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Abstract 
 

This paper explores frequency-specific implications of measurement error for the design of 

stabilization policy rules. Policy evaluation in the frequency domain is interesting because the 

characterization of policy effects frequency by frequency gives the policymaker additional information 

about the effects of a given policy. Further, some important aspects of policy analysis can be better 

understood in the frequency domain than in the time domain. In this paper, I develop a rich set of 

design limits that describe fundamental restrictions on how a policymaker can alter variance at 

different frequencies. I also examine the interaction of measurement error and model uncertainty to 

understand the effects of different sources of informational limit on optimal policymaking. In a linear 

feedback model with noisy state observations, measurement error seriously distorts the performance 

of the policy rule that is optimal for the noise-free system. Adjusting the policy to appropriately account 

for measurement error means that the policymaker becomes less responsive to the raw data. For a 

parameterized example which corresponds to the choice of monetary policy rules in a simple AR (1) 

environment, I show that an additive white noise process of measurement error has little impact at low 

frequencies but induces less active control at high frequencies, and even may lead to more aggressive 

policy actions at medium frequencies. Local robustness analysis indicates that measurement error 

reduces the policymaker's reaction to model uncertainty, especially at medium and high frequencies. 
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1. Introduction 

Measurement error is well understood to exist in most macroeconomic data. The fact that data are ex 

post revised from time to time indicates how common measurement error can be. For example, the 

U.S. Bureau of Economic Analysis monthly releases its updated measure of GDP and price indices of 

recent quarters. In 1983-2009, the average revision without regard to sign is about 1.1% for current-

dollar quarterly GDP and 1.3% for real quarterly GDP [Fixler et al (2011, Page 12)]. Historical data are 

also ex post revised based on more complete information, as well as changes to methodology 

intended to more accurately reflect economic activities. About every five years, the U.S. government 

issues comprehensive revisions to past estimates of GDP. The latest July 2009 revisions reach back 

to 1929.
1
 This is of course hardly unique to the United States. One striking example is China's 2005 

GDP revision. In light of the country's first nationwide economic census, China's statistics bureau 

revised its measure of 2004 national GDP upward by 16.8%. This substantial revision moved China 

above Italy as the sixth-largest economy in the world in 2004. For variables that are defined as the 

differences between actual and baseline values, the measurement problems become even acuter 

under structural change when baseline values may vary unpredictably. As an example, Orphanides et 

al (2000) and Orphanides and van Norden (2002) empirically documented errors in the measurement 

of the output gap for the U.S. economy, a part of which arise from the unobservable baseline of 

potential GDP. This type of data noise is serious when it is difficult to distinguish temporary shocks 

from permanent changes. 

Monetary policy must be made in real time and so necessarily uses noisy data. Standard policy rules 

represent mappings from current and past economic conditions to monetary policy instruments such 

as the money supply or interest rates. For example, the famous Taylor (1993) rule is a linear mapping 

of observations of inflation and the output gap to the federal funds rate. At the time of the interest rate 

choice, the data available are therefore preliminary and with considerable measurement noise. In 

short, policymakers must live with and account for measurement error. But how should measurement 

error affect policy choices? How does measurement error affect the robustness properties of policy 

rules when the knowledge about fundamental economic structures is imperfect? Does this information 

constraint justify policy cautiousness, and if it does, how? Considering the possibly large welfare costs 

and long-lasting economic consequences associated with inflation and economic fluctuations, these 

questions are important in assessing alternative monetary policies. 

To address these issues, this paper contributes to the policy evaluation literature by investigating the 

implications of measurement error for the design of stabilization policy rules in the frequency domain. 

As pointed out by Orphanides (2003), this informational limitation on the true macroeconomic 

                                                           

1
  The Federal Reserve Bank of Philadelphia maintains a real-time dataset of the U.S. economy which consists of 23 

quarterly macroeconomic variables from 1965 to the present and includes historical revisions to these variables in great 

details [Croushore and Stark (2001)]. 
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variables facing policymakers has been noticed in policy analysis since at least Friedman (1947). 

Orphanides' (2001, 2003) own work largely reignites research interest in monetary policy evaluation 

with noisy information; recent contributions include Aoki (2003), Coenen et al (2005), Croushore and 

Evans (2006), Molodtsova et al (2008), and Orphanides and Williams (2002) among others. Many of 

these studies focus on the use of real-time data and evaluate the performance of real-time policies 

against ex post revised data.
2
 However, there has yet to be any systematic examination of the role of 

measurement error on policy choice in the frequency domain. Frequency domain approaches have 

been part of macroeconomic analysis for several decades – Hansen and Sargent (1980), Whiteman 

(1985, 1986), and Sargent (1987) are standard examples – and have recently experienced a 

resurgence in the context of policy evaluation [e.g., Brock and Durlauf (2005), Brock et al (2008a) and 

Hansen and Sargent (2008, Chapter 8)]. The current paper develops strategies to characterize 

frequency-specific performance of alternative policy rules in exposure to data noise. 

There are significant reasons why frequency-specific analysis is important for policy evaluation. First, 

a full characterization of policy effects frequency by frequency is informative to policymakers. In the 

frequency domain, stabilization policy may be understood as determining the spectral density matrix 

of the state variables concerned. A full understanding of the effects of a policy rule requires evaluating 

how cycles at all frequencies are reshaped by the policy. When variances at some frequencies have 

greater social welfare costs than variances at other frequencies, it is necessary to know frequency-

specific performance of alternative policies in order to make sound policy recommendations. This 

differential weighting of variance by frequency will occur, for example, when the social loss function 

involves non-time-separable preferences [Otrok (2001)]. In the case of committee policymaking, it is 

possible that some committee members care more about performance at low frequencies while others 

care more about performance at high frequencies, hence this information is needed to allow for 

successful group decisionmaking. 

Second, a number of properties of stabilization policies can really only be understood in the frequency 

domain. Policies that perform well at all frequencies are naturally appealing to policymakers 

regardless of their preferences. However, it turns out that such policies do not exist. Even if a policy 

reduces aggregate variance relative to some baseline, for the framework I study this will necessitate 

increasing variance at some frequencies in exchange for reducing variance at others. These tradeoffs 

are known as design limits. They were first identified by Bode (1945) in the engineering literature of 

linear system control and were introduced into the study of feedback policy rules in macroeconomics 

by Brock and Durlauf (2004, 2005) with extension to the vector case with forward-looking elements 

developed by Brock et al (2008b). These design limits are sufficiently complicated in the time domain 

as to render use impractical outside of the frequency domain. 

                                                           

2
  For example, Orphanides et al (2000) and Orphanides and van Norden (2002) showed that measurement errors are 

significantly large in real-time estimates of the output gap so as to render the estimates highly unreliable as guides to 

policymaking if data noise is not appropriately accounted for. 
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In this direction, the current paper contributes to the existing literature by studying design limits in the 

presence of measurement error. As such, the paper extends the study of design limits to the 

empirically salient case in which a policymaker is ignorant the true state of the economy due to 

measurement imperfections. In the linear feedback control system, the presence of measurement 

error creates new design limits than those that have been identified. Intuitively, a feedback policy rule 

introduces undesirable side noise into the system responding to noisy data, when it exerts influences 

on the state variable to stabilize the economy. And when the responses are aggressive, the side 

noise effects are also strong. Therefore, good variance-reducing control has to be traded off against 

suppression of side noise. Put differently, facing noisy data the policymaker has to make tradeoffs 

across frequencies as well as between the channels of stabilizing control effects and side noise 

effects. These constraints are summarized by two concepts – Bode's (1945) integral formula and the 

complementary principle [Skogestad and Postlethwaite (1996, Chapter 5)], and are thus amenable to 

analytical treatment. This paper is the first to put them to work in the practice of policy evaluation. 

I further examine the effects of measurement error on policy design in the presence of model 

uncertainty. When policymakers are uncertain about the true model of the economy, the conventional 

wisdom is that policy reactions to the observed state variables should be less aggressive; see 

Brainard (1967) for a classic example with parameter uncertainty and a known probability density on 

the parameters, and Giannoni (2002) for a recent case of parameter uncertainty but unknown 

distribution. However, little has been known about policy behavior when the observations are also 

noisy. Allowing for both sources of uncertainty – measurement error and model uncertainty, the 

analysis presented in this paper sheds light on robustness of efficient policy rules that recognize the 

presence of data noise. Following the literature on robustness pioneered by Hansen and Sargent 

(2001, 2003, 2008), I assume that the true model is local to a baseline model and employ the minimax 

decision criterion to evaluate policies against potential deviations from the baseline. The minimax 

criterion is appealing in this context because deviations from the baseline are, given the assumption 

of local model uncertainty, empirically indistinguishable so that, unlike in Brainard (1967), one has no 

basis outside of prior beliefs for assigning probabilities to alternative models. This paper models 

potential model misspecifications as variations of the spectral density function of the state variable, 

which conceptually distinguishes from Giannoni's (2002) parameter uncertainty. This nonparametric 

approach to model uncertainty allows one to apply design limit results in a straightforward fashion to 

construct robust feedback policies, i.e. policies that work well regardless of which element of the 

model space is the true model. 

Concretely, this paper focuses on linear feedback control rules in a one-equation backwards-looking 

model with single control input.
3
 The control is chosen by a policymaker to stabilize the economy in 

                                                           

3
  Central banks may also need to account for the effects of policies on expectations. Thus, it is important to address 

measurement error issues in a forward-looking framework as well. I leave this problem for future research. However, as 

Fuhrer (1997) has shown, expectations of future prices are empirically unimportant in explaining price and inflation 

behavior. In light of such evidence, the attention of this paper to backward looking models is natural and also relevant. 
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the sense of minimizing the variance of the state variable of interest. I show how measurement error, 

which produces a stochastically perturbed optimization problem with noisy control in the time domain, 

can be represented as a deterministic perturbation in the frequency domain. Further, each feedback 

rule can be associated with a sensitivity function in the frequency domain which describes how the 

policy shapes the spectral density of the state variable of interest. I characterize how the sensitivity 

function behaves differently in the presence and absence of data noise to show the frequency-specific 

effects of measurement error on optimal and robust policies. 

Different policy scenarios are considered and compared. First, the policymaker simply ignores the 

measurement issue and naively adopts the optimal policy for the standard noise-free problem. I show 

that this leads to a policy rule that is excessively aggressive. Failing to acknowledge data noise 

causes undesirable side effects with an activist policy. Second, I consider the case in which the 

policymaker is aware of measurement error and uses this information to adjust to an efficient policy 

rule design. The policymaker is more cautious in this case, but the adjustments in optimal policy 

relative to the noise-free case differ across frequencies. Third, I examine the situation in which the 

policymaker filters the noisy data to reduce measurement inaccuracy and applies the noise-free 

optimal rule to the filtered data. The Wiener filter used in this scenario effectively accounts for 

measurement error, as shown in the numerical exercises. Fourth, following Brock and Durlauf (2005), 

I perform local robustness analysis by approximating the robust policy solution with a small level of 

model uncertainty around the equilibrium solution to the baseline model using the minimax criterion. 

This worst-case study is modeled as a zero-sum game by introducing an adversarial agent who 

selects a model from a small neighborhood of the baseline model to maximize the loss function 

against the policymaker. I show the differences between the robust and standard solutions to illustrate 

the interaction between concerns over measurement noise and model uncertainty in policymaking. 

Finally, for numerical implementation and more specific conclusions on monetary policy, I apply the 

theoretical analysis to an AR(1) monetary model, which is a variant of the two-equation Keynesian 

model. I start with a simple rule in which the control only depends on the current state; lagged terms 

are excluded. This is interesting because the effects of measurement error can be characterized by 

one single coefficient parameter in this simple case. Also, simple instrument rules have received 

much attention in related literature. The optimal policy adjusted for the measurement turns out to be 

less responsive than a naive policy that assumes measurement is exact. In frequency domain, 

adjusting the policy design or filtering the data to account for measurement error, which is assumed to 

be a white noise process, the policymaker generally becomes less responsive to raw data 

observations; yet, the data filtering method outperforms the policy adjusting approach. Measurement 

error has little impact at low frequencies but results in more cautious policy reaction at high 

frequencies, and even may lead to more active control at medium frequencies. Without measurement 

error, model uncertainty has similar policy implications; it has little effect at low frequencies, reduces 

the strength of control at high frequencies, and increases control at medium frequencies. Therefore, 

Brainard's (1967) intuition that model uncertainty leads to less effective policies follows in the sense of 

the total effect over the whole frequency domain, but fails at medium frequencies where the robust 
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control is actually becoming more active. Introducing measurement error, however, the policymaker 

will reduce his reaction to model uncertainty, especially at medium and high frequencies. In other 

words, facing various types of uncertainty the policymaker's reaction to one type of uncertainty is 

weakened by his attention to another type, although such effects differ across frequencies. 

2. General Framework 

To develop a general framework for policy analysis in the presence of measurement error, I start by 

formulating the policymaker's problem in the frequency domain. Then, I turn to consider scenarios in 

which the policymaker reacts to mismeasurements differently, and evaluate policy performance in 

each case. 

2.1 Policy Evaluation in the Frequency Domain 

Suppose that the economy is governed by a simple scalar version of a backwards-looking dynamic 

system and the policymaker wishes to stabilize the economy in the sense of minimizing the variance 

of the economic variable of concern. The system is described as  

                                                                      (1) 

where    is the unobserved random variable of interest with measure   
 , both of which have zero 

means, and      is a process of fundamental innovations with variance   
 . The control      is 

restricted to be a linear feedback rule and only feeds back to current and past observations, rather 

than underlying true realizations, of variable   :  

              
                                                        (2) 

When there is no measurement error in the data,   
     for any  . Otherwise, I model measurement 

error as an additive process      to     , that is,  

   
                                                                          (3) 

Here,      is another process of fundamental innovations orthogonal to     ,               , and 

hence uncorrelated with     . The variance of    is   
 . The linear representation of    does not require 

that that measurement error is white noise, as is usually assumed without justification. Thus,      may 

be autocorrelated. The objective of stabilization policy design is to minimize the unconditional 

variance of   ,  

          
                                                                  (4) 
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by choosing an optimal rule     . I consider this very simple loss function to focus on the study of 

measurement error effects, but the analysis can be extended to the case of more complicated 

preferences without difficulty, especially when I move to solve the problem in the frequency domain. In 

the presence of measurement error, the challenge for the policymaker is that he only observes   
  but 

needs to stabilize   . If there is no such data limitation, he simply solves a standard feedback control 

problem with a single input and a single output. 

The lag polynomials     ,     ,     ,     , and      are assumed to have only nonnegative-power 

terms. This one-sided specification rules out any forward-looking element in the model, and allows us 

to avoid complexities that arise from the formation of expectations. Some studies, for example, Fuhrer 

(1997), have shown that expectations elements are not empirically important in explaining the 

dynamics of inflation and output. Previous work on measurement error such as Orphanides (2001, 

2003) also uses backwards-looking models. 

In the time domain, when the control is set to zero,       , the uncontrolled state variable   
   has a 

moving-average representation as  

   
                                  (5) 

I assume that the uncontrolled model (5) itself is stationary. This is without loss of generality because 

the unit root can be removed from a nonstationary model before we take it to consider the policy 

question. On the other hand, when a noisy feedback rule      as specified by (2) is applied, the 

controlled state variable   
  takes the form of  

   
                

              (6) 

where      
 

      
 and      

    

      
, with                            . Stabilization imposes 

the invertibility of      and       . It is clear from equation (6) that there are two sources of volatility 

for the controlled state variable   
 : original system and measurement error. Specifically, there are 

irreducible stochastic components in the state variable, and the feedback control causes undesirable 

side noise effects when responding to noisy data. 

I use the following notations to facilitate work in the frequency domain. The Fourier transform of the 

coefficients of an arbitrary lag polynomial     ,         ∑   
       

    , is denoted as     ,   

      . I define the sensitivity function      and the complementary sensitivity function      in the 

frequency domain associated with a given feedback rule      as the Fourier transforms of      and 

    , respectively. Thus,  
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  (7) 

where                                           . In general, both      and      are complex 

functions. They sum up to one at each frequency in       ,  

                  (8) 

This is known as the complementary principle [Skogestad and Postlethwaite (1996, Chapter 5)]. 

To specify a feedback rule      in the time domain is equivalent to characterizing the associated      

and      in the frequency domain. Notice that all elements except      in the expressions of      

and      are exogenously determined. Thus, a chosen feedback rule      will determine      and 

    , and in turn determine their Fourier transforms      and     . On the other hand, the 

coefficients of the lag polynomials      and     , and therefore those of     , can be discovered from 

     and      by the Fourier recovery formula [Priestley (1981, Chapter 4)]. Therefore, one can 

always infer the feature of a linear feedback rule by reverse engineering, once clear about the 

behavior of its sensitivity function. For the rest of the paper, instead of deriving feedback policy rules 

directly, I will focus on the characterization of their sensitivity functions to study the frequency-specific 

implications of measurement error. 

Every second-order stationary stochastic process admits a spectral density function that describes 

how the variance of a time series is distributed with frequency. Let       ,        , and       be the 

spectral density functions of controlled state variable   
 , uncontrolled state variable   

  , and 

measurement error   . Given the expression (6) of   , I can represent its spectral density function 

       as  

                                     (9) 

where     stands for complex modulus,                   and                  , with 

superscript   referring to the complex conjugate. By applying the spectral representation theorem to 

(6), this result follows immediately from the fact that    and    are independent from each other 

[Priestley (1981, Chapter 4)].
4
 

                                                           

4
  A quick derivation: Let       be the increment in power, under a Fourier integral, over an infinitesimal interval   , then 

                               . Since the independence,                    . It follows that  

       
           

  
 

                           

  
                              

This expression also holds as a special case of the cross spectrum formula [see Sargent (1987, Page 248)]. 
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Equation (9) conveys the nature of the policy design problem with noisy data. The variance is just the 

integral of a variable's spectral density function over       . Functions         and       represent 

the allocation of variance across frequencies for the uncontrolled state variable   
   and measurement 

error   , respectively. The sensitivity function      specifies how the control redistributes the variance 

of the state variable frequency-by-frequency by reshaping        . Since the control responds to 

noisy observations, it introduces additional noise into the system. The complimentary sensitivity 

function      captures the size of this side effect at each frequency, which acts on the variance 

distribution       of measurement error. At each frequency, the total effect from the two channels is 

then summed up as given in (9). The variance of the state variable under control is distributed with 

frequency according to       . 

An ideal control rule would be one that lowers variance at every frequency to zero. However, 

limitations in control design make it impossible to reduce power uniformly over the whole frequency 

domain, even without data noise effects. This is known as Bode's (1945) constraint; for a backwards-

looking system, the sensitivity function associated with a feedback rule is subject to the integral 

restriction  

 ∫  
 

  
                             (10) 

If the uncontrolled system is stationary as assumed, then     ; otherwise,     . Notice that if 

         for all         , then      cannot hold in equation (10). Therefore, reductions of 

variance at some frequencies for the state variable induce increases in its variance at other 

frequencies. Policy design has to make tradeoffs among the magnitudes of different frequency-

specific variance contributions. A simple proof of this constraint (10) on sensitivity function can be 

found in Section A.1 of the Appendix.
5
 

Now let me state the policy design problem in the frequency domain. Recall that     
   ∫  

 

  
         

in the loss function (4), which can be conveniently generalized to more complicated – for example, 

non-time-separable – preferences using a general weighting function of variance by frequency. Notice 

that        is given by (9). Then, I first consider the standard noise-free control problem as a 

benchmark. Since         for all         ,      becomes irrelevant in the objective function. The 

policymaker's problem is just to choose a sensitivity function     , which is equivalent to his choice of 

a feedback rule      in the time domain, to solve  

    
    

∫  
 

  
                    (11) 

                                                           

5
  Since      and      sums up to 1 at each frequency, there exists a similar Bode's integral constraint and interpretation 

for     . A recent version of proof for Bode's integral constraint on      can be found at Okanoa et al (2009). I will only 

work with the constraint on sensitivity function throughout this paper. 
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subject to Bode's constraint (10) with     . Following Brock and Durlauf's (2005) argument, the 

optimal feedback rule is to reduce the system to a white noise process. In this benchmark case, the 

controlled state variable is  

   
                                (12) 

Then, the optimal feedback rule       is  

                                (13) 

where       is the annihilation operator. The sensitivity function       associated with this benchmark 

control satisfies  

         
  

 

         
  (14) 

In the frequency domain, the benchmark control targets the constant spectral density function of 

fundamental innovations for the controlled state variable and achieves that by reallocation of variance 

across frequencies. 

Back to the interesting case with noisy data,      enters into equation (9) and hence the objective 

function (4). The policymaker chooses both      and      to minimize the loss function,  

    
         

∫  
 

  
                                 (15) 

subject to the complementarity condition (8) and Bode's constraint (10). As noted above, in the 

presence of measurement error, any control introduces side noise into the system, which is captured 

by the complementary sensitivity function. The policymaker then has to balance the conflicting effects 

between stabilizing control and side noise. Put differently, a compromise has to be made in control 

design when information is noisy; good control and disturbance rejection must be traded off against 

suppression of side noise process. This is why the complementary principle becomes important in this 

context. I will consider scenarios in which the policymaker deals with measurement error differently in 

the next subsections. 

Let me close this subsection by a discussion on the notion of control aggressiveness. It is natural to 

expect that measurement error may change the aggressiveness of the control used by the 

policymaker in response to current and past observations. In the time domain, the coefficients of the 

feedback rule      reflect responses to the data. Focusing on nonparametric sensitivity functions in 

the frequency domain, however, there is not such an obvious measure. I therefore propose the 

following notion of aggressiveness   :  
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    [∫  
 

  
             ]

 

   (16) 

In    norm, it measures how close the modulus function        to the constant function 1. Notice that 

         means that the control is inactive at  , while the more        deviates from 1, the more 

powerful the control is at this frequency either shifting up or down the uncontrolled spectral density 

function.    measures control aggressiveness by the total deviation of        from 1 over the whole 

interval       . Furthermore, similar to the benchmark case, I show that the policymaker's behavior 

when he faces noisy data can still be interpreted as targeting some constant level   for the spectral 

density function of the state variable, although this may not be actually achieved due to side noise 

effects. In the same environment, the higher the level   the policymaker targets, the less aggressive 

the control would be.
6
 Hence, I consider the target level for the controlled spectral density function as 

another way for understanding control aggressiveness. In the numerical exercises, I will use both 

notions. 

2.2 Naive Policy Rule 

A policymaker's decision depends on his knowledge of measurement error. Let me first examine the 

case in which he is not aware of measurement issues and simply considers the observations as the 

true realizations of the state variable. 

Since the policymaker knows the model, then he just naively adopts the optimal feedback rule for the 

noise-free system       from (13) even in the presence of measurement error. That is,  

     
            

   (17) 

The associated sensitivity function       is still the same as (14),  

         
  

 

         
  (18) 

I refer to     
  or       as the naive policy rule in Orphanides(2003) terminology. By using this naive 

rule, the policymaker still targets the constant spectral density function of fundamental innovations for 

the state variable:  

                                                           

6
  If the original systems are different, then the same target level   for the spectral density may reflect different degrees of 

control aggressiveness in the    measure. 



 

 11 

Hong Kong Institute for Monetary Research               Working Paper No.17/2013 

   
  

 

  
  (19) 

However, the naive policy rule is inefficient with noisy data. The state variable under the control of the 

naive rule obeys  

   
                                 (20) 

which admits spectral density function  

       
  

 

  
                  

  
 

  
  (21) 

Therefore, the naive policy rule is unable to achieve its target spectral density as in the noise-free 

benchmark; rather, it induces extra volatility at each frequency because of control noise effects. 

The performance of the naive policy rule illustrates the consequences of ignoring potential 

measurement error in policymaking. The noise-free optimal policy rule will not be able to reduce the 

system to the white noise as it would when measurement error was absent. As a special case, even 

when the measurement error process is white noise,                 , the system under the 

control of the naive policy rule is still not a white noise process; this can be verified by observing that 

         is not constant over frequencies in expression (21). The second term of (21) describes the 

frequency-specific effects of measurement error when the policymaker uses the naive policy rule. As 

shown in the numerical exercises in Section 4, either in terms of the    measure or spectral target, 

the naive policy rule is too active relative to the optimal policy rule that solves (15). 

2.3 Optimal Policy Rule with Nonfiltered Data 

Suppose now that the policymaker recognizes the presence of measurement error as well as the 

error-generating process. He does not filter the data, but chooses an optimal control to account for 

measurement error and stabilize the economy. The policymaker still restricts himself within the set of 

linear feedback rules as specified by (2). I will study the properties of this optimal policy rule with 

nonfiltered data by characterizing its sensitivity function      . 

The policymaker's optimization problem is posed as (15) in the frequency domain. From (8),  

                                     (22) 
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where      is the phase angle of      in the complex plane at frequency  .
7
 To focus on the choice 

of     , I substitute this expression into the objective function and rewrite problem (15) as  

    
                

∫  
 

  
                                                      (23) 

subject to (10). Thus, the policymaker's problem is reformulated as choosing function        and 

          in the frequency domain separately to minimize the loss function. This is intuitive because 

complex      is uniquely identified by its modulus and phase angle. 

Notice that Bode's constraint is a restriction on the modulus of the sensitivity function. In equation (23), 

modulus        is subject to (10), but phase angle      or function           is not constrained. 

Since both        and       are nonnegative at all frequencies, the loss function (23) is nonincreasing 

in          . Therefore, the optimal solution is to set                      .
8
 It then follows that 

for the optimal policy rule with nonfiltered data,  

                      (24) 

Given            ,       ,          . Thus, the sensitivity function       associated with the 

optimal policy rule turns out to be a real function. This is different from the noise-free benchmark case 

in which       is not necessarily real. A sensitivity function characterizes how the feedback control 

transforms   
   frequency by frequency to obtain   

 . In the frequency domain, "transform" means both 

gain and phase shifts at each frequency. A real sensitivity function implies no phase shifts or that all 

phase shifts are canceled out in the transform. The reason for       to be real is because       

matters in this noisy control problem. As one can see from (15), a good control should have both 

       and        at all frequencies as small as possible. If      is not real and hence includes 

indelible phase shifts to   
  , it will also induce indelible phase shifts to   . This will lead to a larger 

       than in the absence of such shifts. Intuitively, phase shifts also cause side noise effects, and 

therefore should be prevented when possible.
9
 

Given equation (24), the policymaker's problem (23) reduces to  

    
      

∫  
 

  
                                     (25) 

                                                           

7
  Phase angle refers to the angular component of the polar coordinate representation of complex number. 

8
  In principle, if       vanishes to zero at some frequencies, then there may exist other solutions that             at 

these frequencies. This is not the generic case, so I withdraw from this technical issue. 

9
  Section A.2 of the Appendix provides a further example to illustrate the intuition for the real sensitivity function when 

accounting for measurement error. 
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subject to Bode's constraint (10). Measurement error stochastically disturbs the performance of any 

chosen policy rule in the time domain. However, the policy decision problem can be represented as a 

deterministically perturbed optimization problem in the frequency domain as (25): equation (25) is the 

same as benchmark (11) except that it includes the first term                 , which is 

deterministic and captures frequency-specific costs of the control. The effects of stochastic 

measurement error are now characterized by a deterministic control cost function. This representation 

greatly simplifies calculation in the frequency domain. 

To solve problem (25), let    be the Lagrangian multiplier associated with Bode's constraint. The 

optimal solution gives the spectral density function of the controlled state variable as  

                             (26) 

with the Lagrangian multiplier  

                                             (27) 

Equation (27) is also the first order conditions for the optimization problem (25). Therefore, the 

controlled spectral density        contains one constant term    and the other component that varies 

across frequencies. This can be interpreted as follows. First, the optimal policy rule still tries to flatten 

the uncontrolled spectral density by targeting the constant function   . Unlike the noise-free or naive-

policy target (19) which is solely determined by system disturbance attenuation, the spectral target    

comprehensively accounts for the tradeoffs between stabilizing control effects and side noise effects, 

as shown in (27). Second, even though, the optimal control comes at an additional cost, captured by 

the second term of (26). For example, when the control shifts the uncontrolled density         down 

at some frequency  , i.e.          , the stronger the control is the more side noise    

              it brings into the system. When it lifts         up, i.e.          , part of the control 

effect is offset by a downward force due to the fact that                    in this case. Only 

when the control exerts no impacts on         , i.e.          , this additional cost goes to zero. In 

other words, with noisy data, the effectiveness of the control is reduced in the sense that the control 

fails to reach its spectral target; at frequencies where the control is more forceful, the larger the 

deviations will be from the target. 

To complete the characterization of the solution, I solve for         from (27),  

        
      √                         

                
  (28) 

and determine    by substituting (28) into Bode's constraint (10),  
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∫  
 

  

  [
      √                         

                
]

 

       (29) 

The Lagrangian multiplier   , which is also the spectral target, is important for understanding the 

optimal policy rule with nonfiltered data. Several observations follow. First,     .
10

 This is 

guaranteed by Bode's constraint; if     , then (27) implies that           at all frequencies, which 

contradicts the fact that     . Second, as shown in the numerical exercises of Section 4,       in 

general. The optimal policy rule targets a higher constant spectral density and hence is less 

aggressive than the naive policy rule. Third, in the special case where measurement error is absent, 

       ,   , formula (26) and (28) will give exactly the same controlled spectral density function 

and sensitivity function as obtained in the noise-free benchmark, i.e.        and         reduce to 

       and        .
11

 

As characterized above, the optimal policy rule with nonfiltered data behaves differently from the 

naive policy rule in the frequency domain. A numerical comparison between them in a parameterized 

model will be presented in Section 4. But the main message has been clear here that there is a need 

to account for measurement error in the design of stabilization policies. 

2.4 Optimal Policy Rule with Filtered Data 

Another natural method to address measurement error is to filter the data so that any chosen 

feedback rule can work more accurately. Suppose that the policymaker still sticks to the policy rule 

which is optimal for the benchmark noise-free system, but feeds back to the filtered data instead. I 

label this type of policies as optimal policy rule with filtered data. 

Assume that the policymaker uses a linear filter     ,  

  ̂        
   (30) 

He then applies the benchmark control       to the filtered data  ̂ ,  

                    
   (31) 

Therefore, the optimal policy rule with filtered data is  

                                                           

10
  Since    is positive, the other root of (27) is negative and therefore is not a reasonable solution. 

11
  Section A.3 of the Appendix shows that        and         reduce to        and         when there is no measurement 

error in the data. 
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                  (32) 

The associated sensitivity function is the Fourier transform of  

                                                (33) 

which has  

        |
          

                             
|  (34) 

The spectral density function for the system under the control of       is  

       
  

           
                                 

                                  
  (35) 

Applying the optimal policy rule with filtered data      , as shown in (35), the effects of the linear filter 

     are twofold: it affects the way the benchmark control       transforms the spectral density 

functions of the uncontrolled state variable   
   and measurement error   , and it also changes the 

way control noise enters into the system. The former is captured by      in the denominator of (35), 

and the latter by the second term of (35). 

It is clear that the filter      plays the central role in this policy scenario. If the filter is set to       , 

i.e. no filtering, then the above results immediately reduce to be the same as those of the naive policy 

rule. For the rest of this subsection, I will discuss the choice of the optimal filter     . I argue that the 

Wiener filter is the most natural choice for the policymaker both because of its efficiency at filtering out 

measurement error and for its simple formula that is convenient for policy analysis in the frequency 

domain. 

Since the data   
  is observed only up to time  , the Wiener filter employed by the policymaker must be 

causal in the sense that it is restricted to the one-sided form, 
12

  

      ∑   
      

   (36) 

                                                           

12
  If the Wiener filter is in the two-sided form,      ∑    

       
 , then it is called non-causal; if defined with finite order of 

lag polynomial     , then called a finite impulse response (FIR) Wiener filter. Especially, the non-causal Wiener filter is 

such that in our case, 
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The Wiener filter is efficient by the minimum mean-square error (MMSE) criterion, i.e., it is such that 

            ̂  
   is minimized. The proof may be found in Priestley (1981, Chapter 10). Further, 

to give an explicit formula of the causal Wiener filter in the context of this paper, suppose that the 

spectral density function of observational   ,                      , satisfies the condition 

∫  
 

  
                . It then admits a canonical factorization of the form  

        |         |
 
  (37) 

where           is a "backward transform", a one-sided Fourier series involving only positive powers 

of       . Thus, the z-polynomial        ∑   
      

  has no zeros inside the unit circle. The causal 

Wiener filter is given by the Wiener-Kolmogorov formula
13

  

     
[ 

          
    ]

 

      
 (38) 

where       is the annihilation operator and superscript   again stands for the complex conjugate. 

Notice that the spectral density function of the filtered variable  ̂ is  

   ̂                   (39) 

The Wiener filter places weights on the spectrum of   
  frequency by frequency to adjust for the 

spectral density function of  ̂;  ̂ is the best predictor of the unobserved state variable   . It is easy to 

verify that          at all frequencies and that        is small at frequencies where the noise is 

strong. Intuitively, to approximate the spectral density function of the unobservable   , the filter 

pushes the spectral density of the observable   
  down since the policymaker knows that 

measurement error    contributes variance to   
  at all frequencies; and, at frequencies where data 

noise is stronger the filter needs to remove more. However, even the optimal Wiener filter is not able 

to completely remove the noise. Thus, when the benchmark policy rule       is applied to the filtered 

data, it still introduces undesirable side noise into the system. 

Optimal policy rule with nonfiltered data       and that with filtered data       represent two distinct 

ways of dealing with measurement error. One is to adjust the policy design, while the other is to 

process the data. Although it is hard to analytically characterize the differences of their performance in 

the current abstract model, numerical exercises developed in Section 4 will show their relative 

performance in the frequency domain. 

                                                           

13
  A equivalent representation in terms of z-polynomials is that      

 

      
            

      . 
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3. Robust Policy Rule 

Now let me introduce model uncertainty. In the current framework, there are two potential types of 

model uncertainty: uncertainty about structure of the state variable    and uncertainty about that of 

measurement error   . Although models for unobservable    and    are based on the same 

information set   
 , the two types of model uncertainty are conceptually different. In this section, I will 

primarily consider model uncertainty with respect to the state variable    because it represents a 

major limit in the policymaker's knowledge about the structure of the economy. However, the analysis 

presented here can be immediately adopted to deal with uncertainty about the model of measurement 

error. 

Specifically, the policymaker does not know the true model of    but knows that it is close to a 

baseline model. Assume model uncertainty is the following regarding the spectral density function of 

the uncontrolled system,  

 ∫  
 

  
[          ̅     ]

 
       (40) 

where         is the unknown true model,   ̅      is the baseline model that the policymaker knows, 

and parameter     stands for the level of model uncertainty.
14

 This specification allows for various 

sources of model uncertainty such as uncertainty in parameter values, dynamic structure, and lag 

orders. 

Following Hansen and Sargent (2008), robustness analysis is considered as a two-player zero-sum 

game. An adversarial agent is introduced, who chooses a model           from the feasible 

neighborhood around the baseline   ̅      as specified by (40) with uncertainty level   to maximize 

the loss function     
  , given the policymaker's strategies. A primary agent, the policymaker, chooses 

a feedback control rule, represented by its sensitivity function       , to stabilize the system given the 

potentially worst model chosen by the adversarial agent. In this sense, the robust policy rule is based 

on the worst-case analysis. However, playing against the adversarial agent the policymaker still uses 

the optimal control rule with nonfiltered data         to account for measurement error. Brock and 

Durlauf (2005) have shown that Nash and Stackelberg equilibria are approximately equivalent for the 

robustness games. I will hence use Nash equilibrium (    
              ) as the solution concept, 

where   is included in the equilibrium strategies to indicate the level of model uncertainty. 

                                                           

14
  This specification is similar to Hansen and Sargent's (2008, Chapter 8) formulation about the spectral density function of 

the innovations       . If one is interested in uncertainty respect to measurement error model, an analogous 

specification would be 

 ∫  
 

  
[        ̅   ]

 
       

still with parameter   measuring the degree of model uncertainty. 
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Assume that   is sufficiently small, and therefore all feasible models are local. Following Brock and 

Durlauf's (2005) approach, I will approximate the equilibrium (    
              ) for the robust game 

around the baseline solution (  ̅             ). This exercise is of particular interest in the frequency 

domain, since it allows us to explicitly characterize the policymaker's frequency-specific marginal 

reactions to model uncertainty. Therefore, I will be able to explore how the presence of measurement 

error influences the policymaker's reactions to model uncertainty across frequencies and changes the 

robustness properties of the optimal policy rule with nonfiltered data. 

In the equilibrium, given the primary agent's choice         , the adversarial agent solves  

    
         

∫  
 

  
                                           (41) 

subject to constraint (40). Let   be the Lagrangian multiplier associated with the constraint. The first 

order conditions regarding the choice of           are  

              [    
         ̅     ]  (42) 

The objective function (41) is increasing in           at each frequency. Thus, constraint (40) is 

binding in the solution and     
         ̅     . The decision of the adversarial agent in the Nash 

equilibrium then follows as  

    
         ̅                           

          

√∫  
 

  
            

  
(43) 

Approximate     
       around the baseline   ̅     ,  

     
         ̅                    (44) 

with 

       
          

√∫  
 

  
            

  
(45) 

where         is just the optimal policy rule with nonfiltered data for the baseline model   ̅      given 

by (28) and (29). 

Notice that        is the adversarial agent's marginal reaction to the level of model uncertainty   at 

frequency  . It is related to how much control used by the policymaker at frequency   relative to the 
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total amount used over the whole interval       under the baseline model. The adversarial agent's 

choice is to deviate more from the baseline model at frequencies where the policymaker uses control 

more. In this way, the adversarial agent disturbs the policymaker's stabilization strategy as much as 

possible. From the policymaker's perspective,     
       specifies the worst situation he will face when 

model uncertainty is of level  . 

Now turn to the equilibrium strategy         of the policymaker. Recall that the first order conditions 

for his optimization problem (25) under model     
       are  

                                           
              (46) 

Differentiate both sides with respect to   to solve for 
 |       |

  
 and evaluate at    :  

          

  
 

      
  

                 

                                ̅     
  

(47) 

where I use the fact that     
         ̅      and that 

  
   
      

  
        implied by (49). To pin down 

          

  
, 

      

  
 in (47) has yet to be determined. Differentiate Bode's constraint with respect to   and 

substitute 
          

  
 with (47). Then, I can solve for 

      

  
 and evaluate it at    :  

      

  
 

∫  
 

  
[

                

         [                                ̅     ]
]   

∫  
 

  
[

 

         [                                ̅     ]
]   

  (48) 

Therefore, in the Nash equilibrium the policymaker's strategy can be characterized as  

                     
          

  
       (49) 

with 
          

  
 determined by (47) and (48). 

The policymaker's equilibrium choice         is just the robust policy rule. Several observations 

follow. First, by linearization, the term 
          

  
 in (47) and (49) describes the policymaker's marginal 

reaction by frequency to model uncertainty. This reaction at frequency   is driven by two forces. On 

one hand, including model uncertainty increases the constant density level that the optimal policy rule 



 

 20 

Hong Kong Institute for Monetary Research               Working Paper No.17/2013 

targets, and hence reduces control aggressiveness at all frequencies. This is captured by 
      

  
 which 

is positive and constant over  . On the other hand, the robust policy rule         also reacts to the 

adversarial agent's adjustment on the uncontrolled spectral density. Since the adversarial agent tends 

to increase the uncontrolled spectral density by rate       , the policymaker will change his control in 

the opposite direction by                 ; the more the original control           is used, the more 

the marginal reaction should be. In the end, both parts of the reaction are adjusted by the 

denominator                                 ̅      to satisfy Bode's constraint. Second, the 

analysis provided here is based on the policymaker using the optimal policy rule with nonfiltered data, 

but it can be extended to the cases using the naive policy rule and the optimal policy rule with filtered 

data with some complications. This indicates that the way of dealing with measurement error matters 

for both optimal and robust policies. Finally, the characterization of the robust policy rule as (49) 

illustrates the interaction between model uncertainty and measurement error in the design of 

stabilization policy rules. This is absent in, for example, Brock and Durlauf (2005) and new to the 

literature. In equation (49), 
          

  
 is marginal reaction by frequency to model uncertainty of level  . 

However, it is clear from (47) and (48) that this reaction rate depends on the behavior of 

measurement error       in the frequency domain via several different channels. In this fashion, the 

interplay between the concerns over these two sources of uncertainty is characterized frequency by 

frequency. The numerical exercises in the next section will picture such effects more intuitively. 

4. Some Applications: Monetary Policy Evaluation 

In this section, I apply the general theory developed in the previous sections to evaluate monetary 

policy rules. First, I embed the conventional two-equation Keynesian monetary model into the scalar 

AR(1) framework so that I can work with the analytic devices constructed above directly. Then, based 

on the parameterized AR(1) model, I perform numerical experiments to assess several aspects of the 

measurement error effects on monetary policy design. 

Typically, models employed in the literature of monetary policy evaluation contain two structural 

equations. One specifies the Phillips curve relating the output gap and inflation, and the other 

specifies the IS curve relating the real interest rate to the output gap. A simple version of the well-

known Rudebusch and Svensson (1999) model which is widely used in previous studies can be 

written in the form of a purely backwards-looking system:  

                   (50) 

                      (51) 

where    stands for the gap between output and potential output,    is inflation and    is nominal 

interest rate. A Taylor (1993) type rule sets interest rate as             , or more generally as  
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                     (52) 

This linear feedback rule of interest rate (52), together with the IS curve (51), implies the output gap    

as  

                    (53) 

with      and      determined during the rearrangement. Then, the economic environment can be 

considered as a one-state-variable-one-control system, with the system specified by the Phillips curve 

(50) and the control by (53). 

In this paper, however, I still need to tailor the model slightly to have the interpretation of monetary 

policymaking as a feedback control problem in the presence of noisy information; I do this by 

restricting the control so that  

               
   (54) 

   
         (55) 

where the error term     
      

    
 can be simply understood as a process of measurement error in this 

context. To simplify the analysis, assume that     in (50) so that the system is stationary and that 

     is a one-sided lag polynomial. Further, let measurement error    be white noise with variance   
 , 

in light of Orphanides' (2003) evidence that the inflation noise can be adequately modeled as a 

serially uncorrelated process. Fundamental innovations    have variance   
 . Then, ratio     

    
  

represents the relative strength of measurement error. 

To focus on the performance of policy rules in inflation stabilization, consider the loss function  

          
    (56) 

This preference means that the policymaker is, in King's (1997) words, an "inflation nutter", who does 

not care about output stabilization. It can also be justified as inflation targeting in practice. The policy 

decision is then to design a feedback rule      of (54) in the presence of measurement error    to 

minimize     , given the AR(1) economic model (50). And I will focus on the study of      and its 

sensitivity function in the frequency domain. 

Admittedly, the model outlined here is highly stylized. Abstract from many practical issues, it highlights 

the importance to account for measurement error properly in monetary policy evaluation. 

Measurement error    can be broadly interpreted as an inaccurate control in this framework, which 

may have emerged in various ways. For example,    may arise directly from the mismeasurements of 
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aggregate price levels and price changes, but can also result from misspecifications of the IS curve 

due to the lack of exact knowledge about monetary transmission mechanism, as implied by the 

appearance of IS error   . The numerical exercises below convey the idea how to quantitatively and 

intuitively assess the frequency-specific effects of this inaccurate control. 

4.1 Policy Rules without Lagged Terms 

A natural starting point is to consider the case in which policy rules depend only on the current 

observation of the state variable; lagged terms are excluded. This is interesting because the effects of 

measurement error can be characterized by one single coefficient parameter in this simple case. Also, 

simple instrument rules without lagged terms [e.g., Taylor (1993)] or with only a few lags [e.g., Onatski 

and Williams (2003)] have received much attention in the related literature. The results developed 

below are not trivial but rather relevant to policy practice. 

Ignoring all pervious information, control (54) takes the form of  

          
   (57) 

The solution to this case can be worked out explicitly. If the policymaker is not aware of measurement 

error   , he will use the naive policy rule             
  with  

    
 

 
  (58) 

Otherwise, integrating his knowledge of    into policy decision, the policymaker's optimal policy rule 

with nonfiltered data in this case turns out to be             
  with  

    
 

     
 
[        

    
  √         

    
         

   
 ]  (59) 

One important observation can be made here. The optimal policy rule    adjusted for the 

measurement turns out to be less responsive than the naive policy rule    that assumes 

measurement is exact. This is because  

            (60) 

Details of the derivation and comparison of these policy rules can be found in Section A.4 of the 

Appendix. But the implication of this result is straightforward; if the policymaker is not confident in the 

accuracy of his data, excess activeness is harmful. 
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Figure 1 draws the naive policy rule    and optimal policy rule    when   varies from 0 to 10 and   

from 0 to 1. Here,   is calibrated to be 0.1. Consistent with intuition, Figure 1 shows that whether to 

account for measurement error or not is irrelevant,      , only when measurement error is trivially 

absent,   
    (i.e.,    ), or when the controlled system is a white noise process itself and hence 

no control should be used anyway,    . Otherwise, the more serious measurement error is (i.e., the 

larger   is) or the more persistent the uncontrolled system is (i.e., the larger   is), the less aggressive 

the optimal policy rule    will be when compared with the naive rule   . The role of noise level   is 

straightforward; when control induces side noise, the policymaker will use control more cautiously 

when he is aware of the stronger side effects. However, the role of system persistence   needs some 

explanation: A persistent uncontrolled system requires a very active feedback to the current 

observation so that the volatility inherited from previous periods can be canceled out; in other words, 

the stabilizing control effects of any policy action are weak relative to side noise effects, and thus, the 

policy works better by using a less responsive feedback rule to restrain the side noise effects. 

In addition, in Figure 1 the optimal policy rule    is very steep when   is high and   is small. In 

persistent model, even a small level of measurement noise may cause a large change in the optimal 

policy rule design. This illustrates the interaction between model uncertainty and measurement noise 

in affecting optimal policymaking. Here, model uncertainty is about the different values of  . Under 

different models, the policymaker adjusts policy aggressiveness for measurement error in rather 

different degrees. I will explore this point more generally in the frequency domain later. 

It is also interesting to investigate the spectral properties of the naive rule    and the optimal rule    

in this non-lagged-term case. The sensitivity function associated with    is  

         √               (61) 

and the sensitivity function associated with    is  

        
√             

√                         
  (62) 

At frequencies where        
 

 
       ,                , while at frequencies where        

 

 
       ,                , when      ; and vice versa when      . The optimal rule is less 

sensitive than the naive rule,          , in general as shown above, but over a range of frequencies 

the former can actually be more aggressive than the latter. It is right in this sense that spectral 

analysis is informative when one is interested in how measurement error changes the allocation of 

control effects across frequencies. 
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4.2 Optimal Policy Rule with Nonfiltered Data 

In the general case without the restriction on the order of lag polynomial, a monetary policy rule has 

sensitivity function and complementary sensitivity function as  

     
       

               
            

         

               
  (63) 

The easurement error process    and uncontrolled inflation   
   have spectral density functions as  

      
  

 

  
              

  
 

                 
  (64) 

As established in Section 2, the optimal policy rule with nonfiltered data is then pinned down by its 

sensitivity function  

        

  
 

  
 √(

  
 

  
)

 

    (
  

 

  
 

  
 

                 
)

 (
  

 

  
 

  
 

                 
)

 
(65) 

where the constant spectral target    is determined by numerically solving from condition (29), i.e. 

∫  
 

  
                , with       and         given above. 

I employ the following parameterizations. Following Brock et al (2007), I calibrate       and      . 

I also specify different levels of noise strength as:    , measurement error is absent;         , 

measurement error is modest and it is derived from Orphanides' (2003) estimates         and 

       ;    , measurement error has the same standard deviation as fundamental innovations   ; 

and    , measurement error is serious and with the standard deviation twice as that of   .  

Figure 2 presents the sensitivity functions       associated with the optimal policy rules with 

nonfiltered data when exposed to the different levels of data noise. The central message is that policy 

inertia is increasing in noise strength. To flatten spectral density, an optimal policy rule is to push the 

uncontrolled         down (i.e.,          ) at low frequencies and to lift it up (i.e.,          ) at 

high frequencies in this AR(1) framework. When measurement error is present in the data, the 

policymaker has to make tradeoffs between stabilizing control effects and side noise effects in 

applying feedback control rules as explained in Section 2. In Figure 2, the optimal policy rule pushes 

        down less at low frequencies and also lifts it up less at high frequencies as measurement 

error becomes stronger. Therefore, the total effect of measurement error is to make the optimal 

monetary policy rule less aggressive. 
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However, the policymaker does not reduce aggressiveness equally across frequencies. In Figure 2, 

the sensitivity function moves close to constant level 1 much more quickly at high frequencies than at 

low frequencies as the strength of measurement error strength increases. This essentially means that 

measurement error induces more cautiousness in the use of control at high frequencies than at low 

frequencies. Especially over a small range of medium frequencies, measurement error actually leads 

to more active policy control. The intuition behind as follows. In this AR(1) framework, the variance of 

the uncontrolled state variable concentrates at low frequencies, where system volatility is so high that 

the policymaker has to use control somewhat forcefully even if it brings some side effects. Even when 

measurement error is strong, these side noise effects are still small relative to the system volatility at 

these frequencies. In contrast, side noise effects quickly dominate stabilizing control effects at high 

frequencies, so the policymaker must be much more cautious as data noise increases. Finally, at 

medium frequencies, the policymaker may have to be more aggressive because of the design limits – 

when the spectral density is pushed down at low frequencies less than the amount lifted up at high 

frequencies due to the unbalanced frequency-specific reactions, the density function has to popup at 

some medium frequencies to meet Bode's constraint.  

Figure 3 shows the spectral density functions of inflation   
  under the control of the optimal policy 

rules at the different levels of measurement error. Without data noise the optimal control completely 

flattens the density function, as expected. In the presence of measurement error, the weaker 

measurement error is, the flatter the controlled density function will be. The total variance of the 

controlled state variable, i.e. the area under the densities, is increasing in the strength of 

measurement error. Therefore, the optimal policy rule is more effective when data noise is lower. 

Across frequencies, the "waterbed effects" – the reduction of variance at some frequencies results in 

increases of variance at other frequencies – implied by Bode's constraint are also evident from the 

Figure. On one hand, when measurement error is stronger, the controlled density function has a 

higher peak at low frequencies. This comes in two ways. First, the control is less aggressive so that 

the uncontrolled peak is pushed down less. Second, it brings stronger side noise effects when data 

noise is stronger. On the other hand, the optimal policy rule performs well at high frequencies in the 

sense that the controlled density is low and flat, and this does not change much when measurement 

error increases. 

Figure 4 presents the assessment of aggressiveness of the optimal policy rule over different levels of 

measurement error or model persistence. Both notions of the    measure and spectral target    are 

used. Given model persistence      , panel (a) shows that the spectral target    is increasing in the 

strength of measurement error  , and panel (b) shows that the    measure is decreasing in  . Both 

mean that when the measurement is noisier the optimal policy rule is less aggressive. It is also worth 

noting that both    and    change at a decreasing rate over  . Panel (c) displays the spectral target 

   over varying model persistence   in the cases with and without measurement error. In the absence 

of measurement error, the optimal policy rule always targets a constant spectral level. When modest 

measurement error is present, the target    increases in  . Thus, the target gap between the two 

cases is also increasing. Intuitively, when model persistence   increases, the stabilizing control effect 
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of any given policy rule becomes weaker, and hence the policymaker has to increase its spectral 

target when measurement error is present and can cause side noise. In panel (d), even without 

measurement error the    aggressiveness is still increasing  . This is because the uncontrolled 

density has a more precipitous peak with a larger  . To target the same low spectral level essentially 

means a more aggressive control when the model becomes more persistent. Panel (d) also shows 

that the    aggressiveness is always smaller when measurement error is present than when it is 

absent; again the gap is increasing in model persistence  . Thus, the optimal policy rule reacts to the 

same level of measurement error more in reducing aggressiveness when facing a more persistent 

model. Interestingly,    is almost linear in   for both cases. 

4.3 Optimal Policy Rule with Filtered Data 

For the optimal policy rule with filtered data, the most important step is to filter the data properly. 

Within the AR(1) framework, I first work out the Wiener filter explicitly, following Priestley (1981, 

Chapter 10), and then use it for numerical implementation. 

Given that the unobservable    is an AR(1) process and that measurement error    is white noise, the 

spectral density function of observed   
  is  

       
  

 

            
 

  
 

  
  (66) 

Its canonical factorization gives  

       
               

                
  (67) 

where      
    and   is the root inside the unit circle of z-polynomial       . In this case,  

       √
 

  
(
    

    
)  (68) 

As shown in Section A.5 of the Appendix, this implies that  

 

[
     

   
    

]
 

 
  

 

            √   
  (69) 

Therefore, the causal Wiener filter (38) in the frequency domain can be written as  
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        [
   

 

         
 
]

 
 

             
  (70) 

Recall that the spectral density of the filtered variable  ̂ is simply  

   ̂                   (71) 

so         are just weights placed on        across frequencies to adjust for   ̂   . 

Panel (a) in Figure 5 presents the adjustment weights placed by the Wiener filter on       . First, the 

Wiener weights are lower at all frequencies with weak data noise than with strong noise. For example, 

when measurement error is almost absent, i.e.    , the weights are almost equal to 1 everywhere, 

whereas the case of     has the lowest weighting curve. Second, the weights are high at low 

frequencies and low at high frequencies. This is because the AR(1) unobservable    amounts to a 

high fraction at low frequencies and a low fraction at high frequencies of volatility of the observable   
  

when measurement error is white noise. Third, the weighting curve is not shifted down by the equal 

distance across frequencies when measurement error becomes stronger. For example, when   goes 

from 0.4402 to 1, the weighting line moves more down at high frequencies than at low frequencies, 

because measurement error has stronger effects at high frequencies than at low frequencies. Panel 

(b) shows the filtered results at frequencies        . The spectral density function of the filtered  ̂  is 

very close to that of the unobservable   , so the Wiener filter works very well. After the policymaker 

applies the optimal policy rule for the noise-free model to the filtered data, the associated sensitivity 

functions and policy performance are then shown in panels (c) and (d) of Figure 5. One can see from 

panel (c) that measurement error reduces the aggressiveness of policy control in general, and 

reduces it more at high frequencies than at low frequencies. Panel (d) indicates that the extent of the 

side noise effects brought into the system by the optimal policy rules with filtered data still increases in 

the strength measurement error. 

4.4 Robust Policy Rule 

To study the robustness properties of monetary policy rules, I need to specify the level of model 

uncertainty. Since this section mainly serves to communicate the method to track the interplay of 

measurement error and model uncertainty in policymaking, I would withdraw from the involvement in 

the data-based calibration of   but simply set    .
15

 I assume that the true model is local to the 

AR(1) baseline model as studied above. Thus,  

                                                           

15
  For more rigorous empirical implementation, see Hansen and Sargent (2001, 2008) for details on how the level of model 

uncertainty   can be calibrated quantitatively from historical data. 
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  ̅      
 

                 
       ∫  

 

  

[          ̅     ]
 
      (72) 

I maintain the assumption that measurement error is white noise with the different levels of strength  . 

In Figure 6, panel (a) shows the adversarial agent's marginal reactions        across frequencies to 

model uncertainty. The adversarial agent knows that the policymaker will push the uncontrolled 

density down very forcefully and hence it is less effective to disturb at low frequencies. In contrast, at 

high frequencies the policymaker allows the uncontrolled density to move up, and then the adversarial 

agent's disturbing actions will not be canceled out. Therefore, the adversarial agent puts most 

disturbing power at high frequencies. This renders the marginal reaction curves a similar shape as the 

sensitivity functions associated with the optimal rules shown in Figure 2. 

Panel (b) shows how the policymaker will react. Consider the noise-free case first. There is only 

model uncertainty, and the policymaker knows that most uncertainty comes from high frequencies. 

Without much influence of the adversarial agent, the policymaker will not change his strategies very 

much at low frequencies. However, he will greatly reduce control used at high frequencies. To flatten 

the density function, the policymaker needs the uncontrolled AR(1) density to move up at high 

frequencies in the absence of model uncertainty. But, now the adversarial agent also lifts up the 

spectral density at high frequencies which helps the policymaker to reduce the control used. The 

consequence is that more control is moved to medium frequencies to meet Bode's constraint. This 

explains the "m" shape of the policymaker's marginal reaction curve. 

In the presence of measurement error, the "m" shape is less obvious, although still present. A flat "m" 

shape marginal reaction curve around zero means that the policymaker only mildly reacts to model 

uncertainty at all frequencies. This is especially true for the case with strong data noise,    . At low 

frequencies, it is not necessary to react very much as the adversarial agent puts little uncertainty here 

anyway. Knowing that the policymaker tends to balance control used at medium and high frequencies 

by making the sensitivity function flatly close to constant 1 (see Figure 2) when measurement error is 

present, the adversarial agent also balances the allocation of model uncertainty at these frequencies 

as illustrated by panel (a) of Figure 6. The policymaker then has to reduce his reaction at both 

medium and high frequencies. Put differently, reacting actively to model uncertainty will increase 

control used at medium frequencies as shown in the noise-free case, but control comes with side 

noise effects when measurement error is strong. Thus, the policymaker simply chooses not to react 

that much. Reducing reaction at medium frequencies also leads to the reductions at high frequencies, 

according to Bode's constraint. The whole point is that the presence of measurement error reduces 

the policymaker's reaction to model uncertainty, and this is especially clear at medium and high 

frequencies. 

Taking model uncertainty into consideration, the sensitivity functions associated with the robust policy 

rules are displayed in panel (d). Whether measurement error is present or not, the robust policy rules 
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behave rather differently, especially at medium and high frequencies. The interaction between model 

uncertainty and measurement error leads to the performance of the robust policy rules as shown in 

panel (c). 

In the light of Brainard's (1967) argument that model uncertainty justifies cautious policy, I may 

conclude based on these exercises: (1) cautiousness resulting from model uncertainty is not equal 

across frequencies – the policymaker reacts to model uncertainty less at low frequencies than at 

others, and the reaction at medium frequencies actually leads to active control in the contrast; (2) 

measurement error reduces the impacts of model uncertainty on policymaking – this is especially 

important at medium frequencies, which may overlap business cycle frequencies that monetary 

authorities potentially care most, in the sense that model uncertainty does not overthrow the general 

insights on monetary policymaking. Rather, model uncertainty should be assessed along with other 

forms of uncertainty such as data noise. In the environment of various uncertainty sources, the effects 

of model uncertainty may be less significant than those in the situation focusing on model uncertainty 

alone. 

4.5 Comparing Policy Scenarios 

As a final exercise, I compare the performance of naive policy rule, optimal policy rules with 

nonfiltered and filtered data, and robust policy rule in the current parameterized model. Recall that, in 

this setting, the naive policy rule is associated with the sensitivity function  

         √               (73) 

and has the spectral density function under control as  

       
  

 

  
 

  
 

  
            (74) 

along with a constant level of spectral target    
  

 

  
. The other three policy scenarios have already 

been examined as above.  

Table 1 reports the comparison results under the different levels of measurement error. First, the 

optimal policy rules with nonfiltered and filtered data are less aggressive and have better performance 

than the naive policy rules. The conclusion on aggressiveness holds for both spectral target   and    

measure under different levels   of measurement error. Meanwhile, the optimal policy rules reduce 

the total variances to lower levels than what the naive policy rules can reach. This indicates that 

failing to recognize measurement noise will lead to serious distortions in policy performance. Second, 

the optimal policy rules with filtered data outperform those with nonfiltered data. The former give lower 

variances than the latter over the whole frequency domain as well as over the high frequency range, 
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while the former are less aggressive than the latter in the overall    measure. This may be 

interpreted as the power of the Wiener filter in filtering out measurement noise. The optimal policy 

rules with nonfiltered data introduce more side noise because of more aggressive control. Third, the 

robust policy rules are the least aggressive in both target   and measure   , as expected. 

Interpreting these results, it is important to note that the robust policy rules are based on the least 

favorable model, which is different from the baseline model that the other rules are dealing with. 

Figures 7 and 8 show the comparisons of the sensitivity functions and their performance across the 

different policy scenarios when measurement error is modest,         . With regard to the 

sensitivity functions, the four policy rules place similarly strong control at low frequencies, although the 

robust policy is a little weaker. The main differences come from medium and high frequencies. For 

example, the robust policy rule is the least responsive at high frequencies and the most active at 

medium frequencies. The sensitivity functions of the optimal policy rules have very similar shapes 

except that the rule with nonfiltered data has its sensitivity function below that of the rule with filtered 

data. This leads to the result in Figure 8 that the optimal policy rule with filtered data outperforms the 

optimal rule with nonfiltered data. In Figure 8, the controlled spectral density function under the robust 

policy is the highest since it assumes the highest uncontrolled spectral density rather than the AR(1) 

baseline density. Interestingly, the naive policy rule does not work well in total-variance reduction, but 

at least it is effective at low frequencies. Its inefficiencies arise at high frequencies. This again 

highlights the importance of studying frequency-specific effects of measurement error in monetary 

policy evaluation. 

5. Concluding Remarks 

This paper provides a framework for investigating how alternative feedback policy rules behave in the 

presence of measurement errors and with respect to frequency-specific performance. I argue the 

importance to recognize potential data noise in policy decisionmaking, and show various ways to 

integrate this information into the assessment of policies' efficiency and robustness. Applied to 

monetary policy evaluation, the numerical exercises draw insights on the frequency-specific 

adjustments in the design of policy rules to the measurement error. 

Admittedly, this paper contains weak points, which I would like to explore in future research. Firstly, I 

only deal with the system of single input and single output in this paper. For monetary policy 

evaluation, I have to impose restrictions so that the usual two-equation system consisted of the IS and 

Phillips curves can be analyzed within the current framework. It is appealing to extend the existing 

results to bivariate or multivariate cases. To work out this extension, I need to cope with the transfer 

matrix and spectral density matrix instead of the scalar sensitivity function and spectral density 

function. Design limits will still show up but in the matrix form [Brock et al (2008b)]. Thus, some new 

techniques may be required. 
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Secondly, my analysis can be extended to a hybrid model containing both forward-looking and 

backwards-looking elements with some complications. As noted in Section 2, expectation is 

potentially another channel though which measurement error influences policy decision. The nature of 

design limits also depends on the way in which forward-looking elements determine current 

macroeconomic state variables; specifically, relative to a purely passive policy baseline, a feedback 

from expectations of future state variables to current state variables is necessary for the existence of 

a stabilization rule that reduces variance at all frequencies. This suggests, in considering the interplay 

between model uncertainty and measurement error, it is meaningful to include forward-looking 

elements, maybe rational expectation based, into the model. 

Finally and maybe most importantly, this paper is silent to a fundamental question: where does 

measurement error come from? I simply assume that measurement error is there, attached to the true 

measure, as most previous literature on the subject does. However, an observation is the aggregation 

of at least three elements: true value, measurement error, and the error due to model uncertainty. 

They are not mutually independent. For example, measurement error and model uncertainty are 

generically connected because we measure variables and form expectations based on models. Model 

uncertainty has already taken effect in the set of observations before we base our robustness analysis 

on the observations. This paper makes progress towards but does not complete the full theory of 

interaction between measurement error and model uncertainty. There are also other endogenous 

sources of measurement error such as demographic change and technological development. A 

structural model on the origins of measurement error will be necessary for a more complete 

understanding of the policy implications of its presence.  
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Table 1. Comparison of Policy Scenarios under Different Levels of Measurement Error 

 

Level of Data Noise Naive 

Policy 

Optimal Policy, 

Nonfiltered 

Optimal Policy, 

Filtered 

Robust 

Policy 

Measurement Error :     (No Noise) 

density level target   0.1592 0.1592 - 0.3843 

aggressiveness AG 1.5411 1.5411 1.5407 1.3373 

variance under control   
  1.0000 1.0000 0.9999 2.4145 

high frequency variance 

contribution  
 

 
    

0.2500 0.2500 0.2500 0.6037 

Measurement Error :          (Orphanides Estimate) 

density level target   0.1592 0.1919 - 0.3802 

aggressiveness AG 1.5411 1.2608 1.0038 0.9132 

variance under control   
  1.1664 1.1336 0.9315 2.3302 

high frequency variance 

contribution  
 

 
    

0.3087 0.2411 0.1724 0.5679 

Measurement Error :     

density level target   0.1592 0.2212 - 0.3993 

aggressiveness AG 1.5411 1.0981 0.8956 0.8347 

variance under control   
  1.3780 1.2560 0.9917 2.3957 

high frequency variance 

contribution  
 

 
    

0.3834 0.2346 0.1500 0.5594 

Measurement Error :     

density level target   0.1592 0.2597 - 0.4313 

aggressiveness AG 1.5411 0.9464 0.8357 0.7712 

variance under control   
  1.7560 1.4199 1.1226 2.5216 

high frequency variance 

contribution  
 

 
    

0.5168 0.2274 0.1352 0.5495 

 

Note: In the case of    , optimal control rule is calculated by setting          to use the Wiener filter.   
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Figure 1. Naive Policy Rules and Optimal Policy Rules without Lagged Terms 

  
Note:     

    
  represents the relative strength of measurement noise,   is the parameter of AR(1) Phillips curve, and      . 

   is the response of the naive policy rule to the current observation and    is that of the optimal policy rule.   

 

 

Figure 2. Optimal Policy Rules with Nonfiltered Data under Different Noise Levels 
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Figure 3. Spectral Density Functions of Controlled Inflation   
  under Different Noise Levels 
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Figure 4. Policy Aggressiveness under Different Levels of Data Noise and Model Persistence 

 

 

Note:    is defined in    norm    [∫  
 

  
              ]

 

  and    is the constant spectrum target.   
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Figure  5. Optimal Policy Rules with Filtered Data under Different Levels of Measurement Error 

 

 

Note:     is approximated by setting         . It captures the case when noise is almost absent. 
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Figure  6. Performance of Robust Policy Rules under Different Levels of Measurement Noise 
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Figure 7. Sensitivity Functions Associated with Different Policy Rules,          
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Figure 8. Spectral Density Functions under Different Policy Rules,          
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Appendix 

A.1 Proof of Bode's Constraint (10) 

This proof of Bode's constraint (10) is an application of Wu and Jonchheere's (1992) lemma, which 

states that  

∫  
 

  

  |     |
 
   {

           

                  
 

Factorize both the numerator and denominator of the sensitivity function defined in (7) by the 

fundamental theorem of algebra,  

       |
          

                       
|  

∏   
   |     

   |

∏   
   |     

   |
  

where    and    are open-loop and closed-loop poles of the system. Then,  

∫  
 

  

              ∑ 

 

   

∫  
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∫  
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∫  
 

  

  |  |  

   

 

The second equality uses Wu and Jonchheere's lemma, and it follows because all closed-loop poles 

   are inside the unit disk in the complex plane; otherwise, the controlled system is not stationary and 

hence has not been stabilized by the control. The last inequality binds when all    are inside the unit 

disk, i.e. when the uncontrolled system is stationary, and is strict when some    are outside the unit 

disk. Therefore, Bode's constraint (10) holds. 

A.2 Real Sensitivity Function of Optimal Policy Rule with Nonfiltered Data 

This section provides some further intuitions for the real sensitivity function of the optimal policy rule 

with nonfiltered data developed in Section 2.3. As evident from expression (9), a good control should 

make the modulus of both      and      as small as possible at each  . 

Consider two sensitivity functions,  ̃    and     , and focus on frequency  , where  ̃    is complex 

and      is real, but the modulus of  ̃    is the same as     . As shown in Figure (9),      and  ̃    

are then on the same circle in the complex plane. Due to the complementarity principle,  
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 ̃     ̃                         

Figure (9) shows that the angle   is always obtuse, the modulus of  ̃    is always greater than that of 

    . Therefore,      performs better than  ̃    at frequency  . 

This argument follows at all frequencies, so the optimal solution must set the sensitivity function to be 

real. As argued in the text, a complex sensitivity function induces indelible phase shifts to the 

measurement error process   , which causes side noise effects in the presence of data noise. 

Figure 9. Complex versus Real Sensitivity Functions, at Frequency   

 

 

Note: At frequency  ,      is real,  ̃    is complex,          ̃    ,            , and  ̃     ̃     .   

 

A.3 Optimal Policy Rule with Nonfiltered Data in the Absence of Data Noise 

The optimal policy rule       with nonfiltered data is characterized by (28) with spectral target    

determined by (29). For general case, I have to numerically parameterize the model and seek a 

quantitative solution. I use the bisection method for numerical implementation.
16

 

In the case absent of data noise, however, I can show that the solution       reduces to the 

benchmark policy      . Notice that        ,    in this case and hence equation (29) gives  

     
 

  
∫  

 

  

               

                                                           

16
  Brock and Durlauf (2005) used Jensen's inequality to recover the representation of the feedback rule in the absence of 

measurement errors. 
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Given (5), we have         
  

 

  
|

    

          |
 

. By factorizing         and applying Wu and 

Jonchheere's result,  

 

  
∫  

 

  

                (
  

  
)  

Therefore,       
  

  
, which is same as the noise-free target. Substituting    

  

  
 into equation 

(28), it follows that  

         
  

 

         
  

with is identical to          in equation (14). 

A.4 Policy Rules without Lagged Terms 

In the monetary model described in Section 4, the policymaker observes that the loss function (56) 

takes the form of  

     
       

    
 

         
  

under the control of a policy rule without lagged terms as (57). To minimize the loss function, he 

derives the first-order conditions  

               
          

    
          

There are two roots to this equation. One is    as given in (59). Note that          to ensure that 

  
  is stationary under the control. The other root violates this requirement since      , and is not a 

solution. 

Policy rule    in (58) follows obviously. Then,  

          
 

      
 
[√         

    
         

   
           

    
  ]     

 √         
    

         
   

    
    

      
 

        
  

 

which proves the comparison result in (60). 
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A.5 Wiener Filter in the AR (1) Model 

This section gives more details on the Wiener Filter in the AR (1) model that is used in Section 4.3. To 

start, notice that for AR (1) process   ,  

      
  

 

                
  

Equation (66) then is based on this result. 

The following shows why equation (69) holds:  
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where the last equality follows by observing that the term 
 

   
 has a pole at     inside the unit circle 

and hence is a forward transform which can be ignored. 

Given (69), the causal Wiener filter is given as  

     
          

      
      

 
   

 

               
 
  

which has the representation in the frequency domain as (70).  

 


