The Impacts of Mortgage Regulations on Households' Life-cycle Housing Decisions

Anson T. Y. Ho¹ Jie Zhou²

¹Kansas State University

²Bank of Canada

The views expressed here are those of the authors and do not represent the views of the Bank of Canada.

Introduction I

- Strong interest in using macroprudential policy to improve financial and macroeconomic stability after the global financial crisis
- Housing finance regulations are considered as important measures to deal with mortgage credit expansion and housing price growth Lim et al (2011), Cerutti et al (2015)
- Impact of housing finance regulations still not well understood Information is limited and mainly lies in the aggregate level

Introduction II

- Study the impacts of a set of mortgage regulations on households' demand for housing and their mortgage decisions
 - Debt-service ratio (DSR)
 - Loan-to-value (LTV) ratio
- Life-cycle model calibrated to the Canadian economy
- We investigate the long-run effects across income groups and age groups

Main Findings

- Tightening DSR or LTV limit has small effects on household's overall home ownership decisions
- Stronger impacts on loan-to-income ratio (LTI) and % of highly-indebted households (LTI>=4.0)
- Regulations on DSR and LTV have heterogeneous effects:
 DSR affects low-income households more
 LTV affects young households more

Related Literature

- Various degrees of success in coping house price growth and mortgage credit expansion in empirical literature
 - Most studies present cross-country evidence Vandenbussche et al (2012), Arregui et al (2013), Kuttner and Shim (2013), Zhang and Zoli (2014), Akinci and Olmstead-Rumsey (2015), Cerutti et al (2015)
 - Very few papers use micro-level (household) data Igan and Kang (2011), Campbell et al (2015), Allen et al (2016)
- Housing finance regulation and mortgage default Campbell and Cocco (2015), Corbae and Quintin (2015)
- Housing literature using life-cycle models
 Gervais (2002), Li and Yao (2007), Chambers et al (2009), Halket and Vasudev (2014)

Model: Key Features

- Life-cycle model with idiosyncratic income shocks and aggregate house price and interest rate shocks
- Housing services: renting or owning
- Long-term mortgage arrangement
- Mortgage regulation
- Households make decisions on:
 - (1) consumption, (2) house size, (3) housing tenure choice, (4) down payment

Preferences

- Stochastic lifetime and at most live for J periods
- Households' preferences are represented by

$$E_{1} \sum_{j=1}^{J} \beta^{j-1} \left(\prod_{t=1}^{j-1} s_{t} \right) \left\{ s_{j} \frac{\left(c_{j}^{1-\omega} h_{j}^{\omega} \right)^{1-\gamma}}{1-\gamma} + (1-s_{j}) \frac{(W_{j})^{1-\gamma}}{1-\gamma} \right\}$$
 (1)

 s_j : conditional survival probability in period j

 β : discount factor

 γ : relative risk aversion

 ω : preference for housing

Income Process

- Households supply labor inelastically to work in first R periods of life
- ullet Household i at age j receives stochastic labor income Y_{ij} such that

$$ln(Y_{ij}) = f_{ij} + \varepsilon_{ij} \tag{2}$$

 f_{ij} : deterministic hump-shape age earnings profile (by education) ε_{ij} : idiosyncratic persistent shock

 After R working periods, households retire and receive retirement income

Housing

Housing services: renting or owning

$$h_j \in \begin{cases} \{H_1, H_2, H_3, H_4\} & \text{if } DR = 1 \text{ (renter)} \\ \{H_3, H_4, H_5, H_6, H_7, H_8\} & \text{if } DR = 0 \text{ (owner)} \end{cases}$$
 (3)

House price is stochastic and jointly determined with interest rate

$$r_j = \alpha^r + \beta_0^r p_j + \beta_1^r r_{j-1} + \beta_2^r p_{j-1} + \epsilon_j^r$$
 (4)

$$p_{j} = \alpha^{p} + \beta_{0}^{p} r_{j} + \beta_{1}^{p} r_{j-1} + \beta_{2}^{p} p_{j-1} + \epsilon_{j}^{p}$$
 (5)

• Transaction costs (θ^B and θ^S), maintenance costs (δ), property taxes (τ)

Mortgage Contract

- Amortization: N periods Mortgage rate offered in each period: $r_j^m = \beta^m + r_j$ Contracted mortgage rate (rr_i) : renewed every \hat{N} period
- Home buyers can choose their down payments

$$\theta^{D} \begin{cases} \in \{0.05, 0.1, 0.15, 0.2, 0.35, 0.5, 0.75, 1.0\} & \text{if } n \leq R \\ = 1 & \text{if } n > R \end{cases}$$
 (6)

- Home buyers with less than 20% down payment are required to purchase a mortgage insurance.
- Mortgage regulation: DSR and LTV

Financial Assets and Taxation

Financial assets at the beginning of a period

$$a_{j+1} = (1+r) [a_j + Y_j - x_j - \Gamma_j - c_j]$$
 (7)

Housing expenditure

$$x_{j} = \begin{cases} \phi P_{j}h & \text{if } DR_{j-1} = DR_{j} = 1\\ \phi P_{j}h_{j} + LL_{j-1} - (1 - \theta^{S})P_{j}h_{j-1} & \text{if } DR_{j-1} = 0 \text{ and } DR_{j} = 1\\ M_{j} + \left(\theta^{B} + \theta_{j}^{D} + \tau + \delta\right)P_{j}h_{j} & \text{if } DR_{j-1} = 1 \text{ and } DR_{j} = 0\\ M_{j} + \left(\tau + \delta\right)P_{j}h_{j} & \text{if } DR_{j-1} = DR_{j} = 0 \text{ and } h_{j} = h_{j-1}\\ M_{j} + \left(\theta^{B} + \theta_{n}^{D} + \tau + \delta\right)P_{j}h_{j} & \text{if } DR_{j-1} = DR_{j} = 0 \text{ and } h_{j} \neq h_{j-1}\\ + LL_{j-1} - (1 - \theta^{S})P_{j}h_{j-1} & \text{if } DR_{j-1} = DR_{j} = 0 \text{ and } h_{j} \neq h_{j-1} \end{cases}$$

$$(8)$$

Total tax liability

$$\Gamma_j = T(INC_j) + \min(\tau_{ss} * Y_j, \ \tau_{ss} * Y_{ss}). \tag{9}$$

Household Problem

A household's decision problem in recursive form is written as

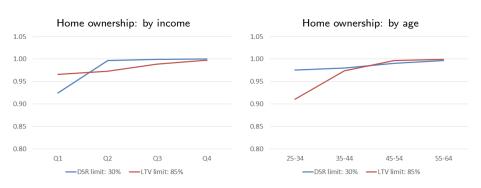
$$V(j, r_{j}, \tilde{p}_{j}, \varepsilon_{j}, a_{j}, DR_{j-1}, h_{j-1}, n, \tilde{p}_{n}, \theta^{D}, rr_{j})$$

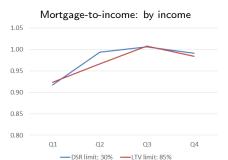
$$= \max_{c_{j}, DR_{j}, h_{j}, \theta^{D}} \frac{\left(c_{j}^{1-\omega} h_{j}^{\omega}\right)^{1-\gamma}}{1-\gamma}$$

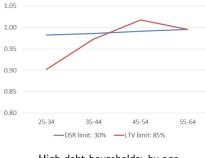
$$+\beta s_{j+1} E_{j} \left[V(j+1, r_{j+1}, \tilde{p}_{j+1}, \varepsilon_{j+1}, a_{j+1}, DR_{j}, h_{j}, n, \tilde{p}_{n}, \theta^{D}, rr_{j+1})\right]$$

$$+\beta (1-s_{j+1}) \frac{(W_{j+1})^{1-\gamma}}{1-\gamma}$$
(10)

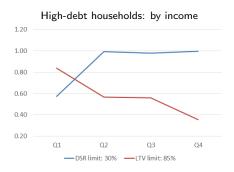
Benchmark Model

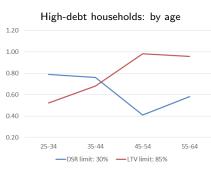

	Age Group				
	25-34	35-44	45-54	55-64	Overall
Home ownership					
Model	0.209	0.636	0.823	0.884	0.634
Data	0.455	0.650	0.712	0.727	0.642
% of owners with mortgage					
Model	0.921	0.891	0.637	0.294	0.611
Data	0.856	0.828	0.652	0.399	0.660
Mortgage-to-Income					
Model	2.651	2.250	1.358	0.963	1.790
Data	2.328	2.065	1.292	1.394	1.818
Mortgage-to-Value					
Model	0.693	0.574	0.344	0.174	0.445
Data	0.727	0.565	0.409	0.380	0.536

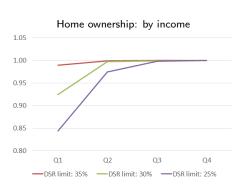


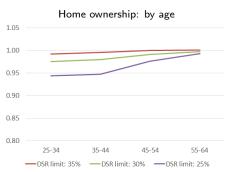

Simple Comparison between DSR and LTV

DSR \leq 30% vs. LTV \leq 85% Both results in 2% decrease in the median loan-to-income ratio

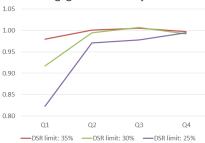


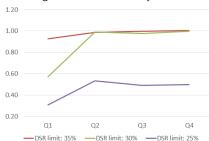

All results are relative to the benchmark


Mortgage-to-income: by age

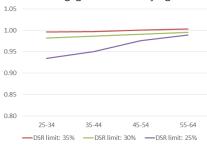


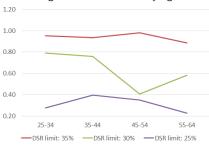
Reducing the Debt-Service Ratio (DSR)


Reduce the debt-service ratio to 35%, 30%, and 25%

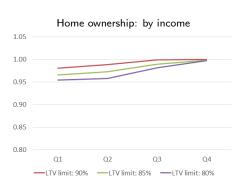


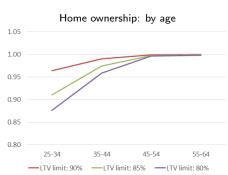
All results are relative to the benchmark


Mortgage-to-income: by income

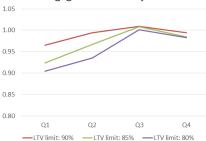

High-debt households: by income

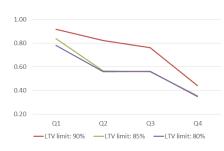
Mortgage-to-income: by age



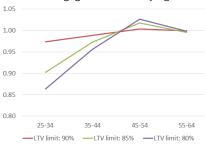

High-debt households: by age

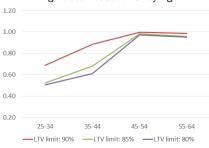
Reducing the Loan-to-Value Ratio (LTV)


Reduce the loan-to-value ratio to 90%, 85%, and 80%



All results are relative to the benchmark


Mortgage-to-income: by income


High-debt households: by income

Mortgage-to-income: by age

High-debt households: by age

August, 2016

Conclusion

- A quantitative life-cycle model to study the long-run impacts of changes in mortgage regulations (DSR and LTV)
- Investigate households' decisions on housing and their mortgage use
- Model is calibrated to the Canadian economy
- DSR and LTV affect household decisions via different channels
- Policy implications?
- Future work:
 - Investigate the short-run effects
 - How changes in mortgage regulations affect households' consumption in respond to interest rate and housing price shocks?
 - Implications on inplementing LTI regulations

Parametrization I

Table: Summary of Parameter Values

Parameters	Values	Description
Demographics		
J	71	Lifespan (age 25–95)
R	40	Working periods (work until age 64)
S	see text	Survival probability (life table in year 2000-2002)
Preferences		
γ	2	Relative risk aversion
β	0.97	Discount factor
ω	0.28	Preferences on housing
Income		
f	see text	Age earnings profile (2 education groups)
ρ	0.97	Persistence of idiosyncratic shock
$\sigma_{ar{\xi}}$	0.16	s.d. idiosyncratic income shock
λ	0.5 and 0.7	Pension replacement rate for 2 education groups

Parametrization II

Table: Summary of Parameter Values

Parameters	Values	Description	
Interest rate			
r	1%, 2%, 3%	Returns on savings	
β^m	1.2%	Mortgage premium	
Housing			
Ν	25	Mortgage length	
θ^D	see text	Down payment ratios	
Н	see text	House size	
g _θ s	0.5%	House price growth rate	
-	5.0%	Transaction cost for seller	
θ^B	1.0%	Transaction cost for buyer	
τ	1.0%	Property tax rate	
δ	1.0%	Housing maintenance cost	
ϕ	3.2% + r	Rental cost of housing	
Tax code			
$ au_{ss}$	4.95%	CPP contribution rate for employees	
Y_{ss}	2.18	Maximum taxable earnings for payroll	

Parametrization III

• \$30,000 in 2012 is normalized to 1

We use year 2012 income tax code

Taxable Income	Normalized Income	Marginal Tax Rate
(\$0, \$42,706]	(0, 1.424]	15%
(\$42,707, \$85,413]	(1.424, 2.847]	22%
(\$85,414, \$132,405]	(2.847, 4.414]	26%
> \$132,406	> 4.414	29%

Mortgage regulations

LTV cap: 95%

• DSR cap: 39%

