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We derive the Bitcoin exchange rate dynamics by solving the exchange rate equation of the standard flexible-

price monetary model to investigate whether Bitcoin behaves like a currency. The dynamics is driven by an 

asymmetric mean-reverting fundamental shock which can be attributed to a money demand shock. A crash 

occurs when the exchange rate breaches a lower boundary where a smooth-pasting condition is imposed. 

The Bitcoin exchange rate is quasi-bounded at the boundary, and generates skewed distributions consistent 

with empirical observations. The crash risk increases with a weakened mean-reverting force for the exchange 

rate. The empirical results show the exchange rate dynamics can be calibrated according to the model, in 

which the mean reversion of the dynamics is positively co-integrated with the Bitcoin transaction volume 

indicating demand for Bitcoin; and with the risk reversals of the Australian dollar and Canadian dollar in 

currency option markets. The analysis based on the monetary model shows that the Bitcoin exchange rate 

shares some characteristics of a currency with crash risk.  
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1. Introduction 

 In the past few years, different forms of “cryptocurrencies”, notably Bitcoin, have 

emerged as a medium of exchange and an investment asset. These crypto-currencies normally 

deploy the Distributed Ledger Technology and have a limited amount of issuance based on 

“mining” by participants. They can be transferred between participants through the internet 

without a central clearing agent. There are many trading platforms that allow these crypto-

currencies to be traded.1 The transaction volumes of Bitcoin have risen rapidly from a daily 

volume of around 100,000 transactions in 2015 to a peak of 420,000 transactions in 2017. 

There has been much debate on whether Bitcoin should be considered as a currency (see 

discussions in Yermack (2015), and Raskin and Yermack (2016) and references therein). 

While some people have argued that crypto-currencies such as Bitcoin would disrupt or at 

least seriously challenge the traditional fiat money, there is a lot of uncertainty about how 

widely Bitcoin will be used as a currency and how serious authorities will regulate it. With 

such uncertainty, the Bitcoin exchange rate against the US dollar (XBT/USD) has 

experienced dramatic fluctuations with a drastic surge close to US$20,000 in December 2017 

and a subsequent crash of 60% in March 2018 (see Figure 1, Panel B). Bitcoin is therefore 

subject to crash risk similar to currency crash risk, which has long been a subject of interest 

in international finance, found in both developed and developing economies. 

This paper proposes a model for the Bitcoin exchange rate dynamics based on the 

standard flexible-price rate monetary model to investigate whether it behaves like a currency 

and better understand its exchange rate fluctuations. The solution of the Bitcoin exchange rate 

in the equation of the model is a function of a stochastic fundamental and market participants' 

expectations of changes in the Bitcoin exchange rate. Given that Bitcoin’s money supply 

grows at a steady pace, its exchange rate fluctuations are mainly driven by its demand, i.e., its 

                                              
1 On other features of Bitcoin, see Nakamoto (2008), Fernandes-Villaverde and Sanches (2016), Chiu and 
Koeppl (2017) and Saleh (2017). 
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expected adoption. The approach of the proposed model shares some features of the model 

developed by Jermann (2018) who studies the driver of Bitcoin’s exchange rate fluctuations 

in a framework following Cagan (1956)’s model of hyperinflation.2 This is in the line with 

linear rational expectations models of exchange rates (see Engel and West (2005) and 

references therein). Jermann argues that the exchange rate is driven by stochastic adoption 

and payments technology, as well as endogenous expectations of future changes in the price 

of Bitcoin, which represent money demand shock for Bitcoin. Given that Bitcoin adoption 

has grown and changes in the payments technology affect the transaction velocity and 

Bitcoin’s exchange rate, the analysis by Jermann suggests shocks to transaction volumes play 

a dominant role in explaining Bitcoin exchange rate fluctuations.3 

The money demand for Bitcoin is incorporated into the fundamental dynamics in the 

Bitcoin exchange rate equation by assuming that there is a restoring force for the fundamental 

which moves towards a mean level proportional to the deviation from the mean. The driving 

force behind the mean-reverting property can represent the adjustment of the demand for 

Bitcoin (its adoption), an error-correction or speculative actions taken by market participants 

to pull the Bitcoin exchange rate back to its long-run equilibrium whenever it drifts too far 

from the equilibrium. As market participants would take actions more intensively when the 

Bitcoin exchange rate falls than rises sharply to avoid substantial loss in their Bitcoin 

investments, the corresponding mean-reverting fundamental shock is likely to be asymmetric 

with stronger force pushing up the exchange rate away from low levels. Based on rigorous 

analysis with extensive robustness checks, Gandal et al. (2018) demonstrate that the 

suspicious trading activity likely caused the unprecedented spike in the Bitcoin exchange rate 

                                              
2 On Bitcoin pricing, see Athey et al (2016), Bolt and van Oordt (2018), and Prat and Walter (2018). 
3 Further changes in Bitcoin’s payment technology are anticipated (for instance, initiative such as the Lightning 
Network, or attempts to increase the blockchain size) and they may influence adoption of Bitcoin. The 
Lightning Network allows more small volume payments through cryptocurrency and new players may come 
into the space to provide payment services. Blockstream’s Liquid sidechain for Bitcoin went live on 10 October 
2018 and allows increased transaction speed and size between crypto exchanges, brokers, etc 
(https://www.coindesk.com/liquid-goes-live-blockstreams-first-bitcoin-sidechain-has-finally-arrived). 
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in late 2013, when the exchange rate jumped from around US$150 to more than US$1,000 in 

two months (see Figure 1, Panel A), suggesting that in “thin" markets of cryptocurrencies 

exchange rate manipulation is quite feasible. Those market manipulators could be capable of 

defending the exchange rate above certain low levels when the demand for Bitcoin falls 

substantially.  

Bitcoin is expected to share another characteristic of a currency – crash risk – as 

demonstrated by the crash in March 2018. Earlier studies on currency crashes focused more 

on developing economies where currency crashes occurred due to those economies’ 

authorities not being able to defend the devaluation of their currencies triggered by country-

specific macro-economic variables, such as current account deficit, inadequate foreign 

exchange reserves and budget deficit. 4  Recent studies find that carry trades in major 

currencies of developed economies are also subject to crash risk, such as the large crash of 

carry trade in 2008 when the global financial crisis emerged. 5 Several studies, including 

Burnside et al. (2011), Lustig et al. (2011), Lettau et al. (2014) and Dobrynskaya (2014), 

explain the linkage between high returns in carry trades and currency crashes. The excess 

returns earned by currency carry trades may represent compensation for the crash risk in 

currencies with relatively higher interest rates. Brunnermeier et al. (2009) show that the price 

of currency crash risk is reflected by currency option prices which forms the risk reversal. 

The risk reversal measures the implied volatility difference between an out-of-the-money call 

on the currency and an out-of-the-money put at the same (absolute) delta. The 10%- and 

25%-deltas are commonly used for such measure. Farhi et al. (2015) propose a disaster-based 

structural model which assumes that investors price in a currency crash-risk premium into the 

                                              
4 See Eichergreen et al. (1996), Frankel and Rose (1996), Kaminsky et al. (1998), and Kumar et al. (2003). 
5 In a carry trade, an investor sells a currency with a relatively low interest rate and uses the funds to buy a 
different currency yielding a higher interest rate. This strategy attempts to capture the difference between the 
rates of the two currencies provided that their exchange rate is stable. 
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value of a currency’s exchange rate.6 Farhi and Gabaix (2016) develop a model that makes 

predictions regarding the link between exchange rates and signs of crash risk in currency 

options. Jurek (2014) shows that premiums on currency crashes in option prices can be used 

to explain at most one-third of the portion of carry trade returns. Chernov et al. (2018) 

demonstrate out-of-the-money options price in jump risk related to currency crashes. Husted 

et al. (2017) show that the cost of protection against currency crash risk reflects an increase in 

uncertainty in financial markets.  

The risk reversal reflects asymmetric expectations on the directions of exchange rate 

movement and market participants’ caution about the exchange rate falling below a certain 

level. Based on the feature of currency crashes represented by risk reversals which measure 

sharp falls of exchange rates below certain boundaries as the strike prices of out-of-the-

money options and following the ensuing analysis in Jurek (2014) which studies 

compensation for exposure to the risk of large currency devaluations, we define a crash as the 

Bitcoin exchange rate shock that exceeds a pre-specified threshold. A smooth-pasting 

condition is imposed at a lower boundary for the Bitcoin exchange rate equation, suggesting 

an optimal boundary condition for the process with no foreseeable jump and no arbitrage 

condition at the boundary. The smooth-pasting condition ensures that a Bitcoin crash is rare 

and only occurs when the exchange rate dynamics causes the condition to break down. We 

derive a solution from the Bitcoin exchange rate equation in which the boundary is a moving 

average of the current and past exchange rates over a time horizon. This suggests some 

market participants take actions to keep within an assigned band that is not the current level 

of the Bitcoin exchange rate.  

By normalising the Bitcoin exchange rate with a moving boundary, the relationship 

between the Bitcoin exchange rate and the fundamental in the model depends upon the past 

                                              
6 The importance of downside risk can be related to the rare disasters model proposed by Barro (2006). 
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history of the exchange rate. The proposed model shares a key feature of the soft exchange 

rate target zone model for the European Exchange Rate Mechanism proposed by Bartolini 

and Pratib (1999), which shifts the reference for intervention from the level of the exchange 

rate at each instant to the behaviour of the exchange rate over a time interval, by featuring the 

central bank to keep only a moving average of past exchange rates within a range. The main 

implication is that it allows exchange rates to fluctuate within a wider range over short time 

horizons. According to such feature, Bitcoin market participants have more time to observe 

the exchange rate movements and market reactions such that they can postpone their 

decisions to defend until the negative Bitcoin demand shocks have worn out. When the 

exchange rate breaches the boundary under a shock, this leads to a discrete drop in the 

exchange rate with a magnitude that reflects the extent of uncertainty.  

 By using the asymmetric mean-reverting fundamental shock representing a money 

demand shock, the solution of the Bitcoin exchange rate equation shows the log-normalised 

Bitcoin exchange rate follows a mean-reverting square-root process which has a closed-form 

probability density function. The analysis illustrates that the Bitcoin exchange rate is quasi-

bounded at the lower boundary. When it breaches the boundary (i.e., the smooth-pasting 

condition does not hold), provided the probability leakage condition is met, a crash occurs. 

The crash risk increases when the mean-reverting force for the Bitcoin exchange rate 

weakens. The probability density function is able to generate skewed exchange rate 

distributions consistent with empirical observations. The Bitcoin exchange rate dynamics can 

be calibrated according to the model using market Bitcoin exchange rate data.  

The model suggests that a negative demand shock on Bitcoin increases its crash risk, 

which is reflected by a weakened mean-reverting force in its exchange rate dynamics. To test 

the validity of incorporating money demand shocks and crash risk into the model empirically, 

a co-integration analysis is used to test any positive relationship between the mean reversion 
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in the Bitcoin exchange rate dynamic derived from the model and the Bitcoin transaction 

volume which indicates demand for Bitcoin. The empirical results show the mean reversion is 

positively co-integrated with the Bitcoin transaction volume, suggesting that demand for 

Bitcoin is adequately captured by the proposed fundamental dynamics. The analysis is also 

applied to test the relationship between the mean reversion and the risk reversals in the 

currency option market given that Bitcoin is expected to share a characteristic of currencies 

with crash risk. The risk reversals of the Australian dollar (AUD) and Canadian dollar (CAD) 

are shown to have a positive relationship with the mean reversion, supporting the 

incorporation of crash risk and the use of the asymmetric mean-reverting fundamental shock 

in the model. 

 The paper is organised as follows. We develop the Bitcoin exchange rate model 

associated with crash risk in the following section. The corresponding exchange rate 

dynamics and probability density function are derived and discussed. The calibrations of the 

Bitcoin exchange rate dynamics and its probability leakage condition are presented in section 

3. The exchange rate dynamics’ relationship with the Bitcoin transaction volume and 

currency risk reversals in currency option markets are studied by a co-integration analysis in 

section 4. The final section of the paper concludes. 

 

2. Bitcoin exchange rate solution with crash risk 

 2.1  Bitcoin exchange rate model and smooth-pasting boundary condition 

 To incorporate crash risk into the model, we consider that Bitcoin may face a large 

fall in its value. To qualify how big a change in the exchange rate S (USD per Bitcoin), we 

define a lower boundary as a tolerance limit for a distribution of the exchange rate’s statistics. 

Without assuming any distribution of the exchange rate, the lower boundary SL is taken to be 
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the number (∆) of standard deviations ( Σ ) from its mean S : ∆Σ−= SSL .7 The idea is 

similar to the analysis of currency crashes in Jurek (2014) which sets a threshold of a crash 

according to the strikes of the 25% delta and 10% delta options corresponding to 0.70 and 1.4 

standard deviations, respectively, away from the exchange rates.8 The choice of the level of 

the lower boundary (provided that it is adequately low) does not affect the process of the 

exchange rate dynamics. It is not necessary for the exchange rate breaching the lower 

boundary to capture its dynamics, as shown by the calibration using market data in the next 

section.  

 Historical exchange rates can be used as a guide to set a trading band confining the 

exchange rate. The historical trend of the exchange rate can be measured by a moving 

average ( )tSA  of the current and past exchange rate. For Bitcoin suffering from downwards 

exchange rate pressure subject to crash risk, the moving average can be scaled by a parameter 

Lη , with 10 << Lη , such that ( )tSALη  forms a lower boundary for the exchange rate 

movement. If the Bitcoin exchange rate is assumed to be normally distributed, ( )tSALη  

corresponds to the number of standard deviations from its moving average. The parameter Lη  

tells how far market participants tolerate a fall in the Bitcoin exchange rate or how much they 

expect the maximum or extreme downside of holding Bitcoin to be in terms of a fraction of 

the moving average value ( )tSA . A smaller Lη  suggests the market expects wider fluctuations 

over short horizons. Such specification of a lower boundary assumes market participants care 

about the behaviour of the Bitcoin exchange rate over a time interval, rather than just its 

current level. The particular way in which past Bitcoin exchange rate is brought into play 

                                              
7 If a normal distribution is assumed and ∆ is set equal to 1.5 and 2, the cumulative normal probabilities when 
the exchange rate falls below the boundaries are 0.0668 and 0.0227 respectively. It is noted that even when the 
exchange rate is not normally distributed, 1.5- and 2-standard deviations still cover a large area under the 
distribution of the exchange rate in a given time horizon, suggesting that falling to the lower boundary is a crash. 
8 The idea of the definition of a crash is also similar to value-at-risk (VaR), which is a statistical measure of the 
riskiness of financial entities or portfolios of assets. VaR is defined as the maximum expected loss at a pre-
defined confidence level (say 95%) over a given time horizon. 
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does not affect the derivation of the Bitcoin exchange rate solution and the qualitative results 

of our analysis. Similarly, an upper boundary can be set by using a scaling parameter 𝜂𝜂𝑈𝑈, 

with 𝜂𝜂𝑈𝑈 > 1. With no loss of generality, the normalised log Bitcoin exchange rate s is defined 

by: 

  𝑠𝑠 = ln � 𝜂𝜂𝑈𝑈𝑆𝑆𝐴𝐴𝐴𝐴−𝑆𝑆𝐴𝐴
(𝜂𝜂𝑈𝑈−𝜂𝜂𝐿𝐿)𝑆𝑆𝐴𝐴𝐴𝐴

�,  (1) 

where Lη  and 𝜂𝜂𝑈𝑈 are adjustable parameters for the lower and upper boundaries of a band 

respectively. 

 We use the standard flexible-price monetary model for the Bitcoin exchange rate.9 

The log exchange rate s at time t follows the following equation: 

  𝑠𝑠(𝑡𝑡) = 𝑚𝑚 + 𝜈𝜈 + 𝛼𝛼 𝐸𝐸[𝑑𝑑𝑑𝑑(𝑡𝑡)]
𝑑𝑑𝑡𝑡

,  (2) 

where m is the logarithm of the constant money supply, ν is a monetary demand shock term, 

α is the absolute value of semi-elasticity of the exchange rate with respect to its expected rate 

of change, and E the expectation operator. The last term captures the expected exchange rate 

change. The “fundamental” (ν) is the source of uncertainty and is assumed to follow a 

stochastic process with a drift  which is a function of ν and instantaneous standard 

deviation : 

     𝑑𝑑𝜈𝜈 = 𝜇𝜇𝜈𝜈𝑑𝑑𝑡𝑡 + 𝜎𝜎𝜈𝜈𝑑𝑑𝑑𝑑,     (2) 

where dZ is a Wiener process with  and . The drift  represents the 

behaviour of market participants in relation to money demand, and  is the random shock. 

We apply Ito’s lemma to Eqs.(1) and (2), and have 

   
( )[ ] .

2
1= 2

2
2

dv
sd

dv
ds

dt
tdsE

vv sµ +
     (3) 

                                              
9 The model is based on the existence of a money demand function, the purchasing power parity and the 
uncovered interest rate parity. These theories form a flexible-exchange rate model of exchange rates. 

vµ

vs

[ ] 0E =dZ [ ] dtdZ =2E vµ

vs
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Then substituting Eq.(3) into Eq.(1) yields 

    mvs
dv
ds

dv
sd

vv −−−+ =
2
1

2

2
2 αµαs ,    (4) 

which is a second-order linear ordinary differential equation. 

 To solve Eq.(4) with a crash when the exchange rate s breaches the lower boundary at 

𝑠𝑠 = 0 (𝑆𝑆𝑡𝑡 =  𝜂𝜂𝐿𝐿𝑆𝑆𝐴𝐴𝑡𝑡 ), we specify the following boundary conditions at the fundamental of 

0=ν :  

     ( ) 00 =s ,      (5) 

     
( ) 0

0

=
=vdv

vds
,      (6) 

where the former condition ensures a proper normalisation of the Bitcoin exchange rate and 

the latter is the smooth-pasting boundary condition at 0=ν , suggesting an optimal 

boundary condition for the process with no foreseeable jump in the exchange rate and no 

arbitrage condition. Krugman and Rotemberg (1990) show that the smooth-pasting condition 

ensures that the exchange rate does not cross the boundary. If the condition does not hold, the 

exchange rate could jump across the boundary, indicating a crash, which is a rare event. 

 Lo et al. (2019) provide a rigorous derivation of the fundamental of v  which is 

uniquely determined under the boundary conditions in Eqs.(5) and (6). They show that the 

fundamental of v  follows an asymmetric mean-reverting process with the following 

specification: 

𝑑𝑑𝜈𝜈 = �𝐴𝐴−1
𝜈𝜈

+ 𝐴𝐴1𝜈𝜈�𝑑𝑑𝑡𝑡 + 𝜎𝜎𝜈𝜈𝑑𝑑𝑑𝑑 ,     (7) 

where A1 < 0, A-1 > 0,  −∞ < 𝜈𝜈 ≤ 0.10  Using this asymmetric mean-reverting fundamental 

dynamics, Lo et at. (2015) and Hui et al. (2016) find the associated exchange rate dynamics 

                                              
10 Lo et al. (2019) derive the asymmetric mean-reverting fundamental dynamics proposed by Lo et at. (2015) et 
al. et al. (2016) for target-zone exchange rates, and has also shown that the proposed fundamental dynamics is 
indeed the unique choice and is described by the Rayleigh process. The generalized Rayleigh process is a 
diffusion process with mean reversion, of which some stochastic processes such as the Ornstein-Uhlenbeck 
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and interest rate differentials derived from the flexible-price monetary model can describe the 

market data for the Hong Kong dollar against USD in a target zone and the Swiss franc 

against the euro during the target zone regime of September 2011 – January 2015 

respectively. The asymmetric mean-reverting fundamental dynamics are similar to 

asymmetric country-specific and global shocks in the context of contributions to violations of 

uncovered interest rate parity (Backus et al. (2001)) and exchange rate option (Bakshi et al. 

(2008); Jurek and Xu (2014)). It is also consistent with risk reversals (i.e., currency crashes), 

which are inherently asymmetric, given that crashes are one-sided events. 

  To understand and visualise the asymmetric mean-reverting fundamental shock, Lo et 

al. (2019) obtain a “potential well” ( )νU  by integrating the drift term in Eq.(7), in a negative 

form, with respect to v : 

𝑈𝑈(𝜈𝜈) = −∫ �𝐴𝐴−1𝜈𝜈 + 𝐴𝐴1𝜈𝜈� 𝑑𝑑𝜈𝜈 = −𝐴𝐴−1ln|ν| − 1
2
𝐴𝐴1𝜈𝜈2 ,   (8)  

in which the fundamental variable v  is similar to a ball moving in a well, as shown in Figure 

1 in Lo et al. (2019) by plotting Eq.(8) with different values of 𝐴𝐴−1 and 𝐴𝐴1. The restoring 

force (an increase in exchange rate) given by the first term in the mean-reverting drift with v 

close to zero is stronger than the force (a decrease in exchange rate) provided by the second 

term. Therefore, the mean-reverting force in Eq.(7) is not symmetric. This is consistent with 

the intuition that when the demand for Bitcoin is extremely weak such that the Bitcoin 

exchange rate falls significantly, market participants who hold significant amounts of Bitcoin 

have an incentive to defend the exchange rate above the lower boundary. Those market 

participants could be market manipulators as found in Gandal et al. (2018) that the suspicious 

trading activity likely caused the unprecedented spike in the Bitcoin exchange rate in late 

2013, suggesting that Bitcoin exchange rate manipulation is quite feasible in such “thin” 

                                                                                                                                             
process are special cases. It has been considered in the context of the path-dependent option pricing models used 
in economics and stochastic finance studies (see Davidov and Linetsky (2001)). 
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market. Regarding the shape of the potential well, decreasing the magnitude of the 

parameters 𝐴𝐴−1 or 𝐴𝐴1 reduces the mean-reverting force for the fundamental and gives a very 

flat potential well, such that the fundamental variable simply moves randomly above the 

lower boundary, i.e., increasing the crash risk of v  breaching the origin. This shows that the 

strength of the mean reversion in the fundamental dynamics determines the crash risk of the 

Bitcoin exchange rate. The quasi-bounded process for the Bitcoin exchange rate will be 

derived from Eq.(4) according to the asymmetric mean-reverting fundamental shock and 

discussed in the following subsection. 

 

2.2  Bitcoin exchange rate solution and probability density function 

 By the power series method we are able to obtain the desired solution of the ordinary 

differential equation in Eq.(4) with the boundary conditions specified by Eq.(5) and Eq.(6) in 

the form: 

     𝑠𝑠(𝜈𝜈) = 𝜈𝜈2 ∑ 𝐵𝐵𝑛𝑛𝜈𝜈𝑛𝑛∞
𝑛𝑛=0      (9) 

which vanishes at 0=v . Lo et al. (2019) derive the coefficients in Eq.(9) as 

   𝐵𝐵0 = − 𝑚𝑚
𝛼𝛼�𝜎𝜎𝜈𝜈2+2𝐴𝐴−1�

 ,   𝐵𝐵1 = − 1
3𝛼𝛼�𝐴𝐴−1+𝜎𝜎𝜈𝜈2�

 

  𝐵𝐵𝑛𝑛+2 = 2[1−𝛼𝛼(𝑛𝑛+2)𝐴𝐴1]
𝛼𝛼(𝑛𝑛+4)�2𝐴𝐴−1+(𝑛𝑛+3)𝜎𝜎𝜈𝜈2�

𝐵𝐵𝑛𝑛 for n = 0,1,2, … 

and show that: 

    𝐵𝐵0 = 1
2
𝑑𝑑2𝑑𝑑
𝑑𝑑𝜈𝜈2

�
𝜈𝜈=0

= − 𝑚𝑚
𝛼𝛼�𝜎𝜎𝜈𝜈2+2𝐴𝐴−1�

< 0 ,   (10) 

suggesting s attains its maximum at 0=v . The second-order linear ordinary differential 

equation of Eq.(4) uniquely determines the second-order derivative of s with respect to ν at 

0=v  by itself. 
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 Lo et al. (2019) show the series solution is a convergent series for all v by means of 

the ratio test. Motivated by the rapid convergence of the series solution shown in those 

studies, we propose to approximate the exact solution by an optimal approximate solution of 

the form: 

    𝑠𝑠(𝜈𝜈) = 𝐵𝐵0𝜈𝜈2 = − 𝑚𝑚
𝛼𝛼�𝜎𝜎𝜈𝜈2+2𝐴𝐴−1�

𝜈𝜈2    (11) 

 Figure 2 plots the relationship between the Bitcoin exchange rate and the fundamental 

expressed in Eq.(11). It shows that changes in the exchange rate flatten with changes in the 

fundamental at the two boundaries. This means the exchange rate could marginally move 

away from the boundaries even though the fundamental changes materially. When the 

exchange rate moves towards its lower boundary due to a negative demand shock in the 

fundamental, there is a counteracting tendency of a mean reversion back to the equilibrium 

level which acts as a stabilising force as shown in Eq.(7) to limit further fall in the exchange 

rate. Based on the model, as changes in the Bitcoin fundamental, the Bitcoin exchange rate 

could move from C to C” or C’, where the paths depend on the coefficient B0 in Eq.(11), 

which represents the state of the Bitcoin market, including the Bitcoin supply (m), parameters 

(𝐴𝐴−1) of the asymmetric fundamental shock, and sensitivity (α) of the exchange rate to its 

expected rate of change. A larger B0 suggests that the Bitcoin exchange rate is more sensitive 

to changes in the fundamental (money demand). This happened when the Bitcoin supply m is 

relatively ample and/or both 𝐴𝐴−1 and α are relatively small. As the Bitcoin supply is quite 

steady, this suggests when the restoring force in the fundamental dynamics is weak and/or the 

exchange rate is less sensitive to the expected exchange rate, the crash risk of Bitcoin is 

higher.  

 To demonstrate the Bitcoin exchange rate dynamics, it is convenient to concentrate on 

the magnitude of s and introduce the new variable sx −≡  so ∞<≤ x0  with 0=x  
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corresponding to the lower boundary. By applying Ito’s lemma to Eq.(7) with Eq.(11), x is 

shown to follow a mean-reverting square-root (MRSR) process:   

( ) dZxdtxdx xsθκ +−= ,     (12) 

where  

    𝜅𝜅 = 2|𝐴𝐴1|,  𝜃𝜃 = �𝐵𝐵0
𝐴𝐴1
� �𝐴𝐴−1 + 1

2
𝜎𝜎𝜈𝜈2�    (13) 

    𝜎𝜎𝑥𝑥 = 2𝜎𝜎𝜈𝜈�|𝐵𝐵0| .     (14) 

In Eq.(12), κ determines the speed of the mean-reverting drift towards the long-term mean θ  

which is a time-varying equilibrium level and determined through actions by market 

participants to drive the exchange rate towards its mean level. When the exchange rate is 

close to zero (i.e., the lower boundary), the standard deviation xxs  also becomes very 

small. The corresponding exchange rate dynamics become dominated by the mean-reverting 

drift, which pushes the exchange rate towards the mean and away from the boundary and 

reduces crash risk. The properties of the MRSR process is also shown by the well-known 

Cox–Ingersoll–Ross (CIR) model (1985) for interest rate term structures. 

 Following Feller’s classification of boundary points, it can be inferred that there is a 

non-attractive natural boundary at infinity and the one at the origin is a boundary of no 

probability leakage for )4/( 2 κθs x  < 1 in Eq.(12), and it is not otherwise.11 The no-leakage 

condition ensures the exchange rate will not breach the origin (the lower boundary) and there 

is no Bitcoin crash; otherwise, the exchange rate may pass through the boundary, i.e., the 

exchange rate is quasi-bounded at the origin. 12,13 The boundary condition at the origin under 

                                              
11 For boundary condition definitions, see Karlin and Taylor (1981). 
12 Lo et al. (2015) et al. et al. (2016) show that the quasi-bounded process can describe the exchange rate 
dynamics and interest rate differentials of the Hong Kong dollar against the US dollar in a target zone and the 
Swiss franc against the euro during the target zone regime of September 2011 to January 2015 respectively. 
Regarding the Swiss franc exchange rate, the condition for breaching the strong-side limit was met in November 
2014 using only information until that point, i.e., about two months before abandoning the limit. This 
demonstrates that the asymmetric mean-reverting fundamental dynamics incorporates the features of 
intervention and realignment. 
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the MRSR process is studied in CIR (1985) and Longstaff (1989, 1992). If the no-leakage 

condition does not hold at the boundary, the smooth-pasting condition of Eq.(6) may break 

down in the model and a Bitcoin crash could occur.  

 The probability density function (PDF) of x under the MRSR process is given by: 
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where 1/2 2 −= xsκθω , ( ) ( )[ ] κκττ /1exp1 −=C , ( ) κττ −=2C , ωI  is the modified Bessel 

function of the first kind of order ω. The associated asymptotic PDF will eventually approach 

the steady-state exchange rate distribution, which is: 
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where Γ is the gamma function. Given the PDF in Eq.(15), the parameters of the MRSR 

process for the exchange rate dynamics are calibrated in section 3 using market exchange rate 

data. 

 Figure 3 shows the steady-state exchange rate distributions in S based on Eq.(16) with 

two values of the long-term mean θ  of 0.3, 1.0 and 1.5: the smaller θ  is closer to the lower 

boundary. We use the model parameters for 05.0=xs , 0.13 and 0.2, and κ = 0.05 and 0.25, 

which are consistent with the estimations in section 3, with the lower boundary 𝜂𝜂𝐿𝐿𝑆𝑆𝐴𝐴𝑡𝑡 = 𝑆𝑆𝐿𝐿 =

3793 and upper boundary 𝜂𝜂𝑈𝑈𝑆𝑆𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑈𝑈 = 17360 . The distributions with θ  = 1.0 and 1.5 

have their peaks at the right, showing the PDF decays slower than a Gaussian distribution at 

                                                                                                                                             
13 Such a property is similar to the bounded exchange rate dynamics in Ingersoll (1996) and Larsen and 
Sørensen (2007). In their models the exchange rate is completely bounded under all circumstances. 
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the left, suggesting the fat-tails effect with the probability of outlier negative returns. On the 

other hand, the distributions with θ  = 0.3 have their peaks at the left and the probability of 

outlier positive returns. The different skewness of the distributions is consistent with the 

empirical observations of Bitcoin exchange rate returns and the both left- and right-skewed 

distributions found in Nadarajah and Chu (2017), Liu and Tsyvinski (2018), and 

Chevapatrakul and Mascia (2018) depending on the sample periods of their studies.  

 All panels in Figure 3 show fatter left tails of the exchange rate distributions with the 

mean θ  further away from the lower boundary, demonstrating that the probability of outlier 

negative returns becomes more significant for the Bitcoin exchange rate expected to increase 

in the near term. Comparison among Panel A, B and C, where sx increases from 0.05 to 0.2, 

shows the left tails of the distributions become much fatter and hump shaped, and their left-

skewness is sensitive to an increase in the exchange rate volatility. The higher exchange rate 

volatility increases the likelihood of a crash, which is reflected by the fat left tails. By 

keeping sx = 0.2 and increasing κ from 0.15 to 0.25 in Panel D, the exchange rate 

distributions revert to the shapes similar to those in Panel A with less fat left tails, showing an 

increase in the mean reversion in the exchange rate dynamics reduces crash risk. The changes 

in the distributions in Figure 3 with different exchange rate parameters demonstrate that the 

leakage condition of the MRSR process of the exchange rate dynamics derived from the 

model is consistent with the left-skewed distributions for exchange rates with crash risk.  

 Similarly, Panels A and B show the distributions with θ  = 0.3 have flatter right tails 

when sx increases from 0.05 to 0.13, suggesting that the probability of outlier positive 

returns becomes more significant. By keeping sx = 0.2 and increasing κ from 0.15 to 0.25 in 

Panel D, the exchange rate distribution with θ  = 0.3 does not change much from that in 
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Panel C, demonstrating that a stronger mean reversion is required to change the shape of the 

distributions when the mean θ  is close to the lower boundary. 

 

3. Calibration of Bitcoin exchange rate dynamics  

In this section, we examine whether the Bitcoin exchange rate dynamics can be 

characterised by the proposed exchange rate model. By using the log-likelihood function 

based on the PDF of Eq.(15), we can calibrate the model parameters of the process specified 

in Eq.(12). Regarding the sample period, the calibration is conducted by applying the 

maximum likelihood estimation (MLE) to daily Bitcoin exchange rate data from 19 July 2010 

to 9 November 2018. Figure 1 shows the Bitcoin exchange rates in S and the associated 

moving lower and upper boundaries with the parameters of 𝜂𝜂𝐿𝐿 = 0.59 and 𝜂𝜂𝑈𝑈 =  2.7 on the 

1-month moving average, and the transformed exchange rate in x of the time series.14 There 

was a sharp fall in early 2018 which caused the exchange rate to breach the lower boundary.  

Based on the 2-year rolling window estimations results, Figure 4 reported statistically 

significant estimates of the drift term κ (Panel A) with the respective z-statistic maintaining 

above the value of 1.96 (i.e., at the 5% significance level). κ decreased from 0.2 to about 0.05 

in 2015, indicating a weakened force in restoring the Bitcoin exchange rate towards its long-

term mean after the sharp rise (from US$50 to US$1000) and then the fall (back to US$200) 

during 2013 – 2015 as shown in Figure 1 (Panel A). The drift dropped further in early 2018 

when there was a shape fall in the exchange rate after a drastic surge in late 2017. As the 

Bitcoin exchange rate dropped towards its lower boundary during this period as shown in 

Figure 1 (Panel B), the mean-reverting force weakened with the Bitcoin crash. It is noted that 

the estimation of κ became insignificant in a very short period of time after the crash with κ 

                                              
14 The lower and upper boundaries correspond to about 1.69 and 7 standard deviations respectively. 
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not significantly different from zero. Subsequently, the estimation rebounded to the 0.04 level 

with the z-statistic higher than 1.96. 

Panel B of Figure 4 shows a steady estimated mean θ  with the values ranging 

between 0.2 and 0.35 and the corresponding z-statistic staying above the 1.96 level. Similar to 

the changes in κ, the estimation of θ became insignificant in a very short period of time after 

the crash in early 2018. Regarding the statistical significance, the mean reversion of the 

Bitcoin exchange rate dynamics, which can be expressed by κ and θ in the model, exhibited 

similar patterns.  

The volatility σx, which is displayed in Panel C of Figure 4, is estimated to take the 

value between 0.05 and 0.21. The corresponding z-statistic is much higher than 1.96, 

indicating that the estimated σx is highly significant. The results suggest that the estimation of 

the square-root-process part of the quasi-bounded dynamics is robust. The volatility 

decreased in 2015 after the exchange rate dropped to US$200 from US$800 in 2014. 

 As the probability leakage condition of )4/( 2 κθs x  can portray the crash risk of the 

Bitcoin exchange rate at the lower boundary, Panel D of Figure 4 displays this measure to 

identify periods with the leakage condition greater than 1. The measure was about 0.2 during 

2013 – 2015 when the Bitcoin exchange rate fell from about $1,000 to $300, suggesting that 

the crash risk was not immaterial while the Bitcoin exchange rate was bounded above the 

lower boundary. After the measure stayed at the level of 0.1, it rose sharply and breached 1.0 

in February 2018 with the existence of the leakage condition when the exchange rate fell 

sharply after a drastic surge close to $20,000 in December 2017. The fall in the exchange rate 

reflected that the demand for Bitcoin was expected to drop sharply as some economists, 

renowned investors, and finance professionals warned that rapidly increasing cryptocurrency 
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exchange rates could cause the “bubble” to burst.15 At the same time, the Chicago Board 

Options Exchange and Chicago Mercantile Exchange launched Bitcoin futures which allowed 

investors to increase their exposure in shorting Bitcoin. In addition, there was regulatory 

uncertainty about global coordination on how to regulate the cryptocurrencies. Officials were 

expected to debate the rise of Bitcoin at the G20 summit in Argentina in March 2018. 

Subsequently, different jurisdictions continue to focus on taking enforcement action on 

cryptocurrencies. For example, the North American Securities Administrators Association 

reported more than 200 active investigations by subnational agencies into initial coin 

offerings and other crypto-related investment products.16 The US Securities and Exchange 

Commission has cracked down on decentralised/ unregistered exchanges.17 Japan’s Financial 

Services Agency has tightened registration screening and monitoring of crypto-asset trading 

platforms.18 After the crash of the Bitcoin exchange rate, the measure returned to the level of 

0.15. 

In summary, we found empirical evidence that the MRSR process adequately 

describes the Bitcoin exchange rate dynamics by incorporating a feature of lower boundary 

representing the level for a crash. By using the MLE estimation and the 2-year rolling 

window, the Bitcoin exchange rate dynamics is calibrated according to the model, and the 

estimated parameters are found to be time-varying. The mean-reverting force, which is 

represented by the parameters κ and θ, is estimated to be present during the estimation period. 

The diminishing mean-reverting force in Bitcoin exchange rate and the existence of the 

leakage condition reflect that crash risk built up at the lower boundary during the Bitcoin 

crash in February 2018.  

                                              
15 See for example “Bitcoin's rollercoaster ride after hitting $17,000” at https://www.bbc.com/news/business-
42275564. 
16 http://www.nasaa.org/46226/nasaa-marks-cryptocurrency-anniversary-with-a-word-of-caution/ 
17 https://www.sec.gov/news/press-release/2018-258. 
18 https://www.japantimes.co.jp/news/2018/09/02/business/financial-markets/japan-fsa-tightens-screening-
cryptocurrency-exchanges 
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4. Dynamic relationships of Bitcoin exchange rate dynamics with Bitcoin 

transactions and currency risk reversals  

 To test the validity of incorporating money demand shocks and crash risk into the 

model, a co-integration analysis is used to test the relationships between the mean reversion 

in the Bitcoin exchange rate dynamics derived from the model and the Bitcoin transaction 

volume which indicates demand for Bitcoin; and the risk reversals of AUD and CAD.  

 

4.1 Relationships between mean reversion in Bitcoin exchange rate and transactions  

 The Bitcoin exchange rate and its transaction volume shown in the upper panel in 

Figure 5 exhibit that declines in the Bitcoin transaction volume often occurred along with 

depreciations of Bitcoin. According to Jermann (2018)’s argument, significant technological 

obstacles or regulatory measures which affect adoption of Bitcoin will trigger a demand 

shock on Bitcoin. The weakened demand will be reflected by lower transaction volumes and 

cause a sharp decline in the Bitcoin exchange rate that increases the Bitcoin crash risk. The 

Bitcoin exchange rate model expects a weakened mean-reverting force, i.e. lower κ and θ, in 

the exchange rate dynamics under such demand shock. 

 If there exists a long-run equilibrium relationship between the model parameters and 

Bitcoin transaction volume, their short-run dynamics can be studied through the following 

dynamical error-correction representation: 

 ∆𝑦𝑦𝑡𝑡 = 𝑎𝑎10 + 𝛼𝛼𝑦𝑦(𝑦𝑦𝑡𝑡−1 − 𝛽𝛽1𝑋𝑋𝑡𝑡−1) + ∑ 𝑏𝑏1𝑘𝑘∆𝑦𝑦𝑡𝑡−𝑘𝑘 + ∑ 𝑐𝑐1𝑘𝑘∆𝑋𝑋𝑡𝑡−𝑘𝑘 + 𝜀𝜀𝑦𝑦𝑡𝑡𝑘𝑘  ,𝑘𝑘                 (17) 

where ty  is either κ or θ at time t, and yα  is less than zero. 1−tX  is logarithm of Bitcoin 

transaction volume ln(txn_vol) at time t-1. Under this representation, the model parameters 

(as represented by ty ) will respond to stochastic shocks (represented by ytε ) and also the 
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long-run equilibrium deviation in previous period (i.e., 111 −− − tt Xy β ). The estimated speed of 

adjustment (i.e. yα ) should be negative and nonzero for the co-integration relationship to be 

validly specified by the error-correction. In terms of absolute magnitude, a larger estimated 

value of yα  reflects a higher sensitivity of ty  to the long-run equilibrium deviation in the 

previous period.  

 The estimation is conducted at a weekly frequency starting from 13 November 2015 

to 9 November 2018 when the transaction volume was sufficient and well above 100,000.19 

The week-end data for the model parameters κ and θ based on the calibration results in 

section 3 are used. Table 1 reports the summary statistics, correlation coefficient and the 

respective Augmented Dickey–Fuller (ADF) test results for the variables both in levels and 

first differences. The ADF test results reflect that the existence of unit root for κ, θ and 

logarithm value of the Bitcoin transaction volume in level form cannot be rejected at the 10% 

significance level. Nonetheless, the respective ADF tests for the first differenced variables 

indicate no presence of unit root at the 1% level. Thus, the above results suggest that these 

three variables are all co-integrated of same order I (i.e., I(1)).  

 We adopt the single-equation test proposed by Engle and Granger (1987) to test the 

co-integration relationship between κ, θ and the Bitcoin transaction volume. This Engle–

Granger single-equation test essentially examines whether the residuals of the linear 

combinations among i.) κ and the Bitcoin transaction volume; ii.) θ and the Bitcoin 

transaction volume are stationary. Table 2 reports the co-integration tests between the 

transaction volume and κ, θ, with the ordinary least squared regression residuals being tested 

by both the ADF and Phillips-Perron tests. 20  Overall, the results favour the alternative 

                                              
19 The transaction volume data are from https://blockchain.info/. 
20 The critical values of the tests are based on MacKinnon (1996) and the lag length is determined by the Akaike 
information criterion. In addition, taking into account of the possibility of a regime shift in the co-integration 
model, we also test the null hypothesis of no co-integration relationship with the residual-based tests derived in 
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hypothesis of the presence of at least one co-integrating vector among Bitcoin transaction 

volume and the model parameters (κ and θ) respectively, given the statistical significances 

for κ and θ at the 5% or 1% level. 

 Table 3 shows that the co-integrating vectors (expressed by β) between the Bitcoin 

transaction volume and κ, θx are estimated to be 0.0191 and 0.0445 at the 1% or 10% level 

respectively. The estimated positive coefficients indicate that a higher Bitcoin transaction 

volume would increase κ and θ, holding other things constant. Intuitively, the positive 

relationship suggests that when the transaction volume declines, the crash risk of Bitcoin 

increases, which is reflected from the weakened restoring force of the Bitcoin exchange rate 

dynamics.  

 As reported in Table 4, the estimates of the speed of adjustment (that is, αy) for κ and 

θ are -0.1729 and -0.0989 respectively, which are negative but greater than -1, reflecting that 

the model parameters will subsequently adjust to restore the long-run equilibrium. This 

demonstrates a valid error correction specification and the presence of a self-restoring force, 

which will close the spread of the link between the mean reversion parameters (κ and θ) and 

the Bitcoin transaction volume.  

 

4.2 Relationships between mean reversion in Bitcoin exchange rate and currency risk 

reversals 

 A co-integration analysis is used to examine whether crash risk of Bitcoin is 

adequately incorporated into the model such that its exchange rate dynamics, i.e. the mean 

reversion, is related to crash risk anticipated in the market. Given that there is no liquid 

Bitcoin option market and Bitcoin is expected to share a characteristic of currencies with 

                                                                                                                                             
Gregory and Hansen (1996) for the Engle-Granger regressions in Tables 2 and 5. The results from the Gregory-
Hansen test also suggest the null hypothesis for no co-integration relationship among these interest variables is 
rejected at 5% or 10% significance level. The results are available upon request. 
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crash risk in which the corresponding prices are reflected from risk reversals, we use the risk 

reversals of AUD against the Japanese yen (JPY) and CAD against USD in the analysis to 

study their relationship with the mean reversion in the Bitcoin exchange rate dynamics. The 

AUD/JPY and CAD/USD are currency pairs commonly used for carry trades being studied 

by Brunnermeier et al. (2009) showing that carry trades are subject to crash risk. In carry 

trades, exchange rate movements between high interest rate and low interest rate currencies 

are negatively (left) skewed. The price of currency crash risk is reflected by the price of the 

risk-reversal. Lustig et al. (2011) find the effects of broadly defined ‘‘global risk aversion’’ 

on the profitability of carry trades. Jurek (2014) derives a measure of crash risk from 

currency options and finds that exposure to a currency crash can be used to explain at most 

one-third of the portion of carry trade returns. Several studies, including Burnside et al. 

(2011), Lettau et al. (2014) and Dobrynskaya (2014), explain high returns to carry trades and 

investigate downside factors related to currency crashes.  

Given that currency crash risk is reflected by currency option risk reversals, a more 

negative risk reversal of a currency suggests that exchange rates of hedging against downside 

risk (crash risk) of the currency are higher than its up-side risk. In line with the Bitcoin 

exchange rate dynamics, the exchange rate crash risk heightens when the mean-reverting 

force for the exchange rate diminishes, indicating rising probability leakage for the rate 

across the lower boundary. Therefore, we postulate that the currency risk reversals are 

positively correlated with the mean-version of the Bitcoin exchange rate. The middle and 

lower panels in Figure 5 show the Bitcoin exchange rate and the 1-month 25-delta risk 

reversals of AUD against JPY as well as CAD against USD respectively. It is particularly 

noticeable that AUD/JPY risk reversal displays strong positive relationships with the Bitcoin 

exchange rate when there are substantial declines in the Bitcoin exchange rate during the 

Bitcoin crash in early 2018.  
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We apply a similar methodology as in section 4.1 to examine whether there is a long-

run relationship between the model parameters (κ and θ) and the two currency risk reversals. 

Their short-run representations in a dynamical error-correction form are essentially the same 

as in Eq.(17), with the currency risk reversals of AUD (AUD_rr) and CAD (CAD_rr) 

respectively at time t-1 denoted by 1−tX  and the estimation sample using weekly data starting 

from 13 November 2015 to 9 November 2018. 21  The summary statistics, correlation 

coefficients and the ADF test statistics for the time series of the four variables (κ, θ, AUD_rr 

and CAD_rr) in levels and changes are also reported in Table 1. The ADF test fails to reject 

at the 10% level the presence of a unit root for these variables in level, but rejects the same 

hypothesis for the first difference at 1% level or less, suggesting that the two currency risk 

reversals and model parameters (κ and θ) are I(1). 

Table 5 reports the co-integration results for the AUD and CAD risk reversals with 

the model parameters in the two panels respectively, of which the Engle-Granger single-

equation test is applied again. The results of the ADF and Philips-Perron tests reject the 

residuals from the regressions of two risk reversals with κ and θ   to have a unit root at the 5% 

and below, except for the ADF test for CAD_rr and θ at the 10% level. Therefore, we favour 

the alternative hypothesis that there is at least one co-integrating vector among each of the 

two risk reversals with the model parameters κ and θ. 

         The two panels in Table 6 report the estimated co-integrating vectors between the 

AUD (and CAD) risk reversal and the mean reversion parameters κ and θ. The positive 

coefficients β for κ and θ are 0.0057 (0.0177) and 0.0125 (0.0333) respectively at the 5% or 

10% significance level, suggesting that a more negative AUD (CAD) risk reversal is 

correlated to decreases in κ and θ. Given that the mean reversion in the Bitcoin exchange rate 

dynamics weakens when the Bitcoin crash risk increases, the positive relationship illustrates 
                                              
21 The risk reversal data are from Bloomberg. 
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that market participants expect the AUD/JPY and CAD/USD exchange rates exhibit certain 

degree of co-movement with the Bitcoin exchange rate with material crash risk. When there 

is risk aversion against Bitcoin, such expectation may generate strong demand for put options 

on AUD and CAD to hedge against potential loss of long AUD and CAD (carry-trade) 

positions funded by JPY and USD respectively, and cause more negative AUD and CAD risk 

reversals. Table 7 shows the estimates of αy for κ and θ are negative but greater than -1, 

reflecting that there is a restoring force to subsequently adjust κ and θ  towards their long-run 

equilibria. 

 The results of the co-integration analysis show the mean reversion is positively co-

integrated with the Bitcoin transaction volume, suggesting that demand for Bitcoin is 

adequately captured by the proposed fundamental dynamics. The AUD and CAD risk 

reversals are also shown to have a positive relationship with the mean reversion, supporting 

the incorporation of crash risk and the use of the asymmetric mean-reverting fundamental 

shock in the model. 

 

5. Conclusion 

 We derive the Bitcoin exchange rate dynamics by solving the exchange rate equation 

of the standard flexible-price monetary model to investigate whether Bitcoin behaves like a 

currency. A Bitcoin crash occurs when its exchange rate breaches a moving lower boundary 

where a smooth-pasting boundary condition is imposed for the equation. The boundary 

condition ensures a crash is rare and assumes market participants, including manipulators 

who hold substantial amounts of Bitcoin for investment, will defend the Bitcoin exchange 

rate which falls close to the boundary.  

 The fundamental dynamics in the exchange rate equation is driven by an asymmetric 

mean-reverting fundamental shock which can be attributed to a money demand shock. The 
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solution of the equation shows the Bitcoin exchange rate follows a mean-reverting square-

root process, which is quasi-bounded at the lower boundary and can breach the boundary 

with a weakened mean reversion. The exchange rate solution generates both left- and right-

skewed exchange rate distributions consistent with empirical observations. The empirical 

results using market data suggest that the model can describe the Bitcoin exchange rate 

dynamics. While the exchange rate was bounded above the boundary during most of the time, 

the condition for breaching the boundary was met in early 2018 when the rate fell sharply. 

The crash reflected that the demand for Bitcoin was expected to fall sharply after rapidly 

increased cryptocurrency exchange rates and uncertainty about global coordination on how to 

regulate the cryptocurrencies. 

 The co-integration tests show that the mean reversion in the Bitcoin exchange rate 

dynamic are positively co-integrated with the Bitcoin transaction volume which represents 

money demand; and with the risk reversals of AUD and CAD. The results suggest that money 

demand for Bitcoin is adequately captured by the proposed fundamental dynamics in the 

standard flexible-price monetary model, and support the incorporation of crash risk and the 

use of the asymmetric mean-reverting fundamental shock in the model. The analysis shows 

that the Bitcoin exchange rate shares some characteristics of a currency with crash risk. 
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Figure 1: Bitcoin exchange rate in S-scale and x-scale, and upper and lower boundaries in S 
with 𝜂𝜂𝐿𝐿 = 0.59 and 𝜂𝜂𝑈𝑈 =  2.7 on 1-month moving average. 
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Figure 2: Relationship between Bitcoin exchange rate (S) and fundamental (ν) based on 
Eq.(11) with B0 = 1 and 1.5. 
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Figure 3: Bitcoin exchange rate distributions with different values of model parameters sx, κ and θ under the normalisation on 1/11/2018. 
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Figure 4: Estimated κ (Panel A), θ (Panel B), sx (Panel C), corresponding z-statistic, and leakage ratio ( xx κθs 4/2 ) with 1-month moving 
average using 2-year rolling window. 
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Figure 5: Logarithm of Bitcoin exchange rate and transaction volume, AUD/JPY risk 
reversal (AUD_rr) and CAD/USD risk reversal (CAD_rr). 
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Table 1: Descriptive statistics of Bitcoin transaction volume, AUD and CAD risk reversals,κ and θ. 
 
Level κ 

 
θx  

AUD_rr  CAD_rr 
 

ln_txn  
Mean 0.0560   0.2432   -2.8278   -0.6777   12.3718   
Median 0.0547   0.2486   -2.6300   -0.6200   12.3446   
Maximum 0.0845   0.2876   -1.3650   -0.2150   12.8751   
Minimum 0.0341   0.2063   -5.1300   -1.4450   11.9392   
Std. Dev. 0.0142   0.0197   0.8695   0.2973   0.1913   
Skewness -0.0273   -0.1119   -0.4116   -0.6062   0.2161   
Kurtosis 1.7614   1.8843   2.2820   2.4735   2.7490   
Observations 157  157  157  157  157  
           
ADF test statistics -2.086   -1.575   -2.772   -1.278   -2.127   
           
Correlation with κ     -0.0580   -0.0027   0.4509  

 
Correlation with θx     0.8122   0.6881   0.3810   
           
Change κ 

 
θx  

AUD_rr  CAD_rr 
 

ln_txn  
Mean -0.0003   0.0003   0.0078   0.0029  

 
0.0032   

Median 0.0000   0.0003   0.0475   0.0100  
 

0.0067   
Maximum 0.0265   0.0159   0.9800   0.2800  

 
0.2241   

Minimum -0.0155   -0.0124   -1.4975   -0.3650  
 

-0.1978   
Std. Dev. 0.0045   0.0036   0.3935   0.0996  

 
0.0579   

Skewness 0.9343   0.1378   -0.5270   -0.6151  
 

-0.1727   
Kurtosis 13.1476   5.9495   4.3044   5.2799  

 
5.0815   

           
ADF test statistics -13.249  *** -8.482  *** -9.368  *** -9.417  *** -5.299  *** 

           
Correlation with Δκ     0.1323   0.1334   -0.0544  

 
Correlation with Δθx     -0.0515   -0.0120   0.1998  

 
                      

 
1. AUD_rr (CAD_rr) is the 1-month 25-delta risk reversal of AUD (CAD) against JPY (USD) whereas (ln_txn) is the natural logarithm of two-week moving average of the Bitcoin transaction 
volume. The correlations for level of the variables are the correlations with κ and θ, and those for change are the correlation with Δκ and Δθ. 
2. The ADF test checks the null hypothesis of unit root existence in the time series, assuming nonzero mean in the test equation, with lag length determined by Akaike information criterion up 
to maximum length of 4. *** indicates significance at levels of 1% respectively.  
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Table 2: Tests for co-integration of Bitcoin transaction volume (ln_txn), κ and θ. 
 

 Engle-Granger single-equation test2 

(Null hypothesis: residual has an unit root) 
 

On ln_txn ADF test statistic Phillips-Perron test statistic 

Equation:     

κ -3.000 *** -2.904 ** 

θx -3.828 *** -3.810 *** 

Notes:  

1. ***, ** and * indicate significance at the 1% ,5% and 10% level respectively. 

2. The Engle-Granger single-equation test (ADF and Phillips-Perron tests) examines the null hypothesis that the residuals of the regressions of κ on ln_txn, and θ on ln_txn plus one 

dummy specified as in Table 4 respectively, given that κ, θ and ln_txn are non-stationary. The test assumes the existence of zero mean of the residuals in the test equation. The critical 

value of the test is based on MacKinnon (1996). 

3. Alternatively, Gregory and Hansen (1996) derived residual-based tests for testing cointegration with regime shifts. We test the residual from the regression of θ on ln_txn alone based 

on the Gregory-Hansen cointegration test for the type of regressions with a level shift. The results based on ADF test statistics (Philip test statistic based on Zt) also indicate that the null 

hypothesis for no cointegration between the variables is rejected at 10% (5%) significance level (with the lag length determined by Akaike information criterion up to maximum length of 

4). The identifications of break date vary across the types of shift models chosen for the test, our choice of starting date for the dummy specified as in Table 4 is quite close to the date 

identified by the Gregory-Hansen test based on a regime-shift-type model. 
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Table 3: Estimates of long-run coefficient (β) for Bitcoin transaction volume (ln_txn),κ and θ. 

Dependent variable:   κt     θxt     

        
ln_txnt  

0.0191  *  0.0445  *** 
 

                

 

Notes: *** and * indicate significance at a level of 1% and 10% respectively. The coefficients are estimated by using the 

Engle-Granger single-equation and the coefficients of the short-run dynamic are in Table 4. 

 
 
 
Table 4: Estimation results of the short-run dynamics for Bitcoin transaction volume (ln_txn), κ and 
θ. 
 
Dependent variable:   ∆κt     ∆θxt   

       
Constant 

 
-0.0303    -0.0314  * 

Speed of adjustment 
 

-0.1729  ***  -0.0989  *** 
∆ln_txnt-1  

-0.0075    -0.0041   
∆ln_txnt-3  

0.00614   -0.0113  ** 
∆κt-1  

0.0309      
∆θxt-4     -0.1486  ** 

       dummy_bitcoin_crash 
 

-0.0042  ***    

dummy_bitcoin_optimism 
    0.0026  ** 

              
 

Notes: ***, ** and * indicate significance at a level of 1%, 5% and 10% respectively. For the short-run equation of 

(ln_txn) and κ, a dummy variable for the period after the Bitcoin crash (taking a value of 1 since February 2018) is added 

for controlling a lower level of κ when the Bitcoin exchange rate declined from peak value. The dummy is statistically 

significant at the 1% level. For the short-run equation of ln_txn and θ, we add a dummy variable for the period for the 

Bitcoin optimism during 1 June 2017 to 9 November 2018 for controlling the fast growth in θ due to market optimism 

over Bitcoin adoption. The dummy is again statistically significant at the 5% level. The coefficients are estimated by 

using the Engle-Granger single-equation and the long-run coefficients are in Table 3. 
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Table 5: Tests for co-integration of AUD and CAD risk reversals,κ and θ. 
 

 Engle-Granger single-equation test2 

(Null hypothesis: residual has an unit root) 
 

On AUD_rr  ADF test statistic Phillips-Perron test statistic 

Equation:     

κ -3.866 *** -4.533 *** 

θx -5.453 *** -5.232 *** 

 

On CAD_rr ADF test statistic Phillips-Perron test statistic 

Equation:     

κ -5.181 *** -5.088 *** 

θx -2.808 * -2.914 ** 

 

Notes:  

1. ***, ** and * indicate significance at the 1% ,5% and 10% level respectively. 

2. The Engle-Granger single-equation test (ADF and Phillips-Perron tests) examines the null hypothesis that the residuals of the regressions of κ on AUD_rr (CAD_rr) plus a dummy for 
period after the Bitcoin crash, and θ on AUD_rr (CAD_rr) respectively, given that κ, θ and AUD_rr (CAD_rr) are non-stationary. The test assumes the existence of zero mean of the 
residuals in the test equation. The critical value of the test is based on MacKinnon (1996). 

3. Alternatively, Gregory and Hansen (1996) derived residual-based tests for testing cointegration with regime shifts. We test the residual from the regression of θ on ln_txn alone based 
on the Gregory-Hansen cointegration test for the type of regressions with a level shift. The results based on ADF test statistics (Philip test statistic based on Zt) also indicate that the null 
hypothesis for no cointegration between the variables is rejected at 5% significance level (with the lag length determined by Akaike information criterion up to maximum length of 4).  
The break date identified by the Gregory-Hansen test is very close to the starting date for the dummy specified for the Bitcoin crash, regardless of the type of shift models considered. 
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Table 6: Estimates of long-run coefficient (β) for AUD and CAD risk reversals,κ and θ. 

Dependent variable:   κt   
θxt     

        
AUD_rrt  

0.0057  **  0.0125  * 
 

                

        
CAD_rrt  

0.0177  ***  0.0333  * 
 

                

Notes: ***, ** and * indicate significance at a level of 1%, 5% and 10% respectively. The coefficients are estimated by 

using the Engle-Granger single-equation and the coefficients of the short-run dynamic are in Table 7. 

 

 

 

Table 7: Estimation results of the short-run dynamics for AUD and CAD risk reversals,κ and θ. 
 

  
(With AUD_rr)  (With CAD_rr)  (With AUD_rr)  (With CAD_rr) 

 
Dependent variable:   ∆κt   

∆κt   
∆θxt   

∆θxt  
  

              
Constant 

 
0.0164  ***  0.0164  ***  0.0167  **  0.0144  **  

Speed of adjustment 
 

-0.2067  ***  -0.2162  ***  -0.0584  **  -0.0523  **  
∆AUD_rrt-1  

-0.0007       -0.0011       
∆CAD_rrt-1     -0.0030       -0.0021    
∆κt-1  

0.0221    0.0354          
∆θxt-4        -0.1771  ***  -0.1700  ***  
              
dummy_bitcoin_crash 

 
-0.0066  ***  -0.0070  ***        

dummy_currency_turmoil 
       -0.0021  *  -0.0023  *  

                            
Notes: ***, ** and * indicate significance at a level of 1%, 5% and 10% respectively. For the short-run equation for the 

risk reversals and κ, a dummy variable for the period after the Bitcoin crash (taking a value of 1 since February 2018) is 

added separately in each equation for controlling a low level of κ when the Bitcoin exchange rate declined from the peak. 

It is statistically significant at the 1% level. For the short-run equation for the risk reversals and θ, a dummy variable for 

the period from 1 November 2015 to 15 February 2016 for controlling the very negative risk reversals due to the short-

lived turmoil in the exchange rate markets of some commodity currencies and emerging economies. The coefficients are 

estimated by using the Engle-Granger single-equation and the long-run coefficients are in Table 6. 
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