of real house price, we see from Table 1-5 that over short forecast

horizons, the MSE of the forecast errors for real stock price is mainly attributable to the

shock to stock price itself, which contributes as high as about 80% to the MSE one quarter

ahead and 56% four quarters ahead. The monetary policy shock explains about 5%. The

shocks to M2 and real house price do not contribute much, either. The importance of

real house price shock is also small, but visibly larger than the importance of real stock

price shock in explaining the forecast error variance of real house price over comparable

horizons. Price level shocks are important factors among the non-stock-price shocks. Over

the medium forecast horizons, the importance of stock price shock declines from about a

half to about a third in accounting for the variations in real stock price. Price level shocks

remain the most important non-policy shocks that generate unforecastable variations in

real stock price. The importance of real house price shock rises to over 8%, comparable

to the importance of the real GDP shock. This pattern does not change much over longer

forecast horizons.

Again, the limit of this variance decomposition that we can use to analyze the total

unconditional variations in real stock price is obtained by letting the forecast horizon in

Table 1.5 go to in�nity. There is some interesting contrast of this limiting decomposition

with the one we have done for real house price. First, a smaller percentage of total stock

price variations (about 83%) is explainable by non-stock-price shocks. Although among

them the most important is again the price level shock, it is followed in importance by

real GDP shock, which in turn is followed by the real house price shock. Hence over the
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very long forecast horizons the real house price shock is more important in accounting for

real stock price variations than the real stock price shock is in accounting for real house

price variations. Furthermore, the monetary policy shock is among the least important in

explaining the unconditional variations in real stock price.

To summarize, we �nd that the monetary policy shock is more important in accounting

for the forecast error variance of real house price than in explaining the forecast error

variance of real stock price. The importance of real house price in accounting for the

forecast error variance of real stock price is greater than the magnitude in the reverse

direction. In addition, price level shocks are important for variations in both house price

and stock price.

We now turn to the variance decomposition for the forecast error of the monetary

policy instrument. Over the short forecast horizons, monetary policy shock itself accounts

for the greatest portion of the forecast error of the federal funds rate. Other than that,

shocks to real GDP and the GDP de�ator account for most of the rest of the variations

in the federal funds rate. Asset price shocks are of very minor importance, albeit positive

asset price innovations do lead to monetary tightening as we have seen in the description

of the impulse responses. Over the medium forecast horizons, the importance of real GDP

and the GDP de�ator both decline, but not by much. The importance of the monetary

policy shock is reduced by about a half. The importance of real house price shock increases

to as high as 15% at 3-year horizon. The importance of real stock price shock, however,

remains largely unchanged. over the long forecast horizons, shocks to real GDP and the

GDP de�ator remain the most important factors, with the shock to price level taking over

16



the shock to output. Surprisingly, real house price shock explains more variations in the

federal funds rate than monetary policy shock itself, though we are less con�dent in this

result than in results pertaining to shorter forecast horizons. Along with our previous

analysis of the contribution of the monetary policy shock in explaining variations in real

house price, we are inclined to conclude that monetary policy has more interaction with

house price than with stock price.

4 The Role of Systematic Monetary Policy

Our estimated model indicates that unpredictable shifts in monetary policy account for

a relatively small proportion of variations in the value assumed by the monetary policy

instrument, and that the bulk of monetary policy actions have historically been systematic

reactions to the state of the economy, rather than unpredictable changes. Assessment of

the overall e¤ects of monetary policy, as opposed to merely the e¤ects of unpredictable

changes in policy, must therefore consider what would happen if the systematic component

of monetary policy were di¤erent. This is done by analyzing the impulse responses for a

system in which the model�s estimated monetary policy reaction function is replaced by

one in which the monetary policy instrument is completely unresponsive to other variables

in the system, that is, the monetary authority holds the monetary policy instrument such

as the federal funds rate �xed in face of nonpolicy disturbances.

The idea of the counterfactual experiment is that we take the estimated benchmark

recursive SV AR as the �true� model. That is, we take the estimated B0; B1; :::; Bp,

and D � E(utu
0
t) as true parameters. We then perform a thought experiment on the
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true system, in the spirit of �ceteris paribus�. In particular, we hold D and the non-

monetary-policy rows of B0; B1; :::; Bp �xed. We then change the monetary-policy rows of

B0; B1; :::; Bp by setting the coe¢ cients on the current and lagged values of all variables

other than the monetary policy instrument to be zero. In doing so we take the structure

of the economy, which is represented by D and the non-monetary-policy rows of the B

matrices, as given, but change the nature of the monetary policy. Similar counterfactual

experiments have been performed by Bernanke et al. (1997), Carlstrom and Fuerst (2006),

and Sims and Zha (2006), in contexts that do not involve asset prices.

Holding all equations of the system other than the monetary policy equation �xed

means that we are ignoring changes in the dynamics of the private sector that would

occur if private agents modi�ed the way they forecast the economy under the new policy

rule. That is, we are ignoring the Lucas critique. Sims and Zha (2006) argue that this is

nonetheless an interesting exercise, for practical purposes even more interesting than an

exercise that �takes account of�the Lucas critique via the unreasonable assumption that

the policy change is immediately and fully understood and that the public believe that

the change is permanent. Our counterfactual exercise therefore rests on the assumption

that policy changes, but private agents are surprised by the change, even though it is in a

systematic fashion.

Figure 2 display the (point estimates) of the impulse responses of the true SV AR

system (dark lines) as well as those of the counterfactual system (red lines). By design the

federal funds rate only reacts to the monetary policy shock in the counterfactual system.

Its responses to other shocks are represented by the zero lines. Our overall impression
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is that shutting o¤ the reactions of monetary policy to non-policy shocks barely changes

the impulse responses, especially at short and medium forecast horizons for which the

impulse responses are estimated more precisely. Many of the impulse responses under the

counterfactual system coincide with those under the true system. This lack of signi�cant

change also applies for the impulse responses of real stock and house prices to both policy

and non-policy shocks, implying that adopting a passive monetary policy and not reacting

to the state of the economy, contrary to what the Fed did historically, would not change

the variability of asset prices much.

Still, there are some discernible di¤erences between the performance of the two systems

that merit discussion. We note that a positive shock to real GDP makes real GDP itself

respond more persistently in the counterfactual system, though the impact e¤ect is the

same under the two systems. Meanwhile, the GDP de�ator rises much more slowly in the

counterfactual case. A year after the shock, real house price continues rising under the

counterfactual, while it falls from its peak response under the true SV AR. The rise in real

stock price is larger under the counterfactual two quarters after the shock. This suggests

that passive monetary policy, by not raising the federal funds rate, enlarges asset price

increases in response to a positive innovation to real GDP, thereby increases asset price

variability. However, the responses of real house and stock prices to a positive shock to

the GDP de�ator indicate to the contrary that such monetary policy, again by not raising

the federal funds rate, lowers asset price declines in response to an in�ationary shock (this

is especially true for real house price), thereby reduces asset price variability.
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5 Future Research

This is a very preliminary version of the paper. In future research we plan to check the

robustness of our results against di¤erent orderings of the variables within X1t and X2t,

against using di¤erent stock price indices such as the S&P500 and NASDAQ, against using

the price of residential structure instead of residential home, which can be thought of as a

composite of structure and land, against using di¤erent price de�ators for asset prices, and

against using di¤erent identi�cation assumptions such the long-run neutrality assumption

as in Blanchard and Quah (1989). We also plan to look in depth at the interactions

between monetary policy and asset prices during the �rst eight years of the twenty-�rst

century, which are under heated debate. What we have investigated in the present version

is the broad historical pattern.
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Figure 1. Impulse response of the benchmark system 
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Figure 2. Impulse responses of the benchmark system (dark lines) versus the counterfactual system (red lines) 
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Table 1.1 Forecast Error Variance Decomposition 

GDP Forecast Error Variance Decomposition (Percentage) 

 GDPQ PGDP PCOM FF NBR TR M2 PH PS 

1 100.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

2 87.64  1.32  1.01  0.74  0.98  1.25  2.78  2.66  1.62  

3 75.15  3.21  1.69  2.34  1.83  1.97  4.22  3.66  5.94  

4 65.76  3.57  2.28  3.36  2.65  3.20  5.58  4.70  8.90  

5 58.50  4.30  2.60  4.44  3.69  3.80  7.02  5.85  9.79  

6 52.87  5.46  2.96  5.93  4.96  4.28  7.56  5.85  10.13  

7 48.44  6.81  3.27  8.05  5.40  4.68  7.78  5.63  9.94  

8 44.57  8.42  3.52  9.60  5.89  4.92  7.80  5.51  9.76  

9 40.83  9.99  3.77  10.89  6.70  5.03  7.73  5.46  9.60  

10 37.56  11.55  4.05  11.84  7.33  5.12  7.60  5.52  9.43  

11 34.93  12.96  4.28  12.44  7.86  5.15  7.48  5.67  9.23  

12 32.74  14.03  4.47  12.89  8.38  5.17  7.36  5.88  9.07  

13 30.94  14.83  4.64  13.21  8.75  5.23  7.29  6.15  8.96  

14 29.51  15.45  4.79  13.32  9.02  5.33  7.26  6.41  8.91  

15 28.36  15.88  4.92  13.31  9.26  5.42  7.28  6.64  8.92  

16 27.44  16.16  5.05  13.26  9.43  5.53  7.32  6.84  8.96  

17 26.73  16.35  5.16  13.18  9.53  5.64  7.39  6.99  9.04  

18 26.16  16.46  5.27  13.07  9.59  5.75  7.47  7.10  9.13  

19 25.70  16.55  5.36  12.96  9.62  5.87  7.55  7.17  9.21  

20 25.34  16.64  5.44  12.84  9.61  5.99  7.64  7.23  9.29  

∞ 16.88  18.23  6.60  16.01  9.41  7.17  8.10  9.73  7.88  
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Table 1.2 Forecast Error Variance Decomposition (continued) 

GDP deflator Forecast Error Variance Decomposition (Percentage) 

 GDPQ PGDP PCOM FF NBR TR M2 PH PS 

1 1.15  98.85  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

2 1.76  93.21  0.87  0.75  1.05  0.71  0.75  0.46  0.45  

3 2.24  87.79  1.88  1.53  1.32  1.18  1.35  1.54  1.18  

4 2.75  83.11  2.86  2.08  1.56  1.68  1.99  2.49  1.47  

5 3.72  78.81  3.47  2.37  2.05  2.27  2.13  3.52  1.66  

6 4.52  74.64  3.91  2.62  2.62  2.73  2.13  5.04  1.79  

7 5.18  71.39  4.08  2.66  2.94  3.10  2.18  6.58  1.90  

8 5.74  68.10  4.12  2.67  3.29  3.48  2.29  8.27  2.03  

9 6.19  64.80  4.16  2.68  3.60  3.78  2.48  10.13  2.19  

10 6.58  61.89  4.17  2.70  3.80  4.01  2.72  11.78  2.36  

11 6.91  59.19  4.18  2.76  3.96  4.20  3.01  13.26  2.54  

12 7.15  56.61  4.21  2.88  4.08  4.36  3.31  14.67  2.73  

13 7.32  54.24  4.27  3.10  4.14  4.49  3.63  15.87  2.94  

14 7.44  52.01  4.35  3.43  4.19  4.62  3.96  16.85  3.16  

15 7.53  49.90  4.45  3.85  4.25  4.73  4.28  17.64  3.38  

16 7.58  47.91  4.58  4.39  4.31  4.83  4.59  18.20  3.60  

17 7.61  46.03  4.74  5.02  4.41  4.95  4.90  18.54  3.80  

18 7.63  44.26  4.91  5.72  4.54  5.07  5.20  18.69  3.98  

19 7.65  42.59  5.11  6.46  4.72  5.20  5.48  18.67  4.13  

20 7.67  41.02  5.32  7.21  4.95  5.34  5.75  18.50  4.25  

∞ 12.98  19.27  6.53  9.82  11.41  11.74  9.41  12.96  5.89  
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Table 1.3 Forecast Error Variance Decomposition (continued) 

FF Forecast Error Variance Decomposition (Percentage) 

 GDPQ PGDP PCOM FF NBR TR M2 PH PS 

1 6.57  5.77  1.83  85.83  0.00  0.00  0.00  0.00  0.00  

2 18.31  9.88  5.14  59.08  0.61  1.90  1.94  2.22  0.92  

3 24.68  16.61  4.44  41.11  1.23  4.50  2.15  2.61  2.66  

4 24.22  19.24  5.36  31.82  1.80  5.88  3.05  5.27  3.36  

5 22.48  18.26  6.01  27.21  2.21  6.46  4.41  9.27  3.70  

6 22.03  17.75  5.85  24.58  2.58  7.07  5.52  10.82  3.79  

7 22.77  17.44  5.85  22.34  2.89  7.41  6.01  11.48  3.81  

8 22.93  17.28  6.13  20.27  3.09  7.46  6.40  12.60  3.84  

9 22.40  17.29  6.24  18.78  3.28  7.57  6.81  13.68  3.95  

10 21.79  17.32  6.32  17.79  3.48  7.60  7.10  14.47  4.13  

11 21.25  17.37  6.42  17.05  3.66  7.53  7.29  15.07  4.36  

12 20.75  17.51  6.51  16.49  3.84  7.47  7.42  15.37  4.63  

13 20.28  17.69  6.61  16.11  4.01  7.44  7.51  15.42  4.93  

14 19.87  17.85  6.70  15.83  4.16  7.41  7.57  15.39  5.22  

15 19.56  17.99  6.78  15.60  4.31  7.41  7.63  15.26  5.46  

16 19.32  18.11  6.86  15.43  4.44  7.41  7.71  15.05  5.66  

17 19.15  18.20  6.92  15.26  4.56  7.43  7.80  14.85  5.83  

18 19.04  18.27  6.97  15.10  4.65  7.46  7.88  14.68  5.95  

19 18.98  18.31  7.01  14.92  4.74  7.48  7.96  14.57  6.02  

20 18.92  18.36  7.06  14.72  4.81  7.50  8.03  14.54  6.08  

∞ 16.88  19.40  7.32  12.32  6.52  7.63  8.84  13.88  7.21  
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Table 1.4 Forecast Error Variance Decomposition (continued) 

PH Forecast Error Variance Decomposition (Percentage) 

 GDPQ PGDP PCOM FF NBR TR M2 PH PS 

1 3.66  13.29  1.14  9.08  0.88  2.47  13.50  55.98  0.00  

2 3.23  9.93  3.07  10.25  1.33  4.71  15.21  51.85  0.42  

3 4.13  8.07  6.07  10.67  1.78  6.47  15.56  46.21  1.05  

4 5.14  7.73  7.38  9.92  2.07  6.99  15.00  44.25  1.53  

5 5.29  7.51  8.06  11.02  2.88  6.91  14.40  42.03  1.90  

6 5.10  7.54  9.21  12.96  3.59  6.92  13.64  38.75  2.29  

7 4.88  8.11  9.86  14.33  4.40  6.73  12.93  35.96  2.80  

8 4.74  8.99  10.23  15.56  5.70  6.47  12.14  32.98  3.20  

9 4.66  10.01  10.57  16.97  6.90  6.34  11.35  29.72  3.48  

10 4.63  11.22  10.71  18.15  7.91  6.32  10.63  26.78  3.65  

11 4.63  12.54  10.72  19.00  9.02  6.32  9.99  24.09  3.70  

12 4.65  13.92  10.75  19.52  10.07  6.35  9.42  21.64  3.67  

13 4.69  15.38  10.73  19.67  10.94  6.43  8.95  19.56  3.66  

14 4.74  16.78  10.63  19.51  11.71  6.55  8.58  17.84  3.67  

15 4.79  18.03  10.51  19.14  12.37  6.71  8.28  16.44  3.72  

16 4.84  19.14  10.36  18.59  12.91  6.94  8.07  15.31  3.84  

17 4.91  20.04  10.20  17.93  13.38  7.19  7.93  14.40  4.02  

18 5.00  20.72  10.02  17.22  13.78  7.48  7.86  13.66  4.25  

19 5.15  21.17  9.85  16.52  14.10  7.80  7.85  13.03  4.54  

20 5.36  21.43  9.67  15.85  14.35  8.13  7.87  12.50  4.85  

∞ 11.45  18.89  7.48  14.10  11.35  9.25  9.82  10.88  6.77  
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Table 1.5 Forecast Error Variance Decomposition (continued) 

PS Forecast Error Variance Decomposition (Percentage) 

 GDPQ PGDP PCOM FF NBR TR M2 PH PS 

1 4.04  1.69  4.57  2.52  1.10  3.93  1.02  1.88  79.26  

2 6.52  3.04  6.65  4.00  2.72  3.35  1.48  2.05  70.19  

3 6.28  5.84  7.27  4.21  4.95  3.37  2.16  2.35  63.57  

4 6.14  9.15  8.11  5.08  5.12  3.60  2.71  3.63  56.45  

5 6.02  12.45  8.57  5.35  5.40  3.96  2.88  4.77  50.59  

6 6.11  15.13  8.31  5.59  5.44  4.27  3.03  5.60  46.51  

7 6.34  16.76  8.22  5.77  5.53  4.48  3.20  6.43  43.27  

8 6.64  17.80  8.14  5.92  5.66  4.69  3.38  7.12  40.66  

9 7.04  18.44  8.15  6.02  5.85  4.89  3.53  7.59  38.49  

10 7.42  18.82  8.29  6.13  6.03  5.01  3.70  7.92  36.69  

11 7.75  19.10  8.42  6.23  6.15  5.08  3.89  8.19  35.20  

12 8.02  19.31  8.57  6.31  6.23  5.13  4.10  8.35  33.97  

13 8.23  19.45  8.71  6.39  6.29  5.18  4.33  8.46  32.96  

14 8.37  19.55  8.81  6.49  6.33  5.24  4.56  8.58  32.07  

15 8.46  19.62  8.88  6.59  6.37  5.32  4.81  8.68  31.28  

16 8.54  19.65  8.95  6.66  6.41  5.40  5.08  8.77  30.54  

17 8.61  19.64  9.00  6.73  6.46  5.48  5.39  8.85  29.84  

18 8.68  19.61  9.03  6.78  6.53  5.58  5.72  8.92  29.16  

19 8.74  19.56  9.05  6.81  6.60  5.69  6.08  8.97  28.51  

20 8.81  19.50  9.04  6.84  6.69  5.80  6.46  9.00  27.86  

∞ 11.67  18.91  7.99  8.43  8.39  8.03  10.21  9.34  17.03  

 

 


