Effects of U.S. Quantitative Easing on Emerging Market Economies

Saroj Bhattarai¹ Arpita Chatterjee² Woong Yong Park³

¹University of Texas at Austin ²University of New South Wales ³Seoul National University

Hong Kong Monetary Authority October 12, 2017

- ▶ With the short-term interest rate at the ZLB since late 2008, the Federal Reserve of the US engaged in quantitative easing (QE) policy
- ► This paper aims to study both domestic and international spillover effects of QE
- "Among the advanced economies, the mutual benefits of monetary easing are clear. The case of emerging market economies is more complicated." (former Federal Reserve Chairman Ben Bernanke in a speech in 2013)
- "Fragile Five" countries (Brazil, India, Indonesia, South Africa, and Turkey) thought to be particularly vulnerable to the withdrawal of QE
 - "This (economic) crisis...will not be overcome ... through quantitative easing policies that have triggered what can only be described as a monetary tsunami, have led to a currency war, and have introduced new and perverse forms of protectionism in the world." (former President of Brazil, Dilma Rousseff in a speech in 2012)
 - Were they more sensitive to QE? If yes, why?

- ▶ With the short-term interest rate at the ZLB since late 2008, the Federal Reserve of the US engaged in quantitative easing (QE) policy
- This paper aims to study both domestic and international spillover effects of QE
- "Among the advanced economies, the mutual benefits of monetary easing are clear. The case of emerging market economies is more complicated." (former Federal Reserve Chairman Ben Bernanke in a speech in 2013)
- "Fragile Five" countries (Brazil, India, Indonesia, South Africa, and Turkey) thought to be particularly vulnerable to the withdrawal of QE
 - "This (economic) crisis...will not be overcome ... through quantitative easing policies that have triggered what can only be described as a monetary tsunami, have led to a currency war, and have introduced new and perverse forms of protectionism in the world." (former President of Brazil, Dilma Rousseff in a speech in 2012)
 - Were they more sensitive to QE? If yes, why?

- ▶ With the short-term interest rate at the ZLB since late 2008, the Federal Reserve of the US engaged in quantitative easing (QE) policy
- This paper aims to study both domestic and international spillover effects of QE
- "Among the advanced economies, the mutual benefits of monetary easing are clear. The case of emerging market economies is more complicated." (former Federal Reserve Chairman Ben Bernanke in a speech in 2013)
- "Fragile Five" countries (Brazil, India, Indonesia, South Africa, and Turkey) thought to be particularly vulnerable to the withdrawal of QE
 - "This (economic) crisis...will not be overcome ... through quantitative easing policies that have triggered what can only be described as a monetary tsunami, have led to a currency war, and have introduced new and perverse forms of protectionism in the world." (former President of Brazil, Dilma Rousseff in a speech in 2012)
 - Were they more sensitive to QE? If yes, why?

- ▶ With the short-term interest rate at the ZLB since late 2008, the Federal Reserve of the US engaged in quantitative easing (QE) policy
- ► This paper aims to study both domestic and international spillover effects of QE
- "Among the advanced economies, the mutual benefits of monetary easing are clear. The case of emerging market economies is more complicated." (former Federal Reserve Chairman Ben Bernanke in a speech in 2013)
- "Fragile Five" countries (Brazil, India, Indonesia, South Africa, and Turkey) thought to be particularly vulnerable to the withdrawal of QE
 - "This (economic) crisis...will not be overcome ... through quantitative easing policies that have triggered what can only be described as a monetary tsunami, have led to a currency war, and have introduced new and perverse forms of protectionism in the world." (former President of Brazil, Dilma Rousseff in a speech in 2012)
 - Were they more sensitive to QE? If yes, why?

- ▶ Literature largely focuses on "announcement effects" of QE
 - ► Analyze effects around narrow 1/2-day windows following policy announcements
 - Advantages: easy to establish causality/exogeneity
 - ► Disadvantages: high-frequency financial variables only; dynamic effects?
- Employ a framework suitable for
 - Inferring both real and financial implications of US QE policies
 - Analyzing dynamic effects

- ▶ Literature largely focuses on "announcement effects" of QE
 - ► Analyze effects around narrow 1/2-day windows following policy announcements
 - Advantages: easy to establish causality/exogeneity
 - ► Disadvantages: high-frequency financial variables only; dynamic effects?
- Employ a framework suitable for
 - ► Inferring both real and financial implications of US QE policies
 - Analyzing dynamic effects

What we do

- Bayesian structural VAR for the US
 - Balance sheet variable as a policy instrument
 - ▶ Non-recursive short-run restrictions to identify the US QE shock
- Using the US QE shock as an external shock, assess effects on EM countries in a panel VAR
 - Panel of 13 EM countries: Brazil, India, Indonesia, South Africa, Turkey + Chile, Colombia, South Korea, Malaysia, Mexico, Peru, Taiwan, Thailand
- Monthly data for the period from January 2008 through November 2014

Related literature

- Announcement effects
 - ► Gagnon et al (2010); Krishnamurthy and Vissing-Jorgensen (2011)
- VAR based identification
 - ► Gambacorta et al (2014); Baumeister and Benati (2011); Wright (2011)
- Purchase effects
 - ▶ D'Amico and King (2013)
- ► International effects of US QE policies
 - Neely (2010); Chen et al (2011); Glick and Leduc (2011); Bauer and Neely (2013); Rogers et al (2014)
- Effects on emerging markets/Fragile Five of taper scare
 - ► Eichengreen and Gupta (2013); Dahlhaus and Vasistha (2014); Aizenman et al (2014)

US VAR

Structural VAR for the US economy

$$A_0y_t = A_1y_{t-1} + \cdots + A_py_{t-p} + \varepsilon_t$$

where $\varepsilon_t \sim N(0, I_m)$

- \triangleright y_t includes
 - Output, prices, long-term Treasury yields, equity prices
 - Securities held outright

QE policy rule

- ▶ The Fed's QE policy is approximated by a linear policy rule
 - Analogous to the Taylor-type reaction function for conventional monetary policy
- ► The policy instrument is the securities held outright on the Fed's balance sheet
 - Holdings of Treasury securities, federal agency debt securities, and mortgage-backed securities
 - ▶ Measure of size, not composition of assets
 - Approach similar to Gambacorta et al (2014)
- ▶ The Fed observes/responds to current long-term Treasury yields
 - Other variables only with lags
- ▶ The non-systematic component of policy is isolated as a QE shock

US QE shock identification

- Use non-recursive restrictions on A_0 for identification of the QE shock $\mathcal{E}_{QE,t}$
 - Restrictions on short-run responses of the variables
- ► Sims and Zha (2006a,b) and Leeper, Sims, and Zha (1996) identification table
- ▶ We add to the Gertler and Karadi (2011) model a QE reaction function similar to our empirically identified one and assess the transmission of the QE shock.

Domestic effects of QE Shock

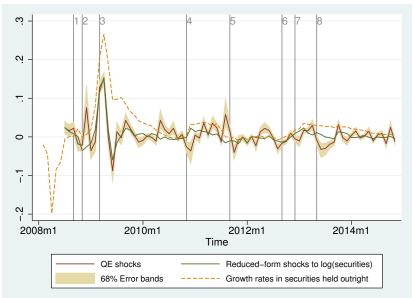
- ► A positive shock to asset purchase by the central bank leads to a positive effect on output, inflation, asset price and a negative effect on interest rate spreads
- ► Empirical IRF Model-based IRF
- ➤ Our effects smaller than effects of QE 1 programs but similar to those of QE 2 programs Magnitude

Panel VAR for EM countries

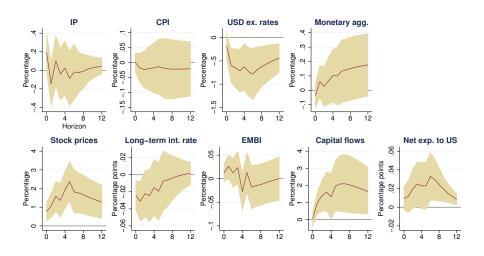
- ▶ The estimated US QE shock $\varepsilon_{QE,t}$ as an external shock in a panel VAR for EM countries
- ▶ An equation for the *i*-th country in the panel VAR

$$z_{i,t} = \sum_{h=1}^{p} B_{i,h} z_{i,t-h} + \sum_{h=0}^{q} D_{i,h} \varepsilon_{QE,t-h} + \sum_{j=1}^{k} C_{i,j} x_{j,t} + u_{i,t}$$

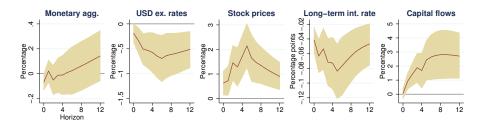
where $u_{i,t} \sim N(0, \Sigma_i)$

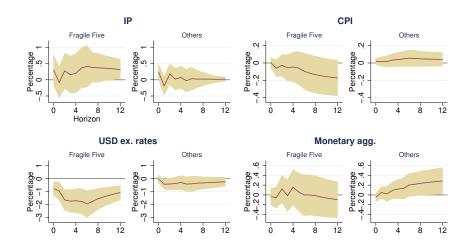

- Dynamic heterogeneity but random coefficients around the common mean
 - Partially pool cross-sectional information (Canova (2007), Canova and Ciccarelli (2013))

Panel VAR for EM countries

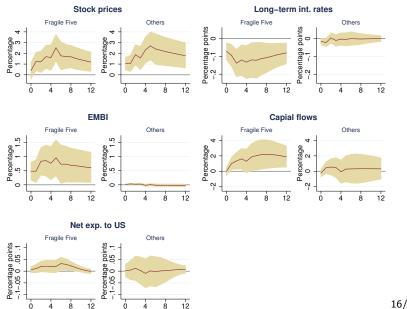

- ▶ We include
 - ▶ Baseline 4 variables (IP, CPI, USD exchange rate, and M2) for $z_{i,t}$
 - ightharpoonup US QE shock $\varepsilon_{QE,t}$ as an external shock, and
 - World demand and price for commodities are controlled for
- ▶ After baseline estimation, we add one additional variable at a time
 - Stock price, long-term yields, EMBI, cumulative equity flows, net exports to the US
- Also a panel VAR with financial variables only
 - USD exchange rate, stock price, long-term yields, cumulative equity flows

US QE shock


Shock series and growth in securities held outright


Baseline variables + one variable at a time of all countries

financial variables only



Baseline variables + one variable at a time for the Fragile Five vs. Non-Fragile Five (I)

12 8

Baseline variables + one variable at a time for the Fragile Five vs. Non-Fragile Five (II)

8

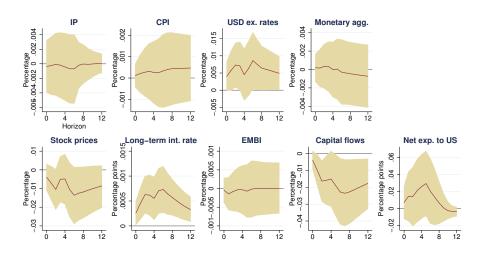
- ► Spillover of QE into international financial markets
- Financial variables in the "Fragile Five" responded stronger
- Similar results including Mexico in the Fragile Five group, allowing for short term interest rate as policy instrument or different lag lengths, and by using a shadow rate shock
 - ▶ Why did "Fragile Five" respond stronger?
 - ► Real effects?

Why did the Fragile Five respond stronger?

► Asset markets offering higher returns prior to the crisis

	Fragile Five	Rest of EM	
Long-term interest rates	15.02	4.96	
Stock prices	2.15	1.73	

► Suggests the "reaching for yield" or "risk-taking" channel of the international monetary policy transmission

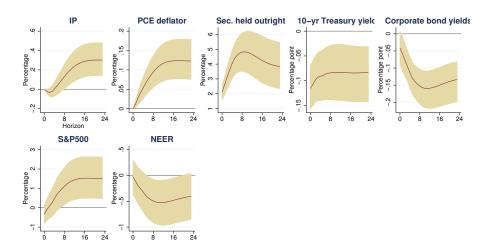

What makes financial markets of the Fragile Five "fragile"?

▶ The Fragile Five countries also had more imbalances prior to the crisis

	Fragile Five	Rest of EM
Current Account to GDP	-0.57	2.58
Fiscal Balance to GDP	-3.66	-1.05
Government Debt to GDP	59.7	34.5

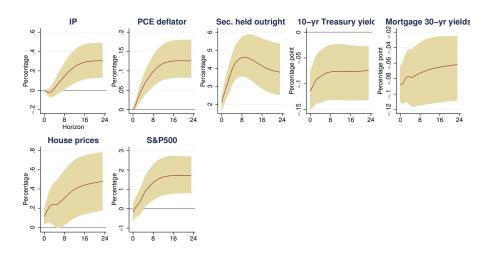
Spillover effects of shadow rate shock

Baseline variables + one variable at a time of all countries



Extensions and Robustness of US QE Shock

- Extended 7 variable US VAR: private sector yields and other asset prices
- ► Alternate measures of output, prices, and long-term Treasury yields in baseline US VAR
- ▶ Effects on consumption and housing market
- Role of the liquidity prior


A larger US VAR

Corporate yields plus NEER

A larger US VAR

Mortgage yields plus housing prices

Robustness

Additional robustness checks and extensions

- Alternate output measures: real GDP, Coincident index, non-farm payroll
- ► Alternate price measures: CPI
- ▶ Alternate long-term interest rates: 5- and 20- year Treasury yields
- Durable and nondurable consumption in addition to output

Conclusion

- Strong and consistent effects on both real and financial variables of the US economy. The QE shock is estimated to
 - Increase IP and PCE Deflator
 - ► Lower long-term yields
 - Increase stock prices
- Relatively strong spillover effects on financial variables but weak effects on macro variables
 - Appreciation against USD
 - Reduction in long-term yields
 - Stock market boom
 - More inflows to the equity markets
 - No significant effect on IP and CPI
- ▶ The Fragile Five countries appear to respond more strongly than others

US QE shock identification

► Restrictions on A₀ (similar to Sims and Zha 2006)

	Industrial	PCE	Securities	10-year	S&P500
	production	deflator	held-outright	Treasury yields	index
Prod1	Х				
Prod2	X	Χ			
1	X	X	X	X	X
F	X	Χ	a_1	<i>a</i> ₂	
MP			<i>a</i> ₃	<i>a</i> ₄	

- \triangleright "X": the corresponding coefficient of A_0 is not restricted
- ▶ Blanks: the corresponding coefficient of A_0 is restricted to zero
- "a"s: weakly restricted with the liquidity priors, $Corr(-a_1, a_2) = -0.8$ and $Corr(a_3, -a_4) = 0.8$
- ► Mainslides

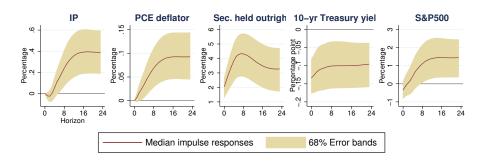
US QE shock

Effects in terms of the size of intervention

- ▶ Baseline estimates suggest 40 billion dollars in securities purchased by the Fed reduces 10-year treasury yields by 10 bp on impact
- ► Comparison with "announcement effects" estimates is tricky as the measure of policy shock is different
- Krishnamurthy and Vissing-Jorgensen (2011)
 - Estimate effects on 10-year Treasury yields around QE 1 and QE 2 dates
- Our effects smaller than effects of QE 1 programs but similar to those of QE 2 programs
- ► Main slides

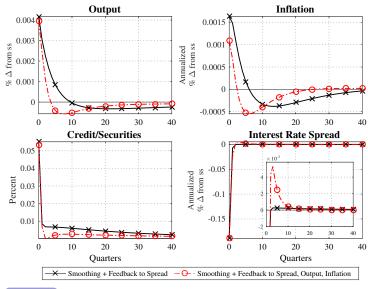
QE reaction function

- ▶ We consider the following QE reaction function: $\psi_t = \rho_{\psi} \psi_{t-1} + (1 \rho_{\psi})[(\kappa E_t(R_{k,t+1} R_{t+1}) \kappa_{\pi} \pi_{t-1} \kappa_y (y_{t-1} y_{t-2}))] + \varepsilon_{\psi,t}$
 - $ightharpoonup \psi_t$ reflects actual asset purchases/credit intermediation by the central bank
 - ▶ $E_t(R_{k,t+1} R_{t+1})$ is the expected interest rate spread (between returns to capital and a safe interest rate) in the model
 - \blacktriangleright π_t is inflation, and $y_t y_{t-1}$ is output growth
 - ► Main slides


Variance decomposition of US VAR

Contribution of US QE shock (%)

	IP	PCE Deflator	Securities held-outright	10-year Treasury yields	S&P500 index
Impact	0	0	55	31	3
	[0,0]	[0,0]	[33, 78]	[10,51]	[0, 6]
3 months	1	3	51	17	6
	[0, 1]	[0, 5]	[29, 74]	[2, 33]	[1, 12]
6 months	4	7	50	17	12
	[0, 8]	[2, 13]	[28, 72]	[1, 33]	[2, 21]
12 months	15	15	38	18	18
	[4, 26]	[5, 26]	[19,57]	[2,36]	[4,33]


Notes: Mean and [16%, 84% quantiles].

IRFs of US variables to a unit QE shock

Main slides

Model-based IRFs of US variables to a unit QE shock

Main slides

A larger US VAR

▶ Identifying restrictions on extended 7-variable VAR

	IP	PCE Deflator	Securities held outright	10-year yields	Private yields	S&P500 index	Asset Price
Prod1	Х						
Prod2	Χ	X					
l1	Χ	X	X	Χ	Χ	Χ	
12	Χ	X	X	Χ	Χ	Χ	X
F1	Χ	Χ	a_1	a_2			
F2	X	Χ	X	Χ	Χ		
MS			<i>a</i> ₃	a ₄			

- Private sector yields: BoFA Merril Lynch US corporate 10-15 year index, 30 year conventional mortgage rates
- ► Additional asset prices: effective exchange rate, Core Logic house price index