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I. Introduction 

 The durability, fixity and heterogeneity of dwellings imply that transactions costs are 

significant in the housing market.  In comparison to financial markets, and in comparison to the 

markets for most consumer goods, housing purchases require costly search to uncover the prices 

and attributes of commodities.  Given the many frictions associated with the purchase of 

housing, it is hardly surprising that observed price behavior deviates from that predicted by 

simple models of economic markets.  Inertia in the price adjustment process, either in aggregate 

prices (Case and Shiller, 1989, Hosios and Pesando, 1991) or in individual house prices 

(Englund, et.  al., 1999, Hill, et. al., 1999), is widely reported.  This is often regarded as evidence 

of housing market inefficiency (eg. Case and Shiller, 1990). 

 But in this geographical market, price signals exist in space as well as time.  Many of the 

features which can lead to slow diffusion in the time domain may have analogous effects over 

space.  Price information diffuses over space as well as time, and information costs alone can 

cause prices to deviate from random fluctuations. 

 This paper examines price discovery in a spatial market using a body of data almost 

uniquely suited to the analysis.  We examine the prices of condominium dwellings in Singapore 

using all sales reported in the entire country during an eleven-year period.  Multiple sales of the 

same condominium unit are observed, and all dwellings with market transactions are geocoded.  

We develop a model of price diffusion, and we incorporate a more general and more appropriate 

structure of the price discovery process at the level of the individual dwelling. 

 The literature on price discovery in housing markets is substantial.  Following Case and 

Shiller (1989), others have documented predictable returns in housing markets by demonstrating 

that time series estimates of aggregate prices exhibit inertia in percentage changes (Guntermann 
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and Norrbin, 1991; Gatzlaff, 1994; and Malpezzi, 1999).  We develop an explicit model of the 

spatial as well as temporal dependence of housing prices to evaluate the importance of these 

factors in affecting the course of individual housing prices.  We compare the properties of 

aggregate housing price indexes and returns computed from our more general model with 

indexes computed from conventional models.  We find that when aggregate investment returns 

are estimated from models which require that housing prices follow a random walk and that they 

be spatially independent, they are strongly predictable.  However, when aggregate returns are 

estimated from more general models permitting mean revision and spatial correlation, 

predictability in aggregate investment returns is completely absent.  We show that this arises 

from the illiquid nature of housing transactions and from persistent forecast errors in aggregate 

housing returns.  The latter arises from inadequate treatment of correlation among the returns to 

housing investment over time and space. 

 We then analyze the economic implications of these statistical findings for investment in 

housing markets.  In particular, we simulate the investment outcomes for an investor fully 

informed about spatial and temporal dynamics with the outcomes for an uninformed investor.  

Presumably, better information about housing market dynamics will lead to better investment 

performance in the housing market.  We find that the investor with better knowledge of price 

diffusion over time and space outperforms the uninformed investor, capitalizing on this 

informational advantage.  However, her superior performance appears to be bounded by 

relatively short holding periods and low transactions costs. 

 Section II develops a general model of housing prices that supports explicit tests for the 

spatial and temporal pattern of price movements.  This section links our model to the widely 

employed method for measuring housing prices proposed more than forty years ago by Bailey, 



 3
 

Muth, and Nourse (1963), as well as its subsequent extensions (e.g., Case and Shiller, 1987).  

The data are described tersely in Section III.  Our empirical results are presented in Sections IV, 

V, VI and VII. We test for random walks in space and time against the alternative of mean 

reversion, and we examine the link between pricing deviations at the individual level and 

aggregate price movements.  We reconcile the puzzle of autocorrelated estimates of prices and 

returns. We also investigate investor behavior and housing market illiquidity in some detail.  

Section VIII is a brief conclusion. 

 

 II. A Micro Model of House Prices 

 The objects of exchange in the housing market are imperfect substitutes for one another.  

Indeed, dwellings with identical physical attributes may differ in market price simply because the 

price incorporates a complex set of site-specific amenities and access costs.  But few dwellings 

have identical physical characteristics; thus comparison-shopping is more difficult and more 

expensive than in most other markets. 

 Moreover, housing transactions are made only infrequently, so households must 

consciously invest in information to participate in this market.  As a result, the market is 

characterized by a costly matching process.  Market agents, buyers, and sellers are 

heterogeneous, and they differ in information and motivation; commodities are themselves 

heterogeneous.  Consequently an observed transaction price for a specific unit may deviate from 

the price ordained in a simpler environment. 

 Buyers, sellers, appraisers, and real estate agents estimate the “market price” of a 

dwelling by utilizing the information embodied in the set of previously sold dwellings.  The 
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usefulness of these sales as a reference depends upon their similarity across several dimensions: 

physical, spatial, and temporal.  Inferences about the “market price” of the dwelling can be 

drawn only imperfectly from a set of past sales, because dwellings differ structurally, enjoy 

different locational attributes, and are valued under different market conditions by different 

actors over time.  Because dwellings trade infrequently, the arrival of new information about 

market values is slow.  From an informational standpoint, the closest comparable sale across 

these various dimensions may be the last sale of the same dwelling.  Alternatively, the most 

comparable sale may be the contemporaneous selling price of another dwelling in close physical 

proximity.    

 An attempt to uncover the market value of a dwelling is further complicated by the fact 

that a sales price is not only a function of observable physical characteristics, but also of 

unobserved buyer and seller characteristics such as their urgency to conclude a transaction (Quan 

and Quigley, 1991).  For any given sale, all that is known is that an offer was made by a specific 

buyer that was higher than a specific seller’s reservation price.  

 We develop a model with spatially and temporally correlated errors in a repeat sales 

framework.  Innovation processes over time are assumed to be continuous, but sales occur  

sporadically.  At any point in time, the prices of houses are dependent over space.  In the 

determination of the price of a house, the weights attributable to neighboring houses depend 

upon their proximity to the house. But the prices of neighboring houses are also observed only 

infrequently. 

Let the log sale price of dwelling i at time t be  

(1)        itittit eQPV ++= ititt eXP ++= β , 
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where Vit is the log of the observed sales price of dwelling i at t, and Pt is the log of aggregate 

housing prices.  Qit is the log of housing quality, and can be parameterized by itX , the set of 

housing attributes and by a set of coefficients, β , which price those attributes.  If a sale is 

observed at two points in time, t  and τ , and if the quality of the dwelling remains constant 

during the interval, then 

(2)        ( ) ττττ β iitiittiit eeXXPPVV −+−+−=−  

                          ττ iitt eePP −+−= . 

With constant quality, (2) identifies price change in the market.  Equation (2) also shows that 

return on an individual dwelling can be decomposed into an aggregate return ( )τPPt −  and an 

idiosyncratic return ( )τiit ee − . 

Let the idiosyncratic part of the house price (or the error term), eit, consist of two 

components that are realized for each individual dwelling at the time of sale: itη , an 

idiosyncratic innovation without persistence; and itε , an idiosyncratic innovation with 

persistence, ittiit μλεε += −1, .  In addition, assume that the value of any particular dwelling 

depends also on innovations that occur to other dwellings contemporaneously.  We assume this 

spatial correlation depends on the distance between units.  

(3)     it

N

j
jtijit ewe ξρ += ∑

=1
itit

N

j
jtij ew ηερ ++= ∑

=1
itittijt

N

j
ij ew μηλερ +++= −

=
∑ 1,

1
, 

where ijw  is some function of the distance between unit i and j and N is the number of dwellings 

in the economy.  Let E ηitη jt( )= 0 and E εitε jt( )= 0 , E ηit
2( )= ση

2  and E μit
2( )= σ μ

2 .  The value of a 

particular dwelling depends, not only on its own past and contemporaneous innovations, but also 

on innovations of other dwellings, past and contemporaneous.   
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In vector notation, expression (3) is   

 (4)      e t = ρWe t +ξt ,  

where et is a vector of ite  for all the dwellings at time t, W is a weight matrix, some measure of 

the distance between dwellings, and ξ t  a vector of itittiit μηλεξ ++= −1, , for all dwellings.  By 

solving for te  and taking the difference between two sales at times t and s, we have 

(5)       e t − es = I − ρW( )−1 ξt −ξs( ). 

The variance-covariance matrix of (5) is  

(6)        ( )( ) ( ) ( )( ) ( ) 11 EE −− −⎥⎦
⎤

⎢⎣
⎡ ′−−−=⎥⎦

⎤
⎢⎣
⎡ ′−− WIWIeeee ρξξξξρ stststst  . 

Equations (5) and (6) indicate that when the prices of dwellings are autocorrelated over time and 

space, the price of any unit in the market at any period will be predictably related to those of 

other units at  other periods.   

Transactions on dwellings occur only infrequently.  Consider the covariance in errors 

between a dwelling i sold at t and s and another dwelling k sold at τ and ς , 

E eit − eis( ) ekτ − ekς( )[ ] .  Let ( )( ) ⎥⎦
⎤

⎢⎣
⎡ ′−−=Ψ ςτ ξξξξ stE  and Π = I − ρW( )−1.  Thus,     

(7) ( )( ) [ ] [ ]Nkksit πππΨΨΨ

π

π
π

ΠΨΠeeee LL
M 21Ν21

1

2

1

E ��

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

==⎥⎦
⎤

⎢⎣
⎡ ′−− ςτ  

The elements of this expression are, 

(8) E eit − eis( ) ekτ − ekς( )[ ]= ′ π i Ψ π k . 

Now consider an element of the covariance matrix, Ψ.  Note that 



 7
 

(9)        E ξ itξ jτ( )= λ t−τ σ μ
2

1− λ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + I t = τ( )ση

2 ,  if ji = , 

                             0=      , otherwise, 

where ( )⋅I  is an indicator function.  For sales of a given dwelling at time t, s, τ  and ς , 

(10)      ( )( )[ ] ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+−−=−− −−−−

2

2

1
E

λ
σ

λλλλξξξξ μςτςτ
ςτ

sstt
iiisit  

                                   ( ) ( ) ( ) ( )[ ] 2
ησςτςτ =+=−=−=+ sIsItItI . 

Therefore, the variance-covariance matrix is  

(11)      Ψ = E ξ t −ξs( ) ξτ −ξς( )′⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = E ξ it −ξ is( ) ξ iτ −ξ iς( )[ ] × I. 

Finally, the variance-covariance matrix of innovations between a dwelling i sold at t and s and 

another dwelling k sold at τ and ς  is  

(12)      E eit − eis( ) ekτ − ekς( )[ ]= ′ π i Ψ π k = ′ π i E ξit −ξis( ) ξiτ −ξiς( )[ ]× I{ }πk  

                                    = λ t−τ − λ t−ς − λs−τ + λs−ς( ) σ μ
2

1− λ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
+  

                                        ( ) ( ) ( ) ( )[ ] kisIsItItI ππ′
⎭
⎬
⎫

=+=−=−= 2
ησςτςτ . 

Equation (12) indicates how the variance-covariance matrix of residuals from the regression 

specified in (2) can be used to identify the temporal and spatial components of house price 

persistence, λ  and ρ , respectively.  Identification requires observing at least two transactions for 

each dwelling and observing the distance of each dwelling from all others in the market. 

 Note that this model of housing prices specializes to that of Bailey, Muth and Nourse 

(1963) when 0== ρλ , to that of Case and Schiller (1987) when 1=λ , 0=ρ  and to those of 
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Hill, et. al., (1997) and Englund, et. al., (1999) when 0=ρ .   When, 0=ρ  so that no spatial 

correlation is present, the variance of the return on an individual dwelling between t and s is  

(13) var Vit −Vis( )=
2σ μ

2

1− λ2 1− λt−s( )+ 2σ η
2, 

which is concave in the transaction interval. 

 In Case and Shiller’s (1989) model, with 1=λ  and 0=ρ , the error term in individual 

housing price follows ititite ηε +=  where ittiit μεε += −1, .  Then, the variance of the return on an 

individual dwelling is 

(14)      var Vit −Vis( )= t − s( )σ μ
2 + 2σ η

2 . 

The variance increases linearly with the length of the time interval between transactions.  

Thus, with mean reversion in the data, a model based on a random walk assumption 

underestimates the return variances for housing transactions over short intervals, but 

overestimates the variances for housing transactions over long intervals.1  The housing price 

indexes published by U.S. government agencies (e.g., the OFHEO price indices for metropolitan 

areas) are based upon the repeat sales model developed above with λ=1 and ρ=0.  But the 

computation procedures do include a second order term in the variance estimation (See Abraham 

and Schauman, 1991, Calhoun, 1996), so that the variance increases at a diminishing rate with 

the time interval between sales.  

(14’)     var vit − vis( )= t − s( ) σ μ
2 + t − s( )2 σ μ

2 + 2ση
2 . 

 

                                                 
1 This is because the return variance is concave when the dwelling price follows a spatio-temporal correlation 
process (or a mean reverting process). 



 9
 

III.      Data 

The analysis below is based upon all private condominium sales in Singapore during an 

eleven-year period.  Non-landed properties (apartments and condominiums) account for roughly 

two-thirds of the Singapore housing stock, and units in condominiums account for almost forty 

percent of private residential housing in land-scarce Singapore.2 

The data include all transactions involving condominium dwellings during the period 

from January 1, 1990 to December 31, 2000.3  An extensive set of physical characteristics of the 

dwellings is recorded.  The date of the sale is recorded as well as the date of occupancy.  In 

addition, the address, including the postal code, is reported.  The postal code identifies the 

physical location – the block of flats or, quite often, the specific building.  A matrix of distances 

among Singapore’s fifteen hundred postal codes permits each dwelling to be located spatially.  

The data set includes transactions among dwellings in the standing stock, sales of newly 

constructed dwellings, and presales of dwellings under construction (where sales may be 

consummated several months before the date construction is actually completed). 

The panel nature of the data permits us to distinguish dwellings sold more than once, and 

this identifies the models specified in Section II.  By confining the sample to dwellings in 

multifamily properties, we eliminate the types of dwellings for which additions and major 

renovations are feasible.  The sample of multifamily dwellings is thus less likely to include those 

for which the assumption of constant quality between sales (see equation 2) is seriously violated. 

Singapore data offer another advantage in estimating the model of housing prices, 

namely a spatial homogeneity of local public services (e.g., police protection, neighborhood 

schools), especially when compared to cities of comparable size in North America.  During the 

                                                 
2 See Sing (2001) for an extensive discussion of the condominium market in Singapore. 
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decade of the 1990s, there was no discernible trend in the quality of neighborhood attributes of 

the bundle of housing services.4 

Table 1 presents a summary of the repeat sales data used in the empirical analysis 

reported below.   There are several points worth noting.  First, confirming the infrequency of 

housing transactions, the number of dwellings sold more than once is less than twenty percent of 

the population of dwellings sold during the eleven-year period.  Only three percent of the 52,337 

dwellings were sold more than twice in the eleven-year period.  

Second, the average selling prices tend to be higher for dwellings sold more frequently.  

The rate of appreciation is also higher.  On average, dwellings sold five times appreciate almost 

twice as fast as dwellings sold only twice.  For the dwellings sold more frequently, price 

appreciation tends to be more volatile.  Transactions involving high-turnover dwellings are 

apparently riskier, but this risk is compensated by higher returns. 

Third, the intervals between sales are longer for dwellings sold infrequently.  In part, this 

is an artifact of the fixed sampling framework.  For presold dwellings, the average elapsed time 

between sale and completion of construction is largest for those sold least frequently. This is 

inconsistent with the popular belief in Singapore that presales are associated with “speculation” 

in the housing market. 

Fourth, there are some differences in the characteristics of the dwellings sold more 

frequently.  They tend to be larger in area, contain more rooms, and they are more centrally 

located.  Their transit access is similar to that of dwellings sold less frequently. 

                                                                                                                                                             
3  The data have been supplied by the Singapore Institute of Surveyors and Valuers (SISV) which gathers 
transactions data from a variety of sources including legal registration records and developers’ sales records. 
4 One possible exception to this may be accessibility, where improvement in the transport system and its pricing may 
have altered the workplace access of certain neighborhoods. 
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The data on condominium sales supports a price index regression model of the form of 

equation (2),  

(15)     isitisitissittisit eeDPDPVV −+γκ−γκ+−=− , 

where Dij is a variable with a value of 1 for the month j in which condominium i is sold and zero 

in other months, and Pj is the estimated coefficient for this variable.  There are 132 of these time 

variables, one for each month between 1990 and 2000.  If dwelling i has been presold, itκ  is the 

time interval between the transaction date and the completion of construction.  For dwellings 

sold after completion of construction, itκ  is zero.  Thus, the estimated coefficient γ  measures 

the monthly discount rate for presold dwellings, i.e., the discount for unrealized service flows 

from dwellings which have been purchased but which are not yet available for occupancy.  The 

purchase of a dwelling before completion, or even before construction, is not unique to 

Singapore and has become rather common in condominium sales, for example in vacation 

properties in the U.S. Pre-sale contracts provide liquidity to developers and insurance to 

consumers against unanticipated price increases in the market. 5  Of the 11,883 pairs of 

transactions noted in Table 1, 305 consist of presale pairs.  For another 5,204 pairs, the first sale 

was made sometime before the property was completed. 

 

IV. The Diffusion of House Price Innovations 

We assume the error terms in equation (3), itη  and itμ , are normally distributed.  The log 

likelihood function for the observed sample of condominium sales is thus 

(16) ( ) ( ) ( ) ( ){ }δΣδΣ 1122 log
2
12log

2
,,,,,Llog −− ′−+−= �πσσρλγ μη

TP ,  



 12
 

where Σ = ′ π i Ψ ′ π k[ ] and δ = Vit −Vis − PtDit − PsDis +γκ it −γκ is[ ].  We estimate the parameters, λ, ρ, 

γ, Pt, ση and σμ, by maximizing the log likelihood (16), based on 11,883 observations of repeat 

sales of 10,288 dwellings sold two or more times.  In (3), the weights are assumed to be 

inversely related to distance, up to 250 meters.6  The influence of any transaction extends for 

roughly 200,000 square meters in the surrounding area. 

Table 2 reports the estimated error structure when it is assumed that the price of an 

individual dwelling follows a spatio-temporal correlation process, a mean reverting process, and 

a random walk process, respectively.  In the most general model, Column A, the estimated serial 

correlation coefficient, ρ, implies a large persistence in individual housing prices, with a half life 

of more than six months.  The estimated spatial correlation coefficient, 0.55, implies a slow 

spatial diffusion.  These coefficients are quite precisely estimated; the estimated value for ρ, 

0.89, is significantly different from one by a wide margin.  The estimated coefficient for γ, the 

discount for the period between sale and dwelling completion (for presold units), is 14 basis 

points.  This represents a 1.7 percent annual discount for a dwelling unit sold today for 

occupancy a year hence.  The magnitude of the discount is not trivial. During this period 

aggregate housing prices rose, on average, by 0.4 percent monthly; thus, the discount for presold 

units reduced the net price appreciation for consumers by one third.  

The second column reports parameter estimates for the model when individual house 

prices are allowed to follow a mean reverting process, but with ρ assumed to be zero.  The 

estimated serial correlation coefficient, λ, is 0.72, somewhat smaller than the estimate in Column 

                                                                                                                                                             
5 Presales are widely employed in China, for example, to finance development of new housing estates. See Deng and 
Lui (2008). 
6 This expedites computation of (16) by making the Σ matrix sparse.  When 0≠ρ , the Σ matrix is a full square 
matrix with a length equal to the number of observations.  However, with some cutoff, the W matrix is sparse.  
Since π i is the i-th row of I − ρW( )−1 , when W is sparse, most of the elements of π i will be zero.  This reduces  
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A.  Likelihood ratio tests reject a random walk in house prices ( 1=λ ) and serially uncorrelated 

house prices ( 0=λ ) by wide margins, =χ2 16,564, and =χ2 1,670.6 respectively.  The 

estimated value of λ  suggests that the half-life of a one-unit shock to housing prices is about two 

months. 

The third column reports parameter estimates for a model in which individual house 

prices are assumed to follow a random walk process without spatial autocorrelation. Following 

OFHEO, the table reports the model with a quadratic term, as in (14’), which also fits the data 

better.  These results suggest that the variance in house prices increases with transaction intervals 

up to 37 months. 

Figure 1 presents estimated monthly price indexes derived from the three models 

reported in Table 2.  The estimated price index from the model with a mean reverting process 

and the index from the model with a spatio-temporal correlation process appear to move quite 

closely.  The estimated price index from the random walk model is consistently lower than that 

implied by the other two models.  

 

V. The Course of Housing Prices, Investment Returns and their Predictability 

A.  Predictability of Housing Returns 

Although Figure 1 reports similar patterns for the course of housing prices of Singapore 

dwellings, the investment returns implied by these aggregate indices are quite different.  Ignoring 

transactions costs and leverage, the return in any period, Rt, is the change in the asset value plus 

the dividend (i.e., the rental stream, St, enjoyed during the period). 

                                                                                                                                                             
computation time considerably.  We experimented with several assumed cutoff values. They have no effect upon the 
results. 
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(17)       ,1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= −

− t

t

t

tt
t I

I
P

SP
R  

where tI  is an index of the cost of living, less housing. 

Figure 2 uses the non-housing component of the CPI for Singapore to chart the course of 

real investment returns in logarithms during the eleven-year period, from the three models.7  

Although the mean returns differ by less than five basis points per month, the patterns of 

estimated returns and the estimated volatility from the three models are strikingly different.   

Table 3 reports tests of the predictability of estimated monthly returns for the three 

indexes.  We investigate the forecastability of returns based upon one-month and three-month 

lags.  There is a consistent disparity in the predictability of investment returns implied by models 

based upon the three price generating processes.  When spatial and serial correlations are 

recognized in the estimation of housing prices (Column A), there is no evidence that aggregate 

returns to housing price investment are predictable.  However, when housing returns are 

estimated from a mean reverting process without spatial correlation (Column B), standard tests 

reject the null hypothesis of no predictability in returns.  Finally, when returns are estimated 

from the conventional random walk model, they are strongly predictable.  The p-values for both 

tests are less than 0.5 percent. These results are consistent for both a one-period and a three-

period distributed lag.8 

The most striking feature of the table is that the predictability of the aggregate housing 

returns gradually disappear as restrictive assumptions on the individual housing price generating 

process are relaxed.  When the assumption of the random walk with no spatial diffusion is 

                                                 
7 We assume the implicit rent on owner-occupied condominiums, tt PS 01.0=  (See Englund, et. al., 2002). 
8    These results are also apparent in more aggregated, quarterly price index models, not presented here. Indeed, the 
nonparametric kernel-based test (Hong, 1997) shows that the result does not rely upon any parametric specification 
of lag structure. 
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maintained, p-values of the test statistics are very small.  When the random walk assumption is 

relaxed (but spatial diffusion is not allowed), p-values are larger; the null hypothesis of no 

predictability in aggregate housing returns is still rejected at least for some of the tests.  When 

returns on individual dwellings are allowed to be dependent over time and over space, p-values 

of the test statistics are all large enough that the null hypothesis of no predictability in aggregate 

housing returns is not rejected in any of the tests.  This implies that the well known predictability 

in housing returns may arise simply because the underlying price index is inaccurately estimated 

due to restrictive assumptions about the price generation process.   

Why does the aggregate return, when estimated with the random walk and no spatial 

diffusion assumption, appear to be significantly predictable while it exhibits no predictability 

when it is estimated without such restrictions?   

To understand this, let ,ˆ
ttt RR ζ+= ∗  where ˆ R t  is a regression-based estimate of the 

aggregate return, ∗
tR  is the true (unobserved) return, and tζ  is the estimation error.  Consider a 

regression of the estimated aggregate return on its lagged term, ttt RR νββ ++=+
ˆˆ

101 .  The 

AR(1) coefficient, 1β , is computed as 

(18) 
( ) ( )

( ) ( )tt

tttt

R
RR

ζ
ζζ

β
varvar

,cov,cov 11
1 +

+
= ∗

+
∗
+

∗

 

For the autocorrelation coefficient, 1β , to be zero, it is required that: the true aggregate 

return be unpredictable, ( ) 0,cov 1 =∗
+

∗
tt RR ; and the estimation error be not persistent, 

( ) 0,cov 1 =+tt ζζ . Conversely, a non-zero estimate of the AR (1) coefficient, ,1β  need not imply 

predictability in returns; it can arise from persistent forecast errors. This implies that any  finding 
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that housing prices and housing returns are predictable may arise, simply by construction, if 

( )1,cov +tt ζζ  is not equal to zero.  

The properties of tζ  determine estimated autocorrelation coefficient, 1β .    Suppose we 

have a sample of M houses transacted in each of T periods.  If ( ) 0,cov 1 =∗
+

∗
tt RR , it can be shown 

that  

          ( )
( ) ( ) ( )

2
22
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2
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                      where ( ) 01 →+ttE ζζ  for large M. 

Equation (19) shows that ( )1β̂E  will converge to zero only if T is large enough and M is also 

large enough.  The convergence of ( )1+ttE ζζ  depends on the spatial structure of the housing 

market, and convergence is slow when prices of individual dwelling units are more highly 

correlated.9  

We can evaluate the impacts of the sample sizes of T and M by simulation.  Using 

Singapore’s spatial structure, the previously estimated parameters, and assuming unpredictable 

aggregate returns, 01 =β , we simulate the Singapore private condominium market in two 

different dimensions, M and T.  First, we simulate the price of each house in the sample each 

month for ten years.  We then randomly select some fixed number of houses each month, 

reflecting an underlying liquidity level or “sales frequency.”  We use the sales so sampled to 

compute a repeat sales housing price index (Equation 2), incorrectly assuming a random walk 

                                                 
9 For example, when returns on individual dwelling units are not spatially correlated, its convergence speed is M1  .  
But when their prices are correlated, and their correlation is inversely related with distance, the convergence speed is 

( ) MMlog . 
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and no spatial diffusion.  These estimates are used to compute the index-based returns, the first 

order autocorrelation coefficient of housing returns, 1β̂ , and its t-ratio.  We construct the base 

case of one percent sales probability, i.e., for each month one percent of total dwellings are 

randomly selected for trading.  Then we extend the base case, first with a higher sales frequency 

of five percent, and second with a longer time series of fifty years and a one-percent sales 

frequency.  Note that these two cases will generate the same number of observations.     

Figure 3 summarizes these simulations, replicated 100 times.  The figure reports the 

distributions of the estimated coefficient ( 1β̂ ) and the corresponding t-statistics.  It reports three 

distributions, the first with one-percent sales frequency and monthly observations for ten years, 

the second with the one-percent sales frequency but monthly observations for fifty years, and the 

third with five-percent sales frequency and monthly observations for ten years. 

A sales frequency of one percent per month is much higher than the turnover rate 

observed in virtually all housing markets.10 A sales frequency of five percent per month is close 

to the turnover rate observed in the U.S. stock market.11 Thus, the one percent figure represents 

an illiquid market, and a five percent figure represents a very liquid market. 

 The probability distribution of 1β̂  with one percent sales frequency and 120 monthly 

observations is sharply skewed to the left, centered around -0.3, quite far from the true value of 

0.  The distribution of t-statistics shows that usual t-tests are highly misleading.  Among the 100 

simulations, there are only fifteen instances where the t-statistic is larger than -2.  This indicates 

that when the housing market has low sales frequencies, even though aggregate housing returns 

are not predictable, it is very likely that the estimated returns will be predictable.  This apparent 

                                                 
10 The turnover rate in the Singapore market during the period was about 0.34 percent per month.  The turnover rate 
for U.S. housing markets has averaged about 0.25 to 0.33 percent per month during the recent past.  See Duca, 2005. 
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predictability persists for low values of the monthly sales frequency, and it is not eliminated until 

the monthly turnover rate reaches five percent level.  When the sales probability is five percent, 

the distribution is substantially further to the right, and the center of the distribution is quite close 

to zero; the t-statistics are between -2 and 2 for 90 instances out of 100, and the null hypothesis 

of no predictability is rarely rejected using conventional tests.   

However, when the sample period extends to fifty years (five times the original ten years) 

with the sales frequency kept at one percent, the results are quite different.  The distribution 

moves to the right only by a small margin, and the center of the distribution is still well below  

-0.2.  At the same time, dispersion of the distribution is reduced.  In this instance, a small change 

in mean and a large reduction in variance shifts the distribution of t-statistics further to the left.   

Therefore, if the sales probability remains low, but the sample period is extended, the analyst is 

considerably more likely to reject the null hypothesis of no predictability.  Indeed, there is no 

instance in the 100 simulations where the t-statistics is larger than -2.   

This simulation indicates that it is important it is to have a large cross section of 

observations (M) to conduct a meaningful test of the predictability of aggregate returns.  At the 

same time, the simulation also demonstrates that it is difficult to test for the predictability of 

returns in the housing market -- since the low frequency of housing sales is not due to inadequate 

data collection, but arises rather as an inherent feature of housing markets. 

 

VI. Investment Performance 

The results in Table 3 indicate that the aggregate housing return ( 1−−= ttt PPR ) is not 

predictable at the level of the aggregate housing index, but the idiosyncratic housing return 

                                                                                                                                                             
11 The weekly turnover rate of NYSE and AMEX during 1997-2001, reported in Cremers and Mei (2004), was 
1.43%. 
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[ ] [ ]( )111 −−− −−−=− ttitititit PPVVee  is still predictable.  Let φ  denote the serial correlation of 

monthly returns in an individual dwelling.  It is straightforward to show, from (12), that 

(21) φ = −
1− λ( )σ μ

2 + 1+ λ( )σ η
2

2σ μ
2 + 2 1+ λ( )σ η

2 . 

For the Singapore housing market, the results in Table 3 indicate that an individual 

housing return is substantially persistent, and its monthly serial correlation is -0.29.  This has 

significant implications for investment in the local housing market. A better knowledge of the 

price process for individual dwellings can lead to superior investment decisions in two ways.  

First, improvement may arise through better estimates of aggregate housing price trends.  

Different assumptions about the price generating process have small effects on the large-sample 

properties of slope coefficients, but, as shown above, they do have substantial effects on the 

efficiency of the estimated aggregate returns when transaction frequencies are low.  An investor 

who relies on random walk and no spatial diffusion would conclude that the aggregate housing 

return is predictable.  Second, improved performance will arise from basing investment decisions 

on more complete information.  For example, when housing prices are spatially and serially 

correlated, knowledge of past and present innovations in nearby dwellings provides information 

valuable for predicting the future course of prices for any house that the investor considers for 

investment.   

The empirical issue is whether these signals are economically important. 

To explore this, we conduct a second simulation of investor activity which utilizes the 

structure of a hypothetical “Grid City.”  In this hypothetical city, dwellings are located on a 

square grid with 41 points on a side, and a house at each interior point is separated by 50 meters 

from its four nearest neighbors.  Assume that the price of each dwelling follows the spatial and 
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temporal correlation process, as reported in Table 2 Column A (i.e., ρ =0.55 and λ =0.89).  We 

simulate the price of each house in the Grid City each month for ten years.  In the simulation, the 

true aggregate housing return is not predictable, 01 =β .   We then analyze the results of 

investment rules which depend upon forecasts of future housing returns.  The investment rule 

applied here is quite simple. Given assumptions on the price process and the consequent 

parameter values governing the processes, an investor makes forecasts for housing returns using 

all the available transactions information.  The investor is instructed to “buy” if the forecasted 

return is greater than some preset threshold.  When the investor decides not to buy, she is 

assumed to invest in some alternative asset that generates a risk free return.  The threshold may 

be interpreted as some known transactions costs in the housing market.  We set the risk free rate 

equal to zero for these simulations. 

Transactions costs vary with housing market characteristics, financial market 

characteristics and tax systems, so it is difficult to specify a precise level.12 We use 0 percent, 6 

percent and 12 percent as investment thresholds, comparable with a wide range of plausible 

transactions and opportunity costs.13   

The simulation of housing returns is performed in a similar manner to the previous 

section.  The investment holding period is set at 24 months, 48 months, and 96 months. We 

assume that the investor observes the market and collects transactions information during an 

initial observation period.  We set the observation period at 24 months, 48 months, 72 months 

and 96 months.  For simplicity, we concentrate on the dwelling unit located at the center of the 

grid.  A price for each of 1,681 dwelling units is generated for every month of the observation 

                                                 
12 The ex post opportunity cost of housing investment in Singapore during the period 1990-2000 was in any case 
quite low. (Annual stock market returns averaged 0.1 percent; Treasury bill yields were about the same.) 
13 For a more systematic examination of likely transactions costs in real estate, see Söderberg (1995) or Quigley 
(2002). 
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period and the holding period.   From the simulated prices, a sample of houses is selected each 

month with the preset sales probability of one percent.  Using the observations on the houses in 

the sample, together with her estimates of the parameters (λ and ρ), the investor makes a price 

forecast for the next 24, 48, or 96 months.  If the forecasted return exceeds the threshold, she will 

invest.  The price at the end of the holding period is then used to evaluate the return on her 

investment.  We consider two investors with differing information.  The fully informed investor 

is armed with the full knowledge of housing price dynamics which follows the correlation 

process reported in Table 2, column A, ρ=0.55 and λ=0.89.  The uninformed investor forms her 

own forecasts in a similar manner.  However, she assumes ρ = 0  and λ =1, and does not 

recognize the serial and spatial correlation of prices.  It is assumed that the transactions cost is 

paid when the house is sold, so the net performance of the investment is the capital gain less 

transactions cost.   

Table 4 summarizes the forecast performance of the two investors.  The table reports the 

average percent difference between the true price at the end of the holding period and the 

forecast made by the two investors.  Each investor uses the information available in the 

observation period to make a forecast of the price at the end of the holding period.  The forecast 

is compared to the actual price, and the average (absolute) percent deviations are reported in the 

table.  The table reports the results of 2500 replications of this comparison using an underlying 

sales probability of one percent.   

Clearly the percentage errors are larger when the forecast is for prices further in the 

future (that is, when the assumed holding period is longer).  The percentage errors are likewise 

smaller when the forecast is based upon more information (that is, when the forecasts are based 

upon a longer period of observing property sales).   
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The results clearly establish that the informed investor makes better forecasts of future 

prices.  For 15 out of 16 comparisons, the average error in the forecasts is less for the informed 

than for the uninformed investor.  The difference is larger for shorter holding periods, but this 

advantage extends up to a holding period of eight years. 

The economic significance of the small, but systematic, advantage of the informed 

investor in forecasting is analyzed in Table 5.  Table 5 reports the increased returns, in 

percentage points, to the informed investor as a function of the observation period and the 

holding period.  The average increased return to the informed investor is reported for 2500 

replications with an underlying sales frequency of one percent.  Results are reported for 

transactions costs of zero, six, and twelve percent.  

With no transactions costs, the informed investor earns a return that is about 200 basis 

points higher than the uninformed investor.  Even with high transactions costs, the fully informed 

investor outperforms the uninformed investor by one to four percentage points.  Only when 

transactions costs are very high (twelve percent) and holding periods are very short (six months), 

does the uninformed investor perform almost as well as the informed investor.  

 

VII.     Conclusion 

For the past fifteen years, it has been widely accepted that investment returns in housing 

are predictable.  It is also widely believed that, due to high transactions costs, it is difficult to 

take advantage of this predictability.  This paper develops a model of housing price 

determination that considers spatial correlation and serial correlation concurrently.  Using 

comprehensive data on all Singapore condominium transactions, we estimate the extent of 

predictability in aggregate housing returns and in individual housing returns.  The analysis 
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supports a general model of price discovery, rejecting a simple random walk model as well as a 

model with the mean reversion without spatial correlation.  Importantly, when the appropriate 

error structure is taken into account, estimated aggregate housing returns are not predictable.  

Nevertheless, individual housing returns are still persistent -- that is, the housing return is only 

predictable at the level of the individual asset, not at the aggregate level.  In contrast, when the 

aggregate housing price index is estimated from a random walk model, the estimated aggregate 

housing return shows substantial predictability.  We show that this arises from the illiquid nature 

of housing transactions and the persistence of forecast errors in aggregate housing returns.  The 

latter is due to spatial and temporal correlation in individual housing returns.  Through extensive 

simulations, we also show that the pseudo predictability does not depend on some particular 

features of urban spatial structure.    

Our simulation results suggest that an investor with enough information about the 

individual housing price process can, in fact, enjoy higher returns to housing investment.  Our 

simulation results show that the investment performance of the fully informed investor is indeed 

superior to that of the naïve investor, even though her performance is bounded by holding 

periods and transactions costs.   
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Table 1. Summary of Sales Data on Singapore Condominiums 

1990 – 2000 
 

   Price Average Interval  Distance toℵ     

Number 
of 

Times 
Sold 

Number of 
Dwellings 

Total 
Number 
of Sales 

Average* Average 
Appreciation+

Std of 
Appreciation++

Between 
Sales** 

Presale 
Interval  

Average   
Size  

Number 
of Rooms 

Nearest 
Subway 
Station 

CBD 

           
1 42,169 42,169 861   31.98 129.93 2.77 1.421 9.239 

2 8,791 17,582 913 0.52% 0.71% 47.77 8.48 137.44 2.74 1.437 8.577 

3 1,195 3,585 1,030 0.68% 1.13% 28.33 2.51 154.42 2.76 1.500 7.464 

4 190 760 1,087 0.73% 1.29% 20.88 1.53 159.51 2.63 1.383 6.838 

5 28 140 1,418 0.92% 1.53% 15.23 2.06 208.90 2.90 1.427 4.633 

6 4 24 1,129 0.86% 1.60% 15.85 0.00 187.40 2.80 1.362 6.296 

* Thousands of current Singapore Dollars 
** Number of months 
+ Average price appreciation between sales divided by average interval between sales in months. 
++ Standard deviation of price appreciation between sales divided by average interval  

 between sales in months. 
♦ Average number of months from sales to completion of construction of dwellings. 

 Average size of dwellings in square meters. 
ℵ Average distance in kilometers. 
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Table 2.  Estimated Error Structure and Price Dynamics, 
Singapore condominium 1990 – 2000. 

(t-statistics in parentheses) 
 
 

 A. General Spatial-
Temporal Process: 

  λ ≠ 1 and  ρ ≠ 0 

B. Mean Reverting 
Process:  

   λ ≠ 1 and  ρ = 0 

C. Random walk 
Process:  

 λ = 1 and  ρ = 0 

    
λ 0.8877 0.7170  

(287.84) (62.022)  
    
ρ 0.5512   

(713.29)   
    

ση 
0.0535 2.82E-05 0.1543 

(14.340) (0.0004) (6.0016*) 
    
σμ 0.0691 0.1214 0.0307 

(46.606) (53.760) (2.4826*) 
    

γ 0.0014 0.0009 0.0015 
(7.4748) (6.2087) (10.695) 

    

Squared Interval   -1.26E-5 
  (3.1868) 

    
Average of changes 

in  price index 0.00384 0.00437 0.00387 

    
Std. Dev. of changes in 

price index 0.03530 0.04471 0.05128 

    
Loglikelihood 1112.31 277.00 -142.32 

    
Mean Square Error 0.05770 0.05708 0.05727 

    
 
Note: Estimates are based upon maximizing log likelihood function in Equation (16).  The model also includes 
132 time variables, one for each month between 1990 and 2000. 
*: T-statistics are for the variances, not the standard deviations. 
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Table 3.  Forecastability of Investment Returns, 
Singapore Condominiums, 1990-2000 

(p-values in parentheses) 

t

n

i
itiot vRR ++= ∑ −

ˆˆ ββ  

 
 A. General Spatial-

Temporal Process: 

  λ ≠ 1 and  ρ ≠ 0 

B. Mean Reverting 
Process:  

   λ ≠ 1 and  ρ = 0 

C. Random walk 
Process:  

 λ = 1 and  ρ = 0 

    

One Month Lag:    

   1β  -0.0872 -0.1718 -0.2516 

   F-test for 01 =β  1.0395 
(0.3099) 

4.4974 
(0.0359) 

9.0974 
(0.0031) 

   Box-Ljung Test 0.9706 
(0.3245) 

3.9582 
(0.0466) 

8.4758 
(0.0036) 

    

  Three Month Lag:    

   ∑
=

3

1k
kβ  0.2324 0.0326 -0.1765 

 F-test for   
   0321 === βββ  

2.3508 
(0.0756) 

2.6531 
(0.0516) 

3.5673 
(0.0161) 

   Box-Ljung Test 4.6916 
(0.1958) 

7.0204 
(0.0713) 

12.0101 
(0.0073) 

    

Nonparametric Test:    

   Kernel-based test  
   by Hong (1997) 

0.8589 
(0.3904) 

1.5906 
(0.1117) 

4.2699 
(0.0000) 
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Table 4.  Difference in Forecasts by Fully Informed Investors and  
Uninformed Investors for Different Observation Periods and Holding Periods  

(2500 replications with sales probabilities of one percent per month) 
 
 

Observation 
Periods 

 Holding Period 

  6 month 24 months 48 months 96 months 

      

24 months Informed 15.85% 28.72% 46.68% 79.04% 
Uninformed 15.98% 28.54% 47.16% 82.48% 

      

48 months Informed 14.34% 22.26% 33.24% 51.92% 
Uninformed 15.68% 24.22% 34.16% 54.80% 

      

72 months Informed 13.91% 21.44% 28.92% 43.44% 
Uninformed 15.42% 23.88% 30.64% 46.00% 

      

96 months 
Informed 13.83% 20.96% 27.76% 40.80% 

Uninformed 14.96% 23.62% 30.12% 43.04% 

 
Note: Entries in the table represent the average (absolute) percent difference between the true price at the end of the 
holding period and the forecast made by the informed and the uninformed investor. 
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Table 5. Economic Advantage of Fully Informed Investor 
over Uninformed Investors in Percentage Points. 

(2500 replications with sales probabilities of one percent per month) 
 
A.  Transactions Cost:  0  
Observation 

Periods 
Holding Period 

6 month 24 months 48 months 96 months 

24 months 2.21% 1.96% 1.52% 0.96% 

48 months 2.89% 2.64% 2.16% 1.68% 

72 months 2.80% 3.20% 2.24% 1.20% 

96 months 2.42% 3.58% 2.08% 1.44% 

 
 
B.  Transactions Cost:  6 percent 
Observation 

Periods 
Holding Period 

6 month 24 months 48 months 96 months 

24 months 1.77% 2.52% 2.12% 1.20% 

48 months 1.68% 3.64% 2.28% 1.92% 

72 months 1.92% 4.36% 2.64% 1.52% 

96 months 1.57% 4.72% 3.32% 1.68% 

 
 
C.  Transactions Cost:  12 percent 
Observation 

Periods 
Holding Period 

6 month 24 months 48 months 96 months 

24 months -0.24%* 2.38% 2.36% 1.04% 

48 months 0.13%* 3.48% 2.60% 2.00% 

72 months 0.33% 4.30% 3.24% 1.84% 

96 months 0.20% 3.84% 3.60% 1.92% 

 
*: Statistically insignificant at 5%.  
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Figure 1. 
Singapore Condominium Price Indices* 

1990 – 2000 
 

 
 

Note: *The figure graphs the monthly index values ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

t

1j
jt PexpI  where the values of P are estimated from models reported in Table 2 

by maximizing the likelihood function in equation (16).   
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Figure 2. 

Monthly Returns to Investment in Singapore Condominiums 

1990 – 2000 
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Figure 3.   Empirical Distribution of AR(1) Coefficient and t-statistics 
With different sales probabilities, in Singapore private condominium market 

 

 
 
 
  


