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What 200 Years of Data Tell Us About the

Predictive Variance of Long-Term Bonds?

Abstract

This paper investigates the long-horizon predictive variance of an international bond

strategy where a U.S. investor holds unhedged positions in constant-maturity long-term

foreign bonds funded at domestic short-term interest rates. Using over two centuries

of data from major economies, the study finds that predictive variance grows with the

investment horizon, driven primarily by uncertainties in interest rate differentials and

exchange rate returns, which outweigh mean reversion effects. The analysis, incorpo-

rating both observable and unobservable predictors, highlights that unobservable pre-

dictors linked to shifts in monetary and exchange rate regimes are the dominant source

of long-term risk, offering fresh insights into international bond investment strategies.

Keywords: Currency risk, Long-term bonds, Predictability, Long-term investments.
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1 Introduction

Over the past two decades, there has been a greater appetite for long-term bonds as noted

by leading economic newspapers like the Wall Street Journal and the Financial Times (e.g.,

Allen, 2017; Sindreu, 2017). On the one hand, with short-term interest rates reaching their

historical lows due to unconventional monetary policies, investors in search for higher yields

have tilted their allocation towards long-term bonds, often using leveraged positions. On the

other hand, with post-crisis reforms aimed at financial stability, institutional investors have

increasingly turned to long-term government bonds, which require no additional regulatory

capital, are less complex than centrally-cleared derivatives to hedge interest rate risk, and

serve as key collateral in short-term borrowing markets. These trends are reflected in the

growth and composition of the global bond market. While its outstanding amount has

expanded from about $30 trillion in 2000 to approximately $104 trillion in 2019, the ratio of

long-term bonds to gross domestic product has nearly doubled from 38% in 2000 to 64% in

2019 (e.g., Bogdanova, Chan, Micic and von Peter, 2021).

Despite their growing importance as a key asset class, the risk profile of long-term bonds

remains largely unexplored, especially from an ex-ante perspective. Understanding such risk

is even more complex when cross-country differences in monetary policies, as observed in

recent years, drive investors to increasingly rely on short-term dollar funding (e.g., CGFS,

2020), thus heightening exposure to both interest rate and foreign exchange fluctuations. An

example occurred during the 2022 UK mini-budget crisis, which triggered a sharp rise in bond

yields alongside a large depreciation of the pound sterling against the dollar. This episode

created significant volatility for international bondholders, resulting from the compounding

effect of interest rate and exchange rate fluctuations.

In this paper, we attempt to fill this gap in the literature by assessing the predictive variance

of an international bond strategy in which a US investor holds an unhedged position in a

constant-maturity foreign bond funded at the domestic short-term interest rate over the long

horizon. To preview our results, we find that holding long-term bonds generates substantial
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predictive variance, which grows significantly over longer horizons. This upward-sloping

behaviour is predominantly driven by uncertainties about future exchange rates and interest

rate differentials, which outweigh the effects of mean reversion in returns. Also, these results

leverage more than 200 years of data and are robust across major economies. Our findings

provide an alternative perspective to recent studies on the risk profile of long-term bonds.

For example, Meyer, Reinhart and Trebesch (2022) use two centuries of data covering a large

cross-section of countries and document that, like the equity market, long-term government

bonds have historically generated high excess returns with relatively low volatility. In a

similar vein, Viceira and Wang (2018) investigate global portfolio diversification for long-

horizon investors and report that long-term bonds can lower risk. While these studies rely on

ex-post results, our analysis adopts an ex-ante perspective that incorporates both parameter

uncertainty and imperfect predictability akin to Pástor and Stambaugh (2012) and Avramov,

Cederburg and Lučivjanská (2018).

Our analysis starts by decomposing the returns of an international bond strategy into three

components: foreign bond excess returns, real interest rate differentials, and real exchange

rate returns. It then adopts the predictive variance as a notion of risk as this is what really

matters to investors for their long-horizon portfolio decisions. In particular, when forming

expectations about future returns, investors ignore the true data generating process and,

by relying on potentially misspecified empirical models, observable predictors may deliver

imperfect forecasts. This implies that an investor’s predictive variance differs substantially

from the actual variance as the former encompasses a range of uncertainties which are absent

in the latter (e.g., Pástor and Stambaugh, 2012; Avramov et al., 2018). These uncertainties

are important for long-term investors as they are likely to offset the effects of mean reversion

in returns for longer investment horizons, even in the presence of return predictability.1

We carry out an empirical investigation exploring the long-term predictive variances of re-

turns from investments in long-term bonds denominated in major currencies over the past

1The effect of these uncertainties on the predictive variance may be even stronger if returns are only
partially predictable.
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two centuries. In the spirit of Pástor and Stambaugh (2009), we estimate these long-term

predictive variances in an environment with imperfect predictability, by allowing unobserved

predictors to join a set of observable predictors to help forecast the strategy returns at dif-

ferent horizons. As the variables to be forecast in our setting relate to interest rates and

exchange rates, we conjecture that the unobserved predictors in our framework can be po-

tentially associated with changes in monetary and exchange rate regimes that have occurred

over the past two centuries and are not already captured by the set of observable predictors.

Furthermore, we derive in closed form a range of uncertainties that affect the predictive vari-

ance for long horizons, in addition to the mean reversion component due to the predictability

of returns, building upon and extending the theoretical frameworks proposed by Pástor and

Stambaugh (2012) and Avramov, Cederburg and Lučivjanská (2018).

The estimations lead to a host of novel results. First, over the full sample period and across

all countries, the predictive variance of the bond investment strategy is found to be increasing

with the investment horizon and this is mainly due to a growing predictive variance for both

short-term interest rate differentials and real exchange rate returns. Overall, the predictive

variance of real exchange rate returns exhibits the largest long-horizon value, followed by that

of interest rate differentials, while the predictive variance of bond excess returns in foreign

currency does not vary much across investment horizons. The predictive covariances are all

negative, especially between interest rate differentials and real exchange rate returns, which

is consistently negative across currency pairs and decreasing over the investment horizon.

This finding suggests that the predictive co-movement between foreign bond excess returns

and real interest rate differential is less important in determining the long-term risk profile

of the strategy. The results also suggest that the predictive co-movements between interest

rate differentials and real exchange rate returns are important in the long-run as they tend

to reduce the overall expected risk of the strategy, especially at longer horizons.

Second, after decomposing the predictive variance of the strategy returns into its key con-

stituents, we observe that in all cases the uncertainty about future returns unambiguously

plays the leading role. All other components, especially the one associated with mean rever-
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sion due to return predictability, are negligible in size and do not provide any improvement

in the risk profile of the strategy at longer horizons. Put differently, when foreign bond ex-

cess returns, real interest rate differentials, and real exchange rate returns predictability are

taken seriously into account, the notion that bond returns are less volatile in the long-run

does not apply. The range of uncertainties that affect the predictive variance more than offset

any potential benefit originating from mean reversion in returns. Upon further exploration,

across all of the currency pairs investigated, the uncertainty about future returns is mainly

due to the component of the predictive variance pertaining to the unobserved predictors.

The uncertainty associated with the expected future values of the observable predictors is

non-negligible but substantially smaller than the one documented for unobserved predictors.

Furthermore, as the uncertainty about future returns originating from interest rate differ-

entials and exchange rate returns is fairly similar, the shape of the predictive variance over

longer horizons can be interpreted as spurring from changes in monetary and exchange rate

regimes that are not captured by the set of observable predictors. Also the negative impact

arising from mean reversion is not large enough to offset future uncertainty.

Third, for our baseline exercise involving the dollar relative to the pound sterling, we also

estimate the predictive variance using an expanding window that starts with 100 years of data

and then progressively incorporates additional years until the end of the sample. The analysis

reveals substantial variation in the slope of the predictive variance. It was particularly steep

around the Great War and later during the Black Wednesday. Also, while the slope of

predictive variance of interest rate differentials has been declining over time, the slope of

predictive variance of real exchange rate returns has been fairly stable over time. Interestingly,

the predictive variance of foreign bond excess returns has been particularly steep during the

second World War and again when the UK was sick man of Europe. Finally, a number of

robustness exercises using different priors, removing the observable predictors, working with

the recent floating period, confirms our main findings.

Our study is related to various strands of the literature. First, it speaks to a vast body

of research that studies bond returns and yields over various investment horizons. Several
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studies find evidence of predictability for US bond yields and returns provided by interest

forward rates, macroeconomic fundamentals and principal components of bond yields (e.g.,

Fama and Bliss, 1987; Cochrane and Piazzesi, 2005; Della Corte, Sarno and Thornton, 2008a;

Ludvigson and Ng, 2009; Joslin, Priebsch and Singleton, 2014). Evidence of predictability

for non-US bond returns is overall less pervasive than for US bond returns (Ilmanen, 1995).

More recently, Meyer et al. (2022) explores the performance of external sovereign bonds

over two centuries, analyzing cycles of boom and bust. Their findings reveal that sovereign

bonds have offered sufficiently high returns to compensate for risks. As we are concerned

with the risk of investing in foreign long-term bonds, the predictability of FX returns is also

important. This literature, however, has not reached a consensus as to whether FX returns

are predictable (Meese and Rogoff, 1983; Engel and West, 2005). In our study, we allow

for predictability in all components of the strategy returns but we also take into account

the possibility that such predictability is imperfect akin to Pástor and Stambaugh (2009).

The second body of research we build on relates to the measurement of risk associated

with portfolio investments over long horizons, and the implications for asset allocation. In

addition to the pioneering works by Samuelson (1969) and Merton (1969), who show that

investors should choose the same asset allocation regardless of investment horizon whenever

asset returns are unpredictable, our empirical analysis builds upon the results of Siegel (1992,

2008), Barberis (2000) and Campbell and Viceira (2002, 2005). These studies show that, in

the presence of return predictability, the perceived variability of asset returns is lower for

longer horizons because of the effect mean reversion of expected returns has on the long-

horizon variance. The two studies that are closest to our empirical investigation are the ones

by Pástor and Stambaugh (2012) and Avramov et al. (2018), who show that asset returns

are more volatile over longer horizons if the predictive variance of returns is used as the

main notion of long-horizon risk. This novel result is due to the presence of an assortment of

uncertainties that are explicitly included in the framework for the predictive variance, but not

for the true variance. We improve upon these works in several important ways: We first show

how the long-horizon predictive covariances associated with a predictive system that includes

both observable and unobserved predictors can be decomposed into five main components,
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with accompanying closed-form expressions. Thus, in contrast to Pástor and Stambaugh

(2012) and Avramov et al. (2018), who focus on the long-horizon predictive variance of a

single asset, our focus is on obtaining an informative decomposition for the long-horizon

predictive covariance of multiple assets. We then apply this framework to a multiple asset

case, allowing for imperfect predictability. This permits us to gain further insight into the

long-horizon predictive variance of the strategy returns and to directly link the main sources

of uncertainty, including mean reversion in expected returns, to the estimated parameters

of the predictive system. Recent research by Froot (2019) investigates the effectiveness of

currency hedging for international investments over different time horizons. The study finds

that currency hedging reduces portfolio variance at short horizons but may increase portfolio

variance at long horizons. This is due to the greater influence of unexpected changes in

relative inflation and interest rates between countries over long periods, which can introduce

additional volatility and make hedging less beneficial or even counterproductive for long-term

investors.

Our study is structured as follows. Section 2 presents our framework for deriving and com-

puting long-horizon predictive covariances in the presence of imperfect predictability, and

discusses the theoretical findings. Section 3 shows the components of the strategy returns

and introduces their long-horizon predictive variance. It also describes the long-span data

used in the empirical investigation and reports some preliminary statistics. Section 4 reports

the main results, Section 5 discusses a number of robustness checks, whereas Section 6 con-

cludes. A separate Internet Appendix describes the Bayesian estimation and presents the

derivation of the decomposition for the long-horizon predictive covariance.

2 Framework

This section begins by introducing a simple international bond strategy similar to Andrews,

Colacito, Croce and Gavazzoni (2024). It then introduces a framework for assessing its mul-

tiperiod predictive variance that extends the methodology outlined in Pástor and Stambaugh
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(2012) and Avramov, Cederburg and Lučivjanská (2018). Our focus is to develop a parsimo-

nious predictive system that incorporates both observable and unobservable predictors. We

then break down the multiperiod predictive variance into five key components, each obtained

through closed-form solutions.

2.1 An International Bond Strategy

Consider a simple strategy in which a US investor holds, in each month t, a constant-maturity

long-term bond denominated in foreign currency, funded through borrowing at the domestic

short-term interest rate. The investor’s excess return between months t and t + 1 is then

given by

rxt+1 = y⋆t+1 + et+1 − it+1,

where y⋆t+1 is the one-month return on a constant maturity long-term bond denominated in

foreign currency, et+1 is the one-month nominal exchange rate return, and it+1 is the one-

month return on a short-term bond denominated in domestic currency. All returns are in

logs and defined between months t and t+ 1.2

In our empirical analysis, we work with more than two centuries of data, and it is convenient

to rewrite the above excess return in terms of real quantities as

rxt+1 = y⋆t+1 − i⋆t+1︸ ︷︷ ︸
foreign bond
excess return︸ ︷︷ ︸

r1,t+1

+ (i⋆t+1 − ρ⋆t+1)− (it+1 − ρt+1)︸ ︷︷ ︸
real interest rate differential
between foreign and domestic︸ ︷︷ ︸

r2,t+1

+ et+1 + ρ⋆t+1 − ρt+1︸ ︷︷ ︸
real exchange
rate return︸ ︷︷ ︸
r3,t+1

, (1)

where i⋆t+1 denotes the one-month return on a short-term bond in foreign currency, ρt+1 refers

to the one-month domestic inflation rate, and ρ⋆t+1 indicates the one-month foreign inflation

rate. This decomposition shows how foreign bond excess returns, ex-post real interest rate

2We use it+1 as opposed to it to indicate the monthly interest rate between times t and t + 1 as our
empirical analysis uses monthly returns on a Treasury Bill index based on three-month maturity instruments.
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differentials, and real exchange rate returns contribute to the overall excess returns, thereby

capturing the impact of local economic conditions, monetary policy divergence, and exchange

rate behavior. To ease the notation, we denote the foreign bond excess return as r1,t+1, the

real interest rate differential between foreign and domestic country as r2,t+1, and the real

exchange rate return as r3,t+1.

2.2 Predictive System with Imperfect Predictability

We jointly model the terms on the right side of Equation (1) using a linear predictive system

rt+1 = a+ bxt + πt + ut+1 (2)

xt+1 = θ + γxt + vt+1 (3)

πt+1 = δπt + ηt+1, (4)

where rt+1 is a vector that stacks together foreign bond excess returns, real interest rate

differentials, and real exchange rate returns, xt and πt are vectors of observable and unob-

servable predictors, a and θ are vectors of intercepts, while b, γ and δ are diagonal matrices

of slope coefficients. All vectors and matrices have a three-dimensional form. As described

later in Section 3, the set of observable predictors includes the term spread for the foreign

bond excess return, the real output growth differential for the real interest rate differential,

and the nominal interest rate differential for the real exchange rate return. These choices are

guided by data availability over long sample periods. Also, to ensure stability in our predic-

tive system, we restrict the diagonal elements of γ and δ so that −1 < γi < 1 and 0 < δi < 1

for i = {1, 2, 3}. These constraints ensure that the observable predictors in xt exhibit a mean

reverting behavior, while the unobservable predictors in πt follow a stationary process and

positively contribute to return predictability. Note that the process for πt is without a drift

since we already have the constant a in the return equation.
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The vectors of residuals are independent and identically normally distributed as
ut

vt

ηt

 iid∼ N




0

0

0

 ,


Σuu Σ
′
vu Σ

′
ηu

Σvu Σvv Σ
′
ηv

Σηu Σηv Σηη


 , (5)

where Σuu is the covariance matrix of the unexpected returns in ut, Σvv is the covariance

matrix of shocks affecting the observable predictors in vt, and Σηη is the covariance matrix

of shocks contaminating the unobservable predictors in ηt. The off-diagonal matrices, such

as Σvu or Σηu, are cross-equation covariances matrices capturing the interaction between

unexpected returns and shocks to observable or unobservable predictors. All these matrices

have a three-dimensional form and a single entry, say for example of Σηu, is denoted as σηiuj

or ρηiujσηiσuj for each i, j ∈ {1, 2, 3}. Finally, the set of parameters governing the joint

dynamics of returns and predictors will be denoted as ϕ.

Our predictive system can be viewed as a reduced-form model that is consistent with a

broad range of economic frameworks, rational or behavioral, where each return component ri

linearly depends on a lagged observable predictor xi and a lagged unobservable predictor πi.

The predictability literature generally assumes that observable predictors evolve gradually

over time and follow a first-order autoregressive process (e.g., Stambaugh, 1999). While

this assumption is routinely used in many applications and observable predictors can be

an important source of predictability, their slow evolution makes it challenging to precisely

capture the true expected return (e.g., Pástor and Stambaugh, 2009). As a result, one may

underestimate the uncertainty faced by an investor assessing the variance of future expected

returns. To address the imperfect nature of observable predictors, we augment the predictive

system with a driftless unobservable predictor, thus enhancing the ability of our predictive

system to capture variations in expected returns compared to standard predictive regressions.
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2.3 Multiperiod Predictive Variance

Our objective is to study the predictive variance over long horizons of rxt+1 and how the shape

of the variance curve is affected by its underlying return components. Unlike the (ex-post)

realized variance, which implicitly assumes full knowledge of the data generating process,

the (ex-ante) predictive variance only conditions on information available to an investor and

incorporates parameter uncertainty to make forward-looking predictions.

Define the k-period excess return in Equation (1) from period T through period T + k as

rxkT =
3∑
i=1

rki,T (6)

with rki,T =
∑k

ℓ=1 ri,T+ℓ for each i = {1, 2, 3}, i.e., the k-period foreign bond excess return,

real interest rate differential, and real exchange rate return between T and T + k. Let DT

denote the information set available to an investor at time T , which includes past returns and

observable predictors, while excluding any information on the unobservable predictors and

the set of parameters governing the joint dynamics of returns and predictors. These elements

are considered random, given that they are unknown to an investor. We can then assess the

multiperiod predictive variance of excess returns given the information set available at time

T as

Var
(
rxkT | DT

)
=

3∑
i=1

3∑
j=1

Cov(rki,T , rkj,T | DT ), (7)

which comprises the multiperiod predictive variances and covariances of foreign bond excess

returns, real interest rate differentials, and real exchange rate returns. In our setting, an

investor is uncertain about the unobservable predictors πT and the parameters ϕ of the
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predictive system. This allows us to decompose the multiperiod predictive variance as

Var
(
rxkT | DT

)
=

3∑
i=1

3∑
j=1

E
[
Cov(rki,T , rkj,T | πT , ϕ,DT ) | DT

]

+
3∑
i=1

3∑
j=1

Cov
[
E(rki,T | πT , ϕ,DT ), E(rkj,T | πT , ϕ,DT ) | DT

]
. (8)

The first term on the right side of this decomposition denotes the expectation of the con-

ditional covariance of k-period returns, whereas the second term indicates the covariance of

the conditional expectation of k-period returns. While an investor with a knowledge of πT

and ϕ only cares about the first term, an investor uncertain about πT and ϕ also accounts

for the second term. As a result, an international bond investor may perceive her excess

returns disproportionately more volatile at long horizons. We now move to decompose both

the expected conditional covariance and the covariance of expected returns on the right side

of Equation (7).

2.4 Expected Conditional Covariance

The expectation of the conditional covariance of k-period returns is an important building

block of Equation (8). This expectation is taken with respect to the investor’s information

set DT , and reflects both parameter uncertainty and uncertainty about the current expected

return. This happens as the investor ignores both ϕ and πT .

Proposition 1. Assuming Equations (2)–(5) hold, the expectation of the conditional covari-

ance of k-period returns is given by

E
[
Cov(rki,T , rkj,T | πT , ϕ,DT ) | DT

]
= S1(k) + S2(k) + S3(k), (9)
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where the terms on the right side represent three sources of uncertainty defined as

S1(k) = E
{
kσuiσujρuiuj | DT

}︸ ︷︷ ︸
iid uncertainty

, (10)

S2(k) = E
{
kσuiσuj [biēiρviujAγi(k) + bj ējρuivjAγj(k)] | DT

}︸ ︷︷ ︸
mean reversion x

+ E
{
kσuiσuj [d̄iρηiujAδi(k) + d̄jρuiηjAδj(k)] | DT

}︸ ︷︷ ︸
mean reversion π

, (11)

S3(k) = E
{
kσuiσujbibj ēiējρvivjBγiγj(k) | DT

}︸ ︷︷ ︸
future uncertainty x

+ E
{
kσuiσuj d̄id̄jρηiηjBδiδj(k) | DT

}︸ ︷︷ ︸
future uncertainty π

+ E
{
kσuiσuj [biēid̄jρviηjBγiδj(k) + bj d̄iējρηivjBδiγj(k)] | DT

}︸ ︷︷ ︸
future uncertainty x and π

. (12)

The quantities ēs and d̄s for s = {i, j}, Aχ(k) for χ = {γi, γj, δi, δj}, and Bχψ(k) for χψ =

{γiγj, δiδj, γiδj, δiγj} are functions of the parameters underlying the predictive system.

Proof. See Internet Appendix A.1

According to Proposition 1, the expectation of the conditional covariance of k-period returns

consists of three distinct sources of uncertainty. The first component in Equation (10),

denoted as S1(k), can be interpreted as the uncertainty arising from iid shocks. Depending

on the sign of ρuiuj , the correlation between unexpected returns, this source of uncertainty

will make a constant contribution per period at all investment horizons.

The second component in Equation (11), labelled as S2(k) , captures the uncertainty asso-

ciated with mean reversion in expected returns, and comprises two terms. The first term

captures the correlation between unexpected returns and shocks to observable predictors

through the cross-correlation terms ρviuj and ρuivj , whereas the second term represents the

correlation between unexpected returns and shocks to unobservable predictors by means of

12



the cross-correlation components ρηiuj and ρuiηj . When these correlations are negative, the

second source of uncertainty will have a negative contribution to the predictive covariance,

thus reflecting mean reversion in expected returns. The literature on stock returns gener-

ally finds a negative correlation between unexpected returns and shocks to expected returns

and concludes that stocks have lower per-period variance and are less risky for long-horizon

investors (e.g., Campbell, 1991; Campbell, Chan and Viceira, 2003).

The third component in Equation (12), named S3(k), indicates the uncertainty about future

expected returns, and comprises three terms. The first term captures the uncertainty about

the future values of the observable predictors, while the second term reflects the uncertainty

about future values of the unobserved predictors. The last term, instead, captures the joint

uncertainty about the future values of observable and unobserved predictors. Even with full

knowledge of the predictive system’s parameters and the current value of the unobservable

predictors, an investor is still uncertain about the future expected returns in each period. As

a result, the third source of uncertainty produces additional predictive covariance, especially

in the more distant future periods, that is often ignored in the asset pricing literature (e.g.,

Pástor and Stambaugh, 2012).

When returns are unpredictable, S1(k) is the only source of uncertainty that matters in Equa-

tion (13). When returns are predictable, using observable and/or unobservable predictors,

S1(k) continues to remain the only source of uncertainty only for k = 1, since Ax(1) and

Bx,y(1) are both equal to zero. As k grows, both S2(k) and S3(k) become increasingly impor-

tant, since Ax(k) and Bx,y(k) are strictly increasing from zero to one as k moves from one to

infinity. Hence, when returns are predictable and k > 1, all three sources of uncertainty play

a role in Equation (13). While S2(k) is likely to have a damping effect given past evidence on

the correlation between unexpected returns and shocks to predictors, S3(k) is likely to have

an amplifying impact as the investor ignores the future values of expected returns. Finally,

without observable predictors, all terms involving bi and bj in S2(k) and S3(k) will vanish.

Similarly, without unobservable predictors, all terms involving δi and δj in S2(k) and S3(k)
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will disappear.3

To sum up, using the estimates of the predictive system in Equations (2)–(5), we can compute

the expectation of the conditional covariances of the k-period returns through closed-form

solutions. This expectation includes three different terms, namely, a first term reflecting

iid uncertainty arising from a common assumption about returns, a second term capturing

mean reversion uncertainty arising from both observable and unobservable predictor, and a

third term referring to future uncertainty about expected returns stemming from the investor

ignoring the future values of the observable predictor, the future values of the unobservable

predictor, and their joint future dynamics. Taken together, an investor must consider all

these different layers of uncertainty applied to three different return components, to bet-

ter understand the multi-period predictive variance associated with her international bond

strategy.

2.5 Covariance of Expected Returns

The second term on the right side of Equation (7) is the covariance of the conditional expected

k-period returns given the investor’s information set DT .

Proposition 2. Assuming Equations (2)–(5) hold, the covariance of the conditional expected

k-period returns is given by

Cov
[
E(rki,T | πT , ϕ,DT ), E(rkj,T | πT , ϕ,DT ) | DT

]
= S4(k) + S5(k), (13)

where the terms on the right side represent two sources of uncertainty defined as

S4(k) = E

{
1− δki
1− δi

1− δkj
1− δj

qij,T | DT

}
︸ ︷︷ ︸

current uncertainty π

, (14)

3When i = j, there are no observable predictors, and there is no uncertainty about ϕ, the expectation of
the conditional covariance in Equation (13) coincides with the conditional variance presented in Pástor and
Stambaugh (2012). See their Equation (6) on page 438.
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S5(k) = Cov

{
kEri +

1− γki
1− γi

bi,T +
1− δki
1− δi

ci,T , kErj +
1− γkj
1− γj

bj,T +
1− δkj
1− δj

cj,T | DT

}
︸ ︷︷ ︸

estimation risk

.

(15)

The quantities cs,T and bs,T for s = {i, j}, Ex for x = {ri, rj}, and qij,T are functions of the

parameters underlying the predictive system.

Proof. See Internet Appendix A.2

According to Proposition 2, the covariance of the conditional expected k-period returns

consists of two different sources of uncertainty. The first component in Equation (14), denoted

as S4(k), accounts for the investor’s uncertainty about the current value of unobservable

predictors affecting expected returns. It depends on the conditional covariance between

the unobservable predictors πi,T and πj,T through qij,T as well as their level of persistence

captured by δi and δj, respectively. Overall, this term can play an important role as it reflects

information not directly available to the investor at time T due to predictor imperfection.

The second component in Equation (15), named S5(k), reflects estimation risk arising from

uncertainty about ϕ, i.e., the parameters of the predictive system may not be perfectly

estimated and thus affect the accuracy of predictions for future returns. This component

combines the unconditional expected returns (Eri and Erj) with the conditional means of

observable (bi,T and bj,T ) and unobservable (ci,T and cj,T ) factors, respectively. While the

previous four sources of uncertainty are expectations of random quantities due to uncertainty

about ϕ, this component is the covariance of quantities whose randomness is also due to

parameter uncertainty. In the absence of such uncertainty, this component is zero, which

is why we attribute it the interpretation of estimation risk akin to Pástor and Stambaugh

(2009).

In summary, the covariance of the conditional expected k-period returns captures both the

immediate impact of unobservable predictors and the estimation risk associated with param-

eter uncertainties, each contributing to a more comprehensive risk assessment over varying
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time horizons.

2.6 Predictive Variance Ratio

Our goal is to calculate the multiperiod predictive variance outlined in Equation (7). This

variance includes three predictive variances specific to foreign bond excess returns, real inter-

est rate differentials, and real exchange rate returns, and three predictive covariances, each

counted twice, involving the interactions between foreign bond excess returns and real in-

terest rate differentials, foreign bond excess returns and real exchange rate returns, and real

interest rate differentials and real exchange rate returns. Each of these components further

incorporates five distinct sources of uncertainty detailed in Proposition 1 and Proposition 2.

In our empirical analysis, we will evaluate the importance of these components and how they

vary with the investment horizon k by presenting, similar to Pástor and Stambaugh (2009),

the k-period variance ratio defined as

VR(k) =
Var

(
rxkT | DT

)
kVar (rx1T | DT )

(16)

=
3∑
i=1

3∑
j=1

Cov(rki,T , rkj,T | DT )

kVar (rx1T | DT )
, (17)

where Var (rx1T | DT ) is the one-month predictive variance of the international bond strategy.

Throughout our empirical analysis, we will also scale the underlying components by the same

amount to facilitate comparison across different horizons.

3 Data and Preliminary Statistics

This section describes the long-span dataset to estimate the long-horizon predictive variance

of an investment strategy in which a US investor buys a constant maturity long-term bond

in foreign currency while borrowing at the short-term deposit rate in domestic currency.
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3.1 Long-Span Data

We focus on a sample of major countries relative to the US that exhibit a good degree

of homogeneity and have relatively liquid and developed bond markets, such as Australia,

Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, and the UK. The

main source of our dataset is Global Financial Data, and the sample ranges between December

1799 and December 2023. The starting date varies across countries, depending on data

availability, from December 1799 for the UK to December 1922 for New Zealand. We use the

US as the domestic country and any other country as the foreign country.

The return vector rt+1 on the left side of Equation (2) includes the bond excess return

in foreign currency, the short-term real interest rate differential between the foreign and

domestic countries, and the real exchange rate return vis-á-vis the domestic currency. The

bond excess return is calculated as r1,t+1 = y⋆t+1 − i⋆t+1, where y
⋆
t+1 is the log return on the

10-year total return government bond index and i⋆t+1 is the log return on the total return bills

index, both defined between months t and t+1 for the same foreign country. The short-term

real interest rate differential is computed as r2,t+1 = (i⋆t+1−ρ⋆t+1)−(it+1−ρt+1), where i
⋆
t+1 and

it+1 are the log returns on the foreign and domestic total return bills index between months

t and t + 1, respectively, while ρ⋆t+1 and ρt+1 are the year-on-year log changes in the foreign

and domestic consumer price index at time t+1, respectively. The total return bills index is

largely based on 3-month treasury bill yields and deposit rates. When monthly data on the

consumer price index are not available, we retrieve monthly observations by forward-filling

lower-frequency data, i.e., we keep the last observation until a new one is made available.

Finally, the real exchange rate return is constructed as r3,t+1 = et+1+ ρ⋆t+1− ρt+1, where et+1

is the log return on the spot exchange rate between months t and t + 1. The exchange rate

is defined in units of US dollars per unit of foreign currency, so that an increase indicates

foreign currency appreciation.

The set of observed predictors xt on the right side of Equation (2) includes the term spread,

the real output growth differential, and the short-term interest rate differential, due to data
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availability. The term spread is measured as the difference between the 10-year government

bond yield and the 3-month treasury bill yield. When the latter is not directly available,

we use the log return on the total return bills index as a proxy. The real output growth

differential is quantified as the difference between the foreign and domestic year-on-year log

changes in real GDP. We retrieve monthly data from quarterly or annual data via forward

filling. Finally, the short-term interest rate differential is computed as the difference between

the foreign and domestic 3-month treasury bill yield.

3.2 Summary Statistics

We present the descriptive statistics for both returns and observed predictors in Table 1.

The bond excess return in local currency is generally positive across countries and ranges

between 0.26 and 1.54 percent per annum for the UK and Australia, respectively. The

exception is New Zealand for which the average bond excess return is negative and equal

to −0.51 percent per annum. The standard deviation, reported in percentage per annum,

is fairly large and goes from 8.42 for the UK to 5.12 for Switzerland. The short-term real

interest rate differential goes from −0.43 percent per annum for Germany to 1.69 percent

per annum for Canada but the evidence suggests that the short-term real interest rate for

the US has been, on average, lower than the short-term real interest rate abroad in our

sample. The cross-sectional variation as measured by the standard deviation is fairly small

and we record the largest value of 2.27 percent per annum for Japan. The real exchange

rate evolves around zero, being negative for six countries and positive for the remaining

three countries. We record the largest negative return for Australia (i.e., −0.72 percent

per annum) and the largest positive value for Switzerland (i.e., 0.73 percent per annum).

The standard deviation of the real exchange rate return, moreover, is generally larger than

the standard deviation reported for real interest rate differentials. For example, Australia

displays a standard deviation of 8.45 percent per annum, whereas New Zealand has a standard

deviation of 11.69 percent per annum.
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Table 1 about here

In addition to sample averages and standard deviations, we also measure the sample higher

moments. The conventional measures of skewness and kurtosis, however, can be arbitrarily

large especially when the sample is contaminated by large values. This is the case when

one works with long-span samples. Our sample is indeed characterized by a number of

events, including financial crisis, different monetary policy regimes as well as periods with

fixed and floating exchange regimes. Instead of manually removing large values, we use

robust measures of skewness and kurtosis (e.g., Kim and White, 2004). In particular, the

coefficient of skewness is defined as skew = (µ − Q2)/σ, where µ is the sample mean, Q2 is

the sample mode, and σ is the sample standard deviation. The centred coefficient of kurtosis,

moreover, is computed as kurt = ((F−1
0.975 +F−1

0.025)/(F
−1
0.75 +F−1

0.25))− 2.91, where F−1 denotes

the quantile of the empirical distribution. We find that the coefficient of skewness is by and

large negative but small in size. In contrast, the coefficient of kurtosis is sizeable, especially

for the real exchange rate return. We also compute the first-order serial correlation. We find

that bond excess returns and real exchange rate returns have a relatively low coefficient of

serial correlation, whereas real interest rate differentials display a very high coefficient.

Table 1 also reports descriptive statistics of the observable predictors used to forecast bond

excess returns, real interest rate differentials and real exchange returns. The mean of term

spreads is overall positive, denoting upward sloping yield curves for the majority of the coun-

tries. The mean of real output growth differentials is generally negative (except for Canada

and Japan), suggesting that output growth in the US has been, on average, higher than

output growth in other countries. Finally, the mean of the nominal interest rate differential

is positive for most countries (except for Germany and Switzerland). As already reported in

existing studies, all three predictors exhibit a very high degree of persistence.4

4We remove the hyperinflation period between January 1919 and December 1924 for Germany and the
post-WWII period between January 1945 and July 1948 for Japan so that our analysis is not affected by
extremely large data points.
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4 Empirical Results

In this section, we present our findings on the estimation of the long-horizon predictive vari-

ance. First, we present the parameter estimates for the predictive system described earlier,

and then illustrate the predictive variance and its underlying components for the baseline

case involving the UK relative to the US, given the extended availability of historical data.

We then extend our focus to all other countries in our sample and evaluate the consistency

of our key findings. Finally, we check whether the observed patterns are unique to recent

years or have persisted over the past century.

4.1 Benchmark Priors

We use Bayesian methods to estimate the parameters of the predictive system in Equa-

tions (2)–(5). Similar to Pástor and Stambaugh (2009), the priors are assumed to be in-

dependent across parameters and follow conventional functional forms such as Normal and

Wishart distributions. For each parameter, we specify a benchmark prior for our core analy-

sis as well as two alternative priors in the robustness analysis reported in Section 5.1. When

we deviate from the benchmark prior for a given parameter, we hold the benchmark priors

for all other parameters. We estimate the predictive system under each specification and

explore the extent to which the long-horizon variance is sensitive to prior beliefs. We start

by reviewing the benchmark priors before moving the parameter estimation.

The benchmark priors on ai and bi, the constant and slope coefficient on the observable pre-

dictor in Equation (2), are normally distributed. The prior means are obtained by estimating

the regressions ri,t+1 = ai+ bixi,t+ui,t+1 via least-squares, while the prior variances are fixed

at 0.5. The benchmark priors on θi and γi, the constant and autoregressive coefficient on the

observable predictor in Equation (3), are also normally distributed. The prior means are set

by estimating the regressions xi,t+1 = ai+ bixi,t+vi,t+1 via least squares, with prior variances

set to 0.5 for θi and 0.01 for γi. The benchmark prior on δi, the autoregressive coefficient on
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the unobservable predictor in Equation (4) is also normally distributed, with prior mean of

0.99 and a prior variance of 0.01. Additionally, the prior distribution on γi is restricted to

the interval (−1, 1), whereas the prior distribution in δi is restricted to the interval (0, 1).

The covariance matrices Σuu, Σvv, and Σvu in Equation (5) are stack together to form Σεε

and then sampled jointly. The benchmark prior on Σ−1
εε is specified as a diagonal Wishart

distribution, with prior parameters chosen so that the mean of diagonal elements matches

the sample variances of rt and xt. The benchmark prior on Σ−1
ηη is also specified as a diagonal

Wishart distribution, with prior parameters chosen so that the prior mean of the diagonal

elements is one. The benchmark prior on Σuη follows a Normal distribution, and we set the

prior parameters so that the implied prior on ρuiηi , the correlation between unexpected returns

and shocks to the unobservable predictor, has a mean of −0.5 and 95% of its probability

mass lies within the interval [−0.75, 0.25]. This prior follows the argument of Pástor and

Stambaugh (2009), who suggest that, a priori, the correlation between unexpected return

and the innovation in expected return is likely to be negative. Finally, the benchmark prior

on Σvu follows a Normal distribution with zero means and unit variances. Additional details

on the priors are reported in Internet Appendix B.4.

4.2 Parameter Estimation

Armed with long-span data and benchmark priors, we estimate the parameters of the pre-

dictive system using a Gibbs sampling algorithm and incorporating the forward filtering,

backward sampling method of Carter and Kohn (1994) to sample the vector of unobservable

predictors. The algorithm runs for 100,000 iterations, following an initial burn-in period of

20,000 iterations, and we retain one in every ten iterations to mitigate potential serial corre-

lation. We then compute posterior means, standard deviations (STD), numerical standard

errors (NSE), relative numerical inefficiency (RNI), and highest posterior density intervals

to assess statistical significance. A detailed description of our algorithm can be found in

Internet Appendix B.
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In Table 2, we report the posterior estimates associated with Equation (2). Recall that rt+1

includes the bond excess return in local currency, the real interest rate differential between

the foreign country and the US, the real exchange rate return relative to the US dollar, while

xt comprises the term spread, the real output differential between the foreign country and the

US, and the nominal interest rate differential between the foreign country and the US. We

use the superscripts *, **, and *** to indicate that the 90%, 95%, and 99% highest posterior

density intervals, respectively, do not contain zero.

Table 2 about here

The estimates of b1 suggest that bond excess returns are predictable by the lagged local-

currency term spreads in all cases. For most countries, the significance is at the 1 percent level

using highest posterior density intervals, corroborating and extending the evidence already

reported in the existing literature for the US Treasury bond market (e.g., Joslin et al., 2014).

The recorded R2 are also consistent with the ones recorded for the US at a monthly frequency

(Gargano, Riddiough and Sarno, 2018). Similar evidence of predictability is found for b2, the

slope associated to the predictability of the real interest rate differential using the lagged real

output differential. All estimates of b2 are statistically significant at the 1 percent level, with

large R2, all exceeding 92 percent. The evidence on the predictability of the real exchange

rate returns is less pervasive as, consistently with much empirical evidence, the estimates of b3

are only significant in 3 cases out of 9. Although there is compelling evidence of predictability

for bond excess returns in local currency and real interest rate differentials, the predictive

variance of the returns associated to our international bond strategy is likely to be affected

by considerable uncertainty as real exchange returns turn out to be difficult to predict.

In addition to parameter estimates, we also report the NSE and RNI (e.g., Della Corte,

Sarno and Tsiakas, 2008b). The former is a measure of numerical precision and reflects the

variability in the posterior mean estimate if the simulation were repeated multiple times. Our

NSE estimates are fairly small, suggesting that the number of draws to calculate our posterior

moments is more than sufficient. The latter quantifies the efficiency loss when calculating the

posterior mean from autocorrelated samples, compared to independent samples. Our RNI
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estimates are generally small, indicating that the draws for the computation of the posterior

moments show little serial correlation. This is also due to the fact that we retain one in every

ten iterations before calculating our posterior moments.

Table 3 about here

In Table 3, we report the posterior estimates associated to Equation (3). The evidence

confirms the high persistence in the observable predictors for all countries. In fact, the

estimates of γi are all statistically significant at the 1 percent level and their value exceeds

0.93 across countries and predictors. Moreover, the small numbers for NSE and RNI estimates

confirms that we have used an adequate number of draws to construct out posterior moments.

Table 4 about here

Interestingly, the high persistence recorded for the observable predictors is mimicked by a

similar persistence for unobservable predictors. Although the coefficients for δi reported in

Table 4 are slightly smaller than the ones reported in Table 3, their magnitude is still sub-

stantially large. This suggests that the predictable, potentially slow-moving, part of bond

excess returns, real interest rate differentials and real exchange rates require multiple persis-

tent predictors to be captured. Given the long-sample period investigated, it is reasonable to

hypothesize that unobserved predictors may be associated with abrupt yet persistent changes

in monetary and exchange rate regimes that took place during the past two centuries. Inter-

net Appendix Table A.1 plots the posterior mean of the unobservable predictors, and unveil

some notable shifts. For example, the unobservable predictors exhibit large spikes around the

Great Depression, Oil Crisis, Volcker Shock, Black Wednesday, and Global Financial Crisis,

and Covid-19 Pandemic. We now move to assess the multiperiod predictive variance of our

international bond strategy.
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4.3 Predictive Variance: Baseline Case

Using the posterior draws of the parameters from the predictive system in Equations (2)–(5),

we project the predictive variance over the next k periods, applying the closed-form solutions

from Proposition 1 and Proposition 2. Specifically, DT , the information set available to an

investor at time T , encompasses all data up to December 2023, allowing us to compute the

predictive variance from T to T + k, where k represents the future investment horizon. For

the sake of exposition, our core analysis focuses on the UK relative to the US due to the

extensive data availability. We subsequently assess other major countries to confirm the

robustness of our main findings. To facilitate comparison across countries, we focus on the

predictive variance ratio.

Figure 1 about here

In Figure 1, we start by plotting the predictive variance ratio of the international bond

strategy as well as its constituents based on Equation (17) Panel A focuses on the total

predictive variance ratio and reveals an upward pattern. The longer the investment horizon,

the larger the predictive variance. Over a 20-year horizon, the monthly predictive variance

of our strategy increases by 100 percent, exceeding 200 over a 50-year horizon. This finding

is comparable to the long-horizon predictive variance of a US equity buy and hold strategy

computed over a similar sample period by Pástor and Stambaugh (2012). This result also

echoes early findings by Campbell and Viceira (2001, 2002) showing that long-term bonds

are not very different from equities over longer investment horizons.

To gain insight on the key drivers behind our findings, we further examine the individual

components of our strategy, i.e., the foreign bond excess return, the real interest rate dif-

ferential, and the real exchange rate return. In Panel B, we illustrate the contribution of

each component to the overall predictive variance by summing their respective variances and

covariances. For instance, the contribution coming from the real exchange rate return in-

cludes its variance and its covariances with the bond excess return and the real interest rate

differential. Panel B reveals that the upward trend observed in Panel A is largely driven by
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the real exchange rate return and the real interest rate differential, while the effect of the

bond excess return in local currency diminishes with longer investment horizons.

Finally, in Panels C and D, we display the individual predictive variances and the covariances

appearing on the right side of Equation (17). In light of our assessment, the upward pattern

exhibited by the predictive variance of the strategy is mostly due to the individual predictive

variances of the real exchange rate return and the real interest rate differential, with the

former playing a more prominent role. The predictive variance of bond excess returns in local

currency does not play a substantial role, as its impact is relatively constant across investment

horizons. Among the three predictive covariances, those involving the real exchange rate

returns are large and negative in sign. The results also suggest that the predictive co-

movements between interest rates and real exchange rate are important in the long-run, as

they tend to reduce the overall expected risk of the strategy, especially at longer horizons.

This negative sign is also in line with the recent evidence reported in Engel (2016), whereby

the correlation between long-term expected risk premia and real interest rate differentials

is negative. This finding suggests that predictive co-movement between foreign bond excess

returns and real interest rate differentials are less important in determining the long-term

risk profile of the strategy.

Figure 2 about here

As shown in Equation (7), we can decompose the predictive variance into two parts: the

expectation of the conditional covariance of k-period returns and the covariance of the con-

ditional expectation of k-period returns. Panel A of Figure 2 illustrates this decomposition,

indicating that the latter component is the main driver of the upward trend of the total

predictive variance, while the former has a minimal impact, likely due to the extensive 200-

year span of monthly data used in our analysis. Moreover, Proposition 2 shows that the

expected conditional covariance consists of three source of uncertainty, i.e., iid uncertainty,

mean reversion and future expected return uncertainty, while Proposition 1 unpacks the co-

variance of expected returns into two further sources of uncertainty, i.e., current expected
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return uncertainty and estimation risk via Proposition 2. Panel B of Figure 2 reports this

decomposition, always in terms of variance ratio. The patterns exhibited by this decomposi-

tion are rather striking and they unambiguously assign a dominant, if not an exclusive role,

to the uncertainty about future returns. This type of uncertainty is found to be important

for long horizons in the context of US equity markets (e.g., Pástor and Stambaugh, 2012).

However, its impact on the predictive variance of returns is partly offset by the effect of mean

reversion in returns, especially at short to medium horizons. Panel C explores mean rever-

sion, showing both observable and unobservable predictors follow a downward trend. Finally,

in Panel D, we break down future expected return uncertainty by examining both observable

and unobservable predictors and their interaction. The unobservable predictors dominate,

as their impact on predictive variance over the long run is three times greater than that of

observable predictors, while their interaction is negligible at very long horizons. If we think

of unobservable predictors as variables associated with changes in monetary and exchange

rate regimes that have occurred over the past two centuries and are not already captured

by the set of observable predictors, the evidence suggests that these shifts, particularly their

unpredictable effects on future returns, have a significant impact on the overall risk profile

of the strategy.

4.4 Predictive Variance: Cross-Country View

To validate our main findings regarding the impact of future uncertainty, we extend our

analysis to include all major countries, including the UK. Figure 3 presents the average value

and interquartile range of the total predictive variance ratio, along with its underlying uncer-

tainty components derived from Proposition 2 and Proposition 1. We observe qualitatively

similar trends, with a consistent upward trajectory in the predictive variance and a significant

contribution from future expected return uncertainty as the primary driver.

Figure 3 about here

In Figure 4, we further examine the components of international bond strategies, highlighting

26



that real exchange rate returns and real interest rate differentials are the primary contributors

to the risk profile of an international investor. In contrast, foreign bond excess returns play

a comparatively minor role in shaping this profile.

Figure 4 about here

This cross-country decomposition emphasizes the robustness of our findings, highlighting

the persistent role of future expected return uncertainty in shaping the predictive variance

profile for international bond strategies. The results suggest that, regardless of the specific

country, uncertainty tied to future expected returns remains a dominant factor driving the

risk outlook over multiple periods, reinforcing the importance of forward-looking uncertainty

in these strategies. Moreover, the consistent prominence of real exchange rate returns and real

interest rate differentials across different countries indicates that exchange rate fluctuations

and cross-country interest rate spreads are pivotal in determining the predictive variance

faced by international investors. By contrast, foreign bond excess returns contribute less

significantly. This comprehensive cross-country perspective therefore confirms that these

factors are not isolated to a single country or currency regime but are fundamental to the

international bond investment landscape as a whole.

4.5 Multiperiod Predictive Variance: An ExpandingWindow View

Our analysis leverages over 200 years of data to calculate the predictive variance of an in-

ternational bond strategy projected over the next 50 years. A natural question arises: is

the observed upward-sloping pattern a recent phenomenon, or has it persisted historically?

To explore this, we re-estimate the parameters of the predictive model using an expanding

window starting in December 1900 and updating annually until December 2023. For each

set of parameters, we then compute the multiperiod predictive variance of the strategy for

the next 50 years, and display the results in Figure 5 using a three-dimensional chart.

Figure 5 about here
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The vertical axis represents the predictive variance, while the horizontal axes correspond to

time periods and forecasting horizons. The color scale, moving from red (low) to yellow and

then to blue (high), indicates the intensity of the predictive variance. Regions with more

red signify lower variance, while blue regions signify higher variance. This chart shows a

general upward slope in the predictive variance over time, in line with our previous findings.

Interestingly, the predictive variance curve was steeper at the beginning of the last century,

peaking around the end of World War I. It then gradually became less steep, maintaining a

relatively stable slope up until the early 1980s. From that point onward, the curve begins to

rise again, regaining its steepness and sustaining this upward trend through to the present.

This pattern suggests that while economic and policy shocks initially drove high predictive

variance, the relative stability mid-century was later disrupted, leading to renewed variability

in recent decades.

Figure 6 about here

In Figure 6, we examine the predictive variances of the components underlying the interna-

tional bond strategy. The predictive variance of the foreign bond excess return has generally

remained flat, with notable exceptions during World War II, where the variance ratio surged

to 2 for the next projected 50 years, and in the 1970s, where it reached 1.5. These spikes

align with significant economic challenges. During WWII, UK government debt rose to over

200% of GDP as the war strained public finances. In the 1970s, the UK faced economic

difficulties, often referred to as ‘the sick man of Europe” due to sluggish growth and deteri-

orating industrial relations since the end of the war. These historical contexts help explain

the periods of heightened predictive variance in the international bond strategy.

The predictive variance of the real interest rate differential was notably steep at the begin-

ning of the last century, with the variance ratio reaching 5 for the next projected 50 years.

Over time, this variance gradually declined, leveling out to around 2 for the same horizon

in recent years. One possible explanation for this downward trend is the improvement in

monetary policy and increased policy coordination, particularly following the collapse of the
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Bretton Woods system. Enhanced central bank practices and coordinated economic policies

likely contributed to stabilizing interest rate differentials, reducing the associated predictive

variance in the long term.

The predictive variance of the exchange rate return has consistently shown an upward slope,

with a variance ratio around 2 for projections 50 years ahead. This ratio dipped below 2 in

the early 1980s, a period marked by the Federal Reserve’s aggressive rate hikes under Paul

Volcker to combat inflation. Conversely, it rose above 2 in the early 1990s, coinciding with

the pound’s depegging from the Deutsche Mark and the infamous speculative attack on the

Bank of England by George Soros. These events highlight how major monetary policy shifts

and currency market pressures have historically influenced the long-term predictive variance

of the real exchange rate return.

Figure 7 about here

In Figure 7, we analyze the predictive covariances, each counted twice, among the compo-

nents of the international bond strategy. These predictive covariances consistently exhibit a

negative slope, reflecting opposing movements in the components over time. The predictive

covariance between foreign bond excess returns and the real interest rate differential shows a

pronounced negative slope up to the early 1980s, becoming less steep over the last 30 years.

This shift may reflect increased stability in interest rate differentials and reduced volatility

in bond returns. The predictive covariance between foreign bond excess returns and the real

exchange rate return has also been negative, displaying regular fluctuations. This pattern

of ups and downs suggests sensitivity to economic cycles and exchange rate adjustments,

impacting the long-term predictive relationship between bond returns and exchange rate

movements. The predictive covariance between the real interest rate differential and the real

exchange rate return shows a very steep negative slope until the early 1970s, after which it

becomes significantly less steep. This shift aligns with the collapse of the Bretton Woods

system and the transition to floating exchange rates, which likely reduced the influence of

tightly controlled exchange rate policies on interest rate differentials. The transition to a
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floating regime appears to have moderated the relationship between these two components,

resulting in a less pronounced negative slope in recent decades.

Figure 8 about here

In Figure 8, we examine the uncertainty components underlying the international bond strat-

egy. Our analysis confirms that future expected return uncertainty has consistently been the

dominant driver of predictive variance. This component was especially high at the start of

the last century, peaking around World War I, before gradually declining. Interestingly, it

began to rise again in the early 1990s, reflecting renewed economic and financial uncertainty

during that period. This pattern underscores the impact of historical events and economic

shifts on the long-term predictive variance of an international bond investor.

5 Robustness

In this section, we conduct several robustness exercises to verify the stability of our findings.

We begin by exploring the role of priors, evaluating how different prior specifications impact

our predictive variance estimates. Second, we examine the role of unobservable predictors

by estimating a predictive system without observable predictors. Finally, we assess the

importance of predictor imperfection by only using observable predictors in our analysis.

5.1 Role of Priors

In our core analysis, we use benchmark priors as described in Section 4.2 to estimate the

predictive variance of an international bond strategy involving the UK relative to the US.

These priors are chosen to ensure that parameter estimates are grounded in observed data.

To test the robustness of our findings, we explore for selected parameters two alternative

priors, referred to as the flexible prior and the loose prior, that introduce greater variability.
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By comparing the results under these alternative priors with those of the benchmark, we

assess the sensitivity of the predictive variance to different prior specifications.

Figure 9 and Table 5 about here

We start with the slope coefficients in b. The benchmark prior has a mean based on actual

data and a variance of 0.5. The flexible prior keeps the same mean but increases the variance

to 1, while the loose prior has a mean of 0 and a variance of 2. Despite increased variability

in the priors, Figure 9 shows that the posterior densities remain similar, indicating minimal

impact on the estimates. Table 5 confirms that the predictive variance ratios are stable across

priors, with values of 2.00, 2.05, and 2.07 at 20 years for the benchmark, flexible, and loose

priors, respectively.

Figure 10 and Table 6 about here

For the autoregressive coefficients in γ, the benchmark prior has a mean derived from data

and a variance of 0.01. The flexible and loose priors have means of 0.95 and 0.90, respectively,

with the same variance of 0.01. As shown in Figure 10, the posterior densities remain largely

unchanged, and Table 6 demonstrates stable predictive variance ratios, with virtually no

differences at all horizons.

Figure 11 and Table 7 about here

Examining the autoregressive coefficients in δ, we observe similar results. The benchmark

prior has a mean of 0.99 and a variance of 0.01, while the flexible and loose priors use means

of 0.95 and 0.90 with the same variance. Figure 11 and Table 7 show that the posterior

estimates and predictive variance ratios remain consistent across priors, with values of 2.00,

1.98, and 1.95 at 20 years for the benchmark, flexible, and loose priors, respectively.

Figure 12 and Table 8 about here
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Finally, we analyze the correlations between unexpected returns and shocks to the unobserv-

able predictor, ρuη. The benchmark prior has a mean of −0.5 with 95% of its probability

mass in the range of [−0.75,−0.25]. The flexible prior widens this range to [−1, 0], while the

loose prior shifts to a mean of 0 with a range of [−1, 1]. Figure 12 indicates slight shifts in

posterior densities for the foreign bond excess return, with stable results for other compo-

nents. Table 8 confirms that the predictive variance ratios remain similar, highlighting the

robustness of our findings across different prior settings. For example, with values of 2.00,

1.90, and 1.94 at 20 years for the benchmark, flexible, and loose priors, respectively.

5.2 Unobservable Predictors

In our core analysis, we use a predictive system that incorporates both observed and ob-

servable predictors, finding that the steepness of the predictive variance is driven by future

expected return uncertainty arising from the real interest rate differential and real exchange

rate return. To test the robustness of these findings, we re-estimate the predictive system

using only the unobserved predictors in πt, thus disregarding the influence of the observable

predictors in xt, and then recompute the predictive variance at different horizons.

Figure 13 about here

Specifically, we use the results from Proposition 1 and Proposition 2, while setting all pa-

rameters related to the observable predictors equal to zero. This adjustment eliminates mean

reversion in x, future uncertainty in x and future uncertainty in π and x. The predictive

variance ratio and its components, shown in Figure 13, reveal very similar results, supporting

our main findings.

5.3 Observable Predictors

Predictor imperfection is an important element of our framework. As highlighted by Pástor

and Stambaugh (2012), ignoring imperfections in predictors can lead to an underestimation
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of the uncertainty faced by investors. To assess whether this is the case in our setup, we

re-estimate the predictive system using only the observable predictors in xt, thus ignoring

the influence of the unobservable predictors in πt, and recompute the predictive variance at

different horizons. By doing so, we can isolate the role of unobserved factors in contributing

to predictive variance.

Figure 14 about here

For our calculations, we leverage on the results from Proposition 1 and Proposition 2, while

setting all parameters related to the unobservable predictors equal to zero. This means that

mean reversion in π, future uncertainty in π, future uncertainty in π and x, and current

uncertainty in π all vanish. The results, shown in Figure 13, indicate a significant reduction

in the predictive variance ratio when unobservable predictors are excluded. Specifically, the

variance ratio increases roughly to 1.2 at a 50-year horizon, compared to about 2.3 when

both observable and unobservable predictors are considered. This discrepancy highlights the

importance of accounting for predictor imperfections, as they meaningfully contribute to the

perceived risk over longer investment horizons.

5.4 Conditional Variance

Our analysis is centered around the predictive variance, which captures multiple sources of

uncertainty as well as predictor imperfection. Naturally, one might question whether predic-

tive variance differs from conditional variance. To address this, we compute the multiperiod

conditional variance of our investment strategy, which excludes both parameter uncertainty

and uncertainty about future returns. To perform this calculation, we begin by using the

posterior means of parameter estimates derived from the predictive system that exclusively

utilizes observable predictors. Hence, we compute the conditional variance by summing the

iid variance and mean reversion in x. The latter corresponds to the term within the expecta-

tion in Equation (10), while the former term appears in the first expectation in Equation (11).
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Figure 15 about here

We present the conditional variance in Figure 15, confirming the downward slope observed by

Viceira and Wang (2018). For example, the conditional variance ratio, calculated by scaling

the conditional variance of k-period excess returns by that of the one-period excess return,

declines to approximately 0.82 at 10 years and 0.72 at 50 years. We also observe that the

variance of the real interest rate differential and real exchange rate remains stable, as the

covariances between real interest rate differentials with foreign bond excess returns and real

exchange rate returns, respectively. Our findings suggest that by ignoring imperfections in

predictors and uncertainties about the model’s parameters and future returns, we are likely

to underestimate the magnitude of underlying variances and covariances in the investment

strategy. In other words, by leaving out these uncertainties in the conditional variance,

we miss fluctuations that contribute to the overall predictive variance, resulting in a lower

estimate than if we accounted for these elements. Put differently, while conditional variance

gives a simpler view of risk, it fails to fully capture the range of possible variations in returns

when we factor in predictor imperfection, model stability, and the uncertainty about future

returns. Predictive variance, which includes both observable and unobservable predictors,

therefore provides a more realistic measure of risk, especially over longer periods when these

uncertainties play a larger role.

5.5 Floating Exchange Rate Regime

Another potential concern regarding our findings is that our long-span sample includes both

the Gold Standard and Bretton Woods periods, during which exchange rates were pegged,

potentially impacting the variability and behavior of real exchange rate returns. To address

this, we conduct our analysis using data from the floating exchange rate period between

January 1973 and December 2023.

Figure 16 about here
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Figure 16 presents the predictive variance along with the underlying return components. The

overall shape of the predictive variance curve remains consistent with our core findings, albeit

slightly steeper. In this floating rate period, the real exchange rate return stands out as the

primary contributor to predictive variance, while the real interest rate differential plays a

negligible role. This may happen as the floating period is marked by the Great Moderation,

which likely muted the role of the interest rate differential. Also, both the Federal Reserve

and the Bank of England adopted a rules-based approach to monetary policy, which helped to

anchor inflation expectations and stabilize the economy. Additionally, we observe a slightly

positive covariance between the real interest rate differential and the real exchange rate re-

turn. This suggests a tendency for foreign currencies to appreciate when local interest rates

rise relative to US domestic rates, reflecting a possible short-term response of capital flows

to interest rate changes. We also show the decomposition of uncertainty. This analysis reaf-

firms our previous conclusions that future uncertainty remains a key driver of the predictive

variance for the bond investment strategy. The dominance of this component underscores

the role of unanticipated factors and structural changes, which persist as significant sources

of risk in the floating exchange rate environment.

5.6 Investing in US Bonds

Our analysis takes the perspective of a US investor going long on a constant-maturity bond

denominated in foreign currency while borrowing at the short-term rate in dollars. A natural

extension is to reverse the exercise and consider, for example, a UK investor going long on

a constant-maturity bond denominated in US dollars while borrowing at the short-term rate

in pounds.

Figure 17 about here

We provide the outcome of this exercise in Figure 17, using the entire sample period spanning

from 1799 to 2023. While the predictive variance continues to exhibit an upward-sloping

pattern, it is less steep compared to our core analysis presented in Figure 1. As shown in
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Panel A, the predictive variance ratio for a UK investor holding a US bond is approximately

1.5 at a 20-year horizon and rises to about 1.6 at a 50-year horizon. This occurs because

the predictive variance of the real exchange rate is no longer the dominant component, as

demonstrated in Panel C. This finding aligns with the fact that holding US dollars serves as

a natural hedge during periods of market turmoil, given its tendency to strengthen as a safe-

haven currency. Among the predictive covariances shown in Panel D, only the co-movements

between real exchange rate returns and real interest rate differentials are significant. Similar

to our core results, this covariance is predominantly negative at long horizons, consistent

with the evidence in Engel (2016), which indicates a negative correlation between long-term

expected risk premia and real interest rate differentials. Finally, as seen in Panel B, the

dominant source of uncertainty for a UK investor is the future expected return uncertainty,

which highlights the continued relevance of future return dynamics in shaping the predictive

variance of an international bond strategy.

6 Conclusions

We consider a simple strategy where a US investor holds an unhedged position in a long-

term foreign bond, funded at the domestic risk-free rate. The predictive variance on this

strategy, which depends on foreign bond excess returns, real interest rate differentials between

foreign and domestic country, and bilateral real exchange rate returns, can be decomposed

into five distinct sources of uncertainty using closed-form solutions. Empirically, we use

over 200 years of data for major countries relative to the US to assess the long-horizon risk

associated with this strategy. To capture the complexities of the return dynamics, we account

for imperfect predictability by allowing unobserved predictors to complement observable

predictors in forecasting the different return components of the international bond strategy.

This approach permits a comprehensive assessment of the uncertainty faced by an investor

as noted by Pástor and Stambaugh (2009).

Our analysis reveals several important findings. First, the predictive variance of the in-
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vestment strategy consistently increases with the investment horizon. This upward trend

is primarily driven by the variances of both short-term interest rate differentials and real

exchange rate returns. In contrast, the variance of the foreign bond excess return is less sen-

sitive to the length of the investment horizon. We also examine the covariance components

contributing to the risk profile of the bond strategy. We find that the predictive covariance

between foreign bond excess returns and real exchange rate returns has a minimal influence

on the long-term risk profile of the strategy. On the other hand, the predictive covariance be-

tween real interest rate differentials and real exchange rate returns plays an important role in

reducing the overall expected risk, particularly at longer horizons. This negative covariance

acts as a stabilizing force, helping to offset some of the individual uncertainties associated

with these components.

Second, future uncertainty about expected returns plays a dominant role in shaping the

predictive variance of the strategy at all investment horizons. While mean reversion could

theoretically help to mitigate long-term risk, it fails to fully offset the future uncertainty about

expected returns. This means that, even when bond returns, interest rates, and exchange

rates exhibit signs of predictability, the inherent uncertainties are too large to be effectively

countered by mean reversion alone.

Third, uncertainty about future returns is predominantly driven by components associated

with unobserved predictors. This suggests that much of the uncertainty comes from factors

that are not directly measurable or observable, reflecting the limitations of traditional pre-

dictors in fully capturing market dynamics. Moreover, the shape of the predictive variance

over longer horizons can be interpreted as arising from shifts in monetary and exchange rate

regimes that are not captured by the observable predictors. This suggests that unanticipated

changes in policy and macroeconomic conditions play a critical role in shaping the long-term

risk profile of the strategy.
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Figure 1: Predictive Variance and Return Components

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds while
borrowing at the 3-month interest rate in US dollars. The excess return consists of the foreign bond excess return, real interest rate differential,
and real exchange rate return. Panel A plots the predictive variance of the strategy, Panel B the contribution of each return component (i.e., the
variance plus the covariances), Panel C the underlying variances, and Panel D the underlying covariances, each counted twice. All components
are scaled by the predictive variance of a one-period excess return to ease the comparison across horizons as in Equation (17). Parameter
estimates are from a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The
sample includes monthly data from December 1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data.
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Figure 2: Predictive Variance and Uncertainty Components

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds
while borrowing at the 3-month interest rate in US dollars. Panel A decomposes the predictive variance into the expectation of the conditional
covariance and the covariance of the conditional expectation of future excess returns. Panel B breaks down the former into iid uncertainty, mean
reversion, and future expected return uncertainty via Proposition 1, and the latter into current expected return uncertainty and estimation risk
via Proposition 2. Panels C and D further decompose mean reversion and future uncertainty into components from observable and unobservable
predictors, respectively. All components are scaled by the predictive variance of a one-period excess return to ease the comparison across
horizons as in Equation (17). Parameter estimates are from a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000)
and retaining every tenth draw. The sample includes monthly data from December 1799 to December 2023 for the UK relative to the US,
sourced from Global Financial Data.
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Figure 3: Predictive Variance and Uncertainty Components: A Cross-Country View

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in foreign currency while
borrowing at the 3-month interest rate in US dollars. The predictive variance is decomposed into iid uncertainty, mean reversion and future
expected return uncertainty via Proposition 1, and current expected return uncertainty and estimation risk via Proposition 2. All components
are scaled by the predictive variance of a one-period excess return to ease the comparison across horizons as in Equation (17). The solid line
denotes the cross-country average, whereas the shaded area is the interquartile range. Parameter estimates are from a Gibbs sampling algorithm
with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data from December 1799
to December 2023 for Australia, Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, and the UK relative to the US, sourced
from Global Financial Data.
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Figure 4: Predictive Variance and Return Components: A Cross-Country View

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in foreign currency
while borrowing at the 3-month interest rate in US dollars. The predictive variance consists of variances and covariances (counted twice) of
foreign bond excess returns, real interest rate differentials, and real exchange rate returns. All components are scaled by the predictive variance
of a one-period excess return to ease the comparison across horizons as in Equation (17). The solid line denotes the cross-country average,
whereas the shaded area is the interquartile range. Parameter estimates are from a Gibbs sampling algorithm with 100,000 iterations (following
a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data from December 1799 to December 2023 for Australia,
Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, and the UK relative to the US, sourced from Global Financial Data.
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Figure 5: Predictive Variance: An Expanding Window View

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds while
borrowing at the 3-month interest rate in US dollars. The analysis uses an expanding window starting in December 1900 and updating annually
until December 2023. Parameter estimates are recalculated for each window using a Gibbs sampling algorithm with 100,000 iterations (following
a burn-in of 20,000) and retaining every tenth draw. For each window, we scale by the predictive variance of the one-period excess return, as
described in Equation (17). The sample includes monthly data from December 1799 to December 2023 for the UK relative to the US, sourced
from Global Financial Data.
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Figure 6: Return Components: An Expanding Window View

This figure presents the underlying variances contributing to the predictive variance in Figure 5. For each
window, we scale each component by the predictive variance of the one-period excess return, as described
in Equation (17). The sample includes monthly data from December 1799 to December 2023 for the UK
relative to the US, sourced from Global Financial Data.
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Figure 7: Return Components: An Expanding Window View

This figure presents the underlying covariances contributing to the predictive variance in Figure 5. For each
window, we scale each component by the predictive variance of the one-period excess return, as described
in Equation (17). The sample includes monthly data from December 1799 to December 2023 for the UK
relative to the US, sourced from Global Financial Data.
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Figure 8: Uncertainty Components: An Expanding Window View

This figure presents the uncertainty components contributing to the predictive variance in Figure 5. For each window, we scale each component

by the predictive variance of the one-period excess return, as described in Equation (17). The sample includes monthly data from December

1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data.
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Figure 9: The Role of b Priors

This figure displays three distinct priors for the slope coefficients in b. Benchmark is the prior density used
for the UK-US strategy, with a prior mean based on the least-squares estimate of the actual data and prior
variance fixed at 0.5. Flexible denotes a prior density that retains the same prior mean as the benchmark prior
but uses a prior variance of 1. Loose indicates a prior density with a prior mean of 0 and a prior variance of
2. Each prior follows a Normal distribution. The figure also includes the corresponding posterior densities,
which are computed using a Gaussian kernel density applied to the posterior draws from a Gibbs sampling
algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample
includes monthly data from December 1799 to December 2023 for the UK relative to the US, sourced from
Global Financial Data.
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Figure 10: The Role of γ Priors

This figure displays three distinct priors for the autoregressive coefficients in γ. Benchmark is the prior density
used for the UK-US strategy, with a prior mean based on the least-squares estimate of the actual data and
prior variance fixed at 0.01. Flexible denotes a prior density with a prior mean of 0.95 and a prior variance
of 0.01. Loose indicates a prior density with a prior mean of 0.90 and a prior variance of 0.01. Each prior
follows a Normal distribution truncated to the interval (−1, 1). The figure also includes the corresponding
posterior densities, which are computed using a Gaussian kernel density applied to the posterior draws from
a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth
draw. The sample includes monthly data from December 1799 to December 2023 for the UK relative to the
US, sourced from Global Financial Data.
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Figure 11: The Role of δ Priors

This figure displays three distinct priors for the autoregressive coefficients in δ. Benchmark is the prior
density used for the UK-US strategy, with a prior mean of 0.99 and a prior variance fixed at 0.01. Flexible
denotes a prior density with a prior mean of 0.95 and a prior variance of 0.01. Loose indicates a prior density
with a prior mean of 0.90 and a prior variance of 0.01. Each prior follows a Normal distribution truncated to
the interval (0, 1). The figure also includes the corresponding posterior densities, which are computed using
a Gaussian kernel density applied to the posterior draws from a Gibbs sampling algorithm with 100,000
iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data
from December 1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data.
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Figure 12: The Role of ρηu Priors

This figure displays three distinct priors for the correlations between unexpected returns and shocks to the
unobservable predictor in ρuη. Benchmark is the prior density used for the UK-US strategy, with a prior
mean of −0.5 and 95% of its probability mass within the interval [−0.75,−0.25]. Flexible denotes a prior
density with a prior mean of −0.50 and 95% of its probability mass within the interval [−1, 0] Loose indicates
a prior density with a prior mean of 0 and all its probability mass confined to the interval [−1, 1]. Each
prior is derived from a Normal prior on the cross-covariance Σηu. The figure also includes the corresponding
posterior densities, which are computed using a Gaussian kernel density applied to the posterior draws from
a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth
draw. The sample includes monthly data from December 1799 to December 2023 for the UK relative to the
US, sourced from Global Financial Data.
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Figure 13: Predictive Variance and Unobservable Predictors

This figure presents the predictive variance based on a predictive system that only includes unobservable predictors. Panel A presents the
predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds while borrowing at the
3-month interest rate in US dollars. Panel B breaks down the predictive variance into iid uncertainty, mean reversion, and future expected
return uncertainty via Proposition 1, and the latter into current expected return uncertainty and estimation risk via Proposition 2. Panels C
and D plot the underlying variances and covariances (each counted twice) of foreign bond excess return, real interest rate differential, and real
exchange rate return. All components are scaled by the predictive variance of a one-period excess return to ease the comparison across horizons
as in Equation (17). Parameter estimates are from a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and
retaining every tenth draw. The sample includes monthly data from December 1799 to December 2023 for the UK relative to the US, sourced
from Global Financial Data.
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Figure 14: Predictive Variance and Observable Predictors

This figure presents the predictive variance based on a predictive system that only includes observable predictors. Panel A presents the predictive
variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds while borrowing at the 3-month interest
rate in US dollars. Panel B breaks down the predictive variance into iid uncertainty, mean reversion, and future expected return uncertainty
via Proposition 1, and the latter into estimation risk via Proposition 2. Panels C and D plot the underlying variances and covariances (each
counted twice) of foreign bond excess return, real interest rate differential, and real exchange rate return. All components are scaled by the
predictive variance of a one-period excess return to ease the comparison across horizons as in Equation (17). Parameter estimates are from a
Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly
data from December 1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data.
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Figure 15: Conditional Variance and Observable Predictors

This figure presents the conditional variance based on a predictive system that only includes observable predictors. Panel A presents the
conditional variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds while borrowing at the
3-month interest rate in US dollars. Panel B breaks down the conditional variance into iid variance and mean reversion. Panels C and D plot
the underlying variances and covariances (each counted twice) of foreign bond excess return, real interest rate differential, and real exchange
rate return. All components are scaled by the conditional variance of a one-period excess return to ease the comparison across horizons as in
Equation (17). Parameter estimates are from a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining
every tenth draw. The sample includes monthly data from December 1799 to December 2023 for the UK relative to the US, sourced from Global
Financial Data.
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Figure 16: Predictive Variance and Return Components: Floating Regime

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in British pounds
while borrowing at the 3-month interest rate in US dollars. The excess return consists of the foreign bond excess return, real interest rate
differential, and real exchange rate return. Panel A plots the predictive variance of the strategy, whereas Panel B breaks down the former into
iid uncertainty, mean reversion, and future expected return uncertainty via Proposition 1, and the latter into current expected return uncertainty
and estimation risk via Proposition 2. Panels C and D plot the underlying variances and covariances (each counted twice) of foreign bond excess
return, real interest rate differential, and real exchange rate return, respectively. All components are scaled by the predictive variance of a
one-period excess return to ease the comparison across horizons as in Equation (17). Parameter estimates are from a Gibbs sampling algorithm
with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data from January 1973
to December 2023 for the UK relative to the US, sourced from Global Financial Data.
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Figure 17: Predictive Variance and Return Components: Investing in US Bonds

This figure presents the predictive variance of the excess return for a strategy buying a 10-year constant maturity bond in US dollars while
borrowing at the 3-month interest rate in British pounds. The excess return consists of the foreign bond excess return, real interest rate
differential, and real exchange rate return. Panel A plots the predictive variance of the strategy, whereas Panel B breaks down the former into
iid uncertainty, mean reversion, and future expected return uncertainty via Proposition 1, and the latter into current expected return uncertainty
and estimation risk via Proposition 2. Panels C and D plot the underlying variances and covariances (each counted twice) of foreign bond excess
return, real interest rate differential, and real exchange rate return, respectively. All components are scaled by the predictive variance of a
one-period excess return to ease the comparison across horizons as in Equation (17). Parameter estimates are from a Gibbs sampling algorithm
with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data from December 1799
to December 2023 for the US relative to the UK, sourced from Global Financial Data.

57



Table 1: Summary Statistics

This table presents descriptive statistics for the dependent variables (Local Bond Excess Returns, real interest
rate differentials, and real exchange rate returns) and observed predictors (Local Term Spread, real output
growth differential, and nominal interest rate differential) across nine major countries relative to the US.
The mean and standard deviation (sdev) are expressed as percentages per annum, while skewness (skew)
and excess kurtosis (kurt) are robust to the impact of outliers (e.g., Kim and White, 2004). The first-order
autocorrelation coefficient is denoted by ac1. The sample period for monthly observations is indicated in
parentheses, and data are sourced from Global Financial Data.

Australia (11/1862–12/2023) Canada (12/1899–12/2023)

mean sdev skew kurt ac1 mean sdev skew kurt ac1

Bond Excess Return 1.53 6.80 =0.01 4.16 =0.11 0.85 5.59 =0.03 2.44 0.05
Real Interest Rate Differential 0.29 1.47 =0.04 1.47 0.98 0.81 0.74 0.07 1.40 0.92
Real Exchange Rate Return =0.72 16.18 =0.01 9.21 =0.27 =0.26 5.24 =0.04 4.71 =0.06
Term Spread 1.37 0.33 =0.08 1.58 0.95 0.98 0.49 =0.16 0.34 0.98
Real Output Growth Differential =0.19 1.49 =0.05 0.95 0.99 0.45 0.92 0.04 1.08 0.98
Nominal Interest Rate Differential 0.57 0.65 0.25 0.56 0.98 0.82 0.39 0.28 0.41 0.96

Germany (12/1814–12/2023) Japan (09/1882–12/2023)

Bond Excess Return 1.26 7.35 =0.01 1.99 0.00 1.02 7.60 0.00 3.47 =0.01
Real Interest Rate Differential =0.43 2.15 =0.07 3.23 0.98 0.65 2.27 0.03 2.61 0.97
Real Exchange Rate Return 0.46 10.22 0.00 5.07 0.12 0.00 9.08 =0.04 4.34 0.10
Term Spread 1.29 0.41 =0.09 =0.02 0.90 0.60 0.54 =0.19 0.22 0.96
Real Output Growth Differential =1.08 2.39 0.05 0.89 0.99 0.25 1.69 0.04 1.16 0.99
Nominal Interest Rate Differential =0.13 0.57 0.03 =0.10 0.94 1.21 0.98 =0.17 =0.21 0.98

New Zealand (12/1922–12/2023) Norway (11/1831–12/2023)

Bond Excess Return =0.51 7.58 =0.01 2.83 0.08 0.30 7.98 0.03 2.16 0.01
Real Interest Rate Differential 1.69 1.05 =0.17 =0.05 0.96 0.61 1.70 0.03 1.32 0.98
Real Exchange Rate Return =0.17 11.69 =0.03 7.05 0.02 =0.13 9.71 =0.02 5.73 0.11
Term Spread =0.44 0.60 =0.16 =0.63 0.95 0.43 0.48 =0.07 =0.71 0.98
Real Output Growth Differential =0.30 1.20 =0.07 1.51 0.99 =0.88 1.63 =0.01 1.88 0.99
Nominal Interest Rate Differential 2.96 0.91 0.04 1.17 0.97 0.89 0.58 =0.02 1.18 0.97

Sweden (09/1853–12/2023) Switzerland (10/1899–12/2023)

Bond Excess Return 0.79 5.28 0.01 2.81 0.02 0.88 5.12 =0.02 2.04 0.07
Real Interest Rate Differential 0.35 1.52 0.02 1.82 0.96 0.38 1.05 0.02 1.36 0.96
Real Exchange Rate Return =0.37 8.31 =0.03 6.71 0.06 0.73 8.32 0.04 6.24 0.06
Term Spread 0.96 0.31 0.08 1.96 0.93 0.98 0.32 =0.13 0.53 0.96
Real Output Growth Differential =1.18 1.49 =0.05 0.89 0.99 =0.89 1.57 =0.02 1.66 0.99
Nominal Interest Rate Differential 0.61 0.52 0.31 2.55 0.97 =0.63 0.65 =0.22 0.18 0.98

UK (12/1799 – 12/2023)

Bond Excess Return 0.26 8.42 0.00 2.37 =0.10
Real Interest Rate Differential 0.11 1.78 =0.05 2.17 0.98
Real Exchange Rate Return =0.39 8.45 =0.01 4.45 0.10
Term Spread 0.53 0.43 0.05 0.65 0.94
Real Output Growth Differential =1.66 1.27 =0.03 0.85 0.99
Nominal Interest Rate Differential 0.34 0.51 0.08 1.46 0.95
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Table 2: Posterior Estimates: Return Equations

This table presents the Bayesian posterior means, standard deviations (STD), numerical standard errors
(NSE), and relative numerical inefficiency (RNI) for Equation (2). rt+1 includes the bond excess return in
local currency, the real interest rate differential, and the real exchange rate return. xt comprises the term
spread, the real output differential, and the nominal interest rate differential. The posterior moments are
obtained using a Gibbs sampling algorithm that runs for 100,000 iterations, following an initial burn-in of
20,000 iterations and retaining one in every ten iterations. The NSE provides a measure of numerical precision
and reflects the variability in the posterior mean estimate if the simulation were repeated multiple times. The
RNI quantifies the efficiency loss when calculating the posterior mean from autocorrelated samples, compared
to independent samples. Superscripts *, **, and *** indicate that the 90%, 95%, and 99% highest posterior
density intervals, respectively, exclude zero. The sample periods for each country are given in Table 1 and
consists of monthly observations. Data are sourced from Global Financial Data.

a1 a2 a3 b1 b2 b3 R2
1 R2

2 R2
3

Australia Mean =0.851 0.284** =1.109* 1.740*** 0.465*** 0.590 3.4 97.3 1.0
STD (0.640) (0.110) (0.643) (0.556) (0.044) (0.544)
NSE 0.011 0.003 0.007 0.014 0.001 0.011
RNI 2.713 7.271 1.084 5.930 11.168 3.795

Canada Mean =0.778 0.957*** =0.804 1.624*** =0.416*** 0.723 8.7 92.2 5.8
STD (0.538) (0.102) (0.558) (0.393) (0.050) (0.567)
NSE 0.006 0.003 0.008 0.006 0.002 0.014
RNI 1.201 6.455 1.826 2.407 9.391 5.902

Germany Mean =1.141** =0.029 0.625 1.812*** 0.571*** 0.641 3.4 97.6 6.1
STD (0.566) (0.138) (0.623) (0.410) (0.037) (0.557)
NSE 0.008 0.004 0.006 0.008 0.001 0.013
RNI 1.958 7.395 1.012 4.196 11.411 5.651

Japan Mean =0.022 0.291* =0.586 1.697*** =0.428*** 0.271 2.3 96.2 9.4
STD (0.523) (0.175) (0.656) (0.402) (0.052) (0.476)
NSE 0.006 0.003 0.007 0.008 0.001 0.006
RNI 0.995 6.174 1.075 2.799 9.254 2.784

New Zealand Mean 0.166 1.481*** =4.320*** 1.008** =0.145*** 1.342*** 6.5 94.4 4.4
STD (0.571) (0.113) (0.679) (0.456) (0.041) (0.376)
NSE 0.006 0.003 0.007 0.008 0.002 0.008
RNI 1.080 7.945 1.169 3.416 16.815 4.054

Norway Mean =0.200 0.368*** =1.134* 1.356*** =0.535*** 1.079** 4.4 97.5 4.8
STD (0.540) (0.127) (0.629) (0.469) (0.057) (0.552)
NSE 0.006 0.004 0.007 0.009 0.002 0.013
RNI 1.040 7.941 1.269 3.995 11.719 5.683

Sweden Mean =0.389 0.140 =0.674 1.193*** =0.195*** 0.552 3.3 95.5 5.8
STD (0.492) (0.160) (0.601) (0.454) (0.049) (0.558)
NSE 0.008 0.004 0.006 0.010 0.002 0.012
RNI 2.745 7.054 1.060 5.060 9.603 4.967

Switzerland Mean =0.955 0.322*** 1.522*** 1.825*** 0.095*** 1.136*** 14.3 94.9 6.8
STD (0.596) (0.104) (0.642) (0.570) (0.029) (0.612)
NSE 0.007 0.003 0.007 0.009 0.001 0.014
RNI 1.263 5.975 1.074 2.644 8.356 5.579

UK Mean =0.348 =0.216* =0.725 1.012** =0.337*** 0.845 2.4 97.5 5.4
STD (0.490) (0.128) (0.595) (0.434) (0.046) (0.582)
NSE 0.005 0.004 0.006 0.008 0.001 0.016
RNI 1.148 8.028 1.183 3.513 10.488 7.448
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Table 3: Posterior Estimates: Observed Predictor Equations

This table presents the Bayesian posterior means, standard deviations (STD), numerical standard errors
(NSE), and relative numerical inefficiency (RNI) for the parameters underlying Equation (3). xt+1 includes
the term spread, the real output differential, and the nominal interest rate differential. The posterior moments
are obtained using a Gibbs Sampling algorithm that runs for 100,000 iterations, following an initial burn-in of
20,000 iterations and retaining one in every ten iterations. The NSE provides a measure of numerical precision
and reflects the variability in the posterior mean estimate if the simulation were repeated multiple times. The
RNI quantifies the efficiency loss when calculating the posterior mean from autocorrelated samples, compared
to independent samples. Superscripts *, **, and *** indicate that the 90%, 95%, and 99% highest posterior
density intervals, respectively, exclude zero. The sample periods for each country are given in Table 1 and
consists of monthly observations. Data are sourced from Global Financial Data.

θ1 θ2 θ3 γ1 γ2 γ3 R2
1 R2

2 R2
3

Australia Mean 0.064*** =0.005 0.013 0.952*** 0.985*** 0.979*** 90.2 97.2 95.5
STD (0.012) (0.020) (0.011) (0.006) (0.003) (0.004)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 1.404 0.945 1.027 1.408 1.069 1.645

Canada Mean 0.028*** 0.010 0.022* 0.971*** 0.984*** 0.972*** 95.3 96.8 91.2
STD (0.011) (0.015) (0.012) (0.005) (0.004) (0.006)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 0.943 1.009 1.034 1.032 1.056 1.190

Germany Mean 0.052*** =0.015 =0.003 0.960*** 0.987*** 0.985*** 80.4 97.8 87.9
STD (0.014) (0.025) (0.014) (0.004) (0.002) (0.003)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 1.019 0.998 1.022 1.055 0.992 1.104

Japan Mean 0.022* =0.001 0.009 0.967*** 0.986*** 0.986*** 91.1 97.6 96.7
STD (0.014) (0.022) (0.015) (0.005) (0.003) (0.003)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 0.972 0.954 1.009 1.055 1.071 1.060

New Zealand Mean =0.019 0.008 0.068*** 0.956*** 0.980*** 0.976*** 90.6 97.8 94.4
STD (0.018) (0.018) (0.025) (0.006) (0.004) (0.005)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 1.044 0.980 1.098 1.050 1.064 1.133

Norway Mean 0.008 =0.002 0.018* 0.981*** 0.988*** 0.978*** 95.2 98.4 94.3
STD (0.008) (0.015) (0.010) (0.003) (0.002) (0.004)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 1.001 0.919 1.042 1.059 1.026 1.188

Sweden Mean 0.058*** =0.008 0.013 0.939*** 0.988*** 0.979*** 87.0 98.3 93.1
STD (0.010) (0.015) (0.011) (0.006) (0.002) (0.004)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 0.970 0.984 1.017 1.086 0.980 1.139

Switzerland Mean 0.042*** =0.006 =0.011 0.958*** 0.988*** 0.987*** 92.3 98.4 96.1
STD (0.010) (0.017) (0.012) (0.006) (0.001) (0.002)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 1.181 1.012 1.012 1.235 1.018 1.008

UK Mean 0.013 =0.021 0.006 0.975*** 0.986*** 0.984*** 89.0 97.3 89.5
STD (0.010) (0.015) (0.011) (0.004) (0.003) (0.003)
NSE 0.000 0.000 0.000 0.000 0.000 0.000
RNI 1.051 0.945 1.027 1.150 0.934 1.550
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Table 4: Posterior Estimates: Unobserved Predictor Equations

This table presents the Bayesian posterior means, standard deviations (STD), numerical standard errors
(NSE), and relative numerical inefficiency (RNI) for the parameters underlying Equation (4). The posterior
moments are obtained using a Gibbs Sampling algorithm that runs for 100,000 iterations, following an initial
burn-in of 20,000 iterations and retaining one in every ten iterations. The NSE provides a measure of
numerical precision and reflects the variability in the posterior mean estimate if the simulation were repeated
multiple times. The RNI quantifies the efficiency loss when calculating the posterior mean from autocorrelated
samples, compared to independent samples. Superscripts *, **, and *** indicate that the 90%, 95%, and
99% highest posterior density intervals, respectively, exclude zero. The sample periods for each country are
given in Table 1 and consists of monthly observations. Data are sourced from Global Financial Data.

δ1 δ2 δ3 R2
1 R2

2 R2
3

Australia Mean 0.914*** 0.969*** 0.906*** 88.2 96.0 90.6
STD (0.048) (0.005) (0.057)
NSE 0.001 0.000 0.002
RNI 9.310 1.679 9.281

Canada Mean 0.821*** 0.930*** 0.906*** 75.1 92.5 90.3
STD (0.053) (0.008) (0.035)
NSE 0.001 0.000 0.001
RNI 7.321 1.447 7.674

Germany Mean 0.892*** 0.970*** 0.957*** 81.0 96.0 95.8
STD (0.041) (0.004) (0.010)
NSE 0.001 0.000 0.000
RNI 7.365 1.894 5.328

Japan Mean 0.863*** 0.967*** 0.948*** 72.9 96.2 96.3
STD (0.055) (0.006) (0.020)
NSE 0.001 0.000 0.001
RNI 7.062 1.603 8.311

New Zealand Mean 0.821*** 0.956*** 0.914*** 85.7 92.9 91.3
STD (0.058) (0.008) (0.036)
NSE 0.002 0.000 0.001
RNI 7.145 1.302 6.361

Norway Mean 0.888*** 0.972*** 0.959*** 87.8 96.9 95.3
STD (0.043) (0.004) (0.013)
NSE 0.001 0.000 0.000
RNI 8.691 1.987 6.999

Sweden Mean 0.799*** 0.961*** 0.934*** 72.1 96.4 94.4
STD (0.071) (0.005) (0.022)
NSE 0.002 0.000 0.001
RNI 8.815 1.345 8.445

Switzerland Mean 0.874*** 0.947*** 0.939*** 89.9 93.3 94.4
STD (0.036) (0.008) (0.036)
NSE 0.001 0.000 0.001
RNI 6.940 1.404 9.768

UK Mean 0.847*** 0.969*** 0.953*** 81.0 96.6 95.5
STD (0.059) (0.004) (0.018)
NSE 0.002 0.000 0.001
RNI 8.388 1.378 9.680
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Table 5: The Impact of b Priors

This table shows the impact of three distinct priors for the slope coefficients in b on the predictive variance of
the UK-US strategy. Benchmark is the prior density used in the baseline analysis, with a prior mean based on
the least-squares estimate of the actual data, and a prior variance fixed at 0.5. Flexible denotes a prior density
that retains the same prior mean as the benchmark prior but uses a prior variance of 1. Loose indicates a prior
density with a prior mean of 0 and a prior variance of 2. Each prior follows a Normal distribution. We also
show the contribution of each return (i.e., the variance plus the covariances) and uncertainty components.
All components are scaled by the predictive variance of a one-period excess return to ease the comparison
across horizons as in Equation (17). Parameter estimates are from a Gibbs sampling algorithm with 100,000
iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data
from December 1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data.

Horizon in Years 1 10 20 30 50

Benchmark

Predictive Variance 1.06 1.69 2.00 2.15 2.28
Foreign Bond Excess Return 0.49 0.36 0.29 0.25 0.23
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.77
Real Exchange Rate Return 0.55 0.89 1.08 1.18 1.28
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.17 =0.57 =0.65 =0.68 =0.71
Future Uncertainty 0.12 1.21 1.64 1.83 2.00
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Flexible

Predictive Variance 1.07 1.73 2.05 2.20 2.33
Foreign Bond Excess Return 0.49 0.38 0.33 0.30 0.28
Real Interest Rate Differential 0.02 0.45 0.64 0.72 0.79
Real Exchange Rate Return 0.56 0.90 1.08 1.18 1.26
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.16 =0.54 =0.61 =0.64 =0.67
Future Uncertainty 0.13 1.23 1.66 1.85 2.01
Current Uncertainty 0.14 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Loose

Predictive Variance 1.10 1.79 2.07 2.19 2.30
Foreign Bond Excess Return 0.50 0.45 0.43 0.42 0.41
Real Interest Rate Differential 0.02 0.48 0.67 0.74 0.80
Real Exchange Rate Return 0.58 0.86 0.97 1.03 1.08
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.15 =0.46 =0.51 =0.53 =0.55
Future Uncertainty 0.14 1.22 1.58 1.74 1.86
Current Uncertainty 0.14 0.06 0.03 0.02 0.01
Estimation Risk 0.01 0.00 0.00 0.00 0.00
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Table 6: The Impact of γ Priors

This table shows the impact of three distinct priors for the autoregressive coefficients in γ on the predictive
variance of the UK-US strategy. Benchmark is the prior density used in the baseline analysis, with a prior
mean based on the least-squares estimate of the actual data, and a prior variance of 0.01. Flexible denotes a
prior density with a prior mean of 0.95 and a prior variance of 0.01. Loose indicates a prior density with a
prior mean of 0.90 and a prior variance of 0.01. Each prior follows a Normal distribution truncated to the
interval (−1, 1). We also show the contribution of each return (i.e., the variance plus the covariances) and
uncertainty components. All components are scaled by the predictive variance of a one-period excess return
to ease the comparison across horizons as in Equation (17). Parameter estimates are from a Gibbs sampling
algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample
includes monthly data from December 1799 to December 2023 for the UK relative to the US, sourced from
Global Financial Data.

Horizon in Years 1 10 20 30 50

Benchmark

Predictive Variance 1.06 1.69 2.00 2.15 2.28
Foreign Bond Excess Return 0.49 0.36 0.29 0.25 0.23
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.77
Real Exchange Rate Return 0.55 0.89 1.08 1.18 1.28
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.17 =0.57 =0.65 =0.68 =0.71
Future Uncertainty 0.12 1.21 1.64 1.83 2.00
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Flexible

Predictive Variance 1.06 1.69 2.00 2.15 2.28
Foreign Bond Excess Return 0.49 0.36 0.29 0.25 0.23
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.77
Real Exchange Rate Return 0.55 0.89 1.08 1.18 1.28
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.17 =0.57 =0.65 =0.68 =0.71
Future Uncertainty 0.12 1.21 1.64 1.83 2.00
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Loose

Predictive Variance 1.06 1.69 2.00 2.15 2.27
Foreign Bond Excess Return 0.49 0.36 0.29 0.25 0.23
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.77
Real Exchange Rate Return 0.55 0.89 1.08 1.18 1.27
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.17 =0.57 =0.65 =0.68 =0.71
Future Uncertainty 0.12 1.21 1.64 1.83 1.99
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00
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Table 7: The Impact of δ Priors

This table shows the impact of three distinct priors for the autoregressive coefficients in δ on the predictive
variance of the UK-US strategy. Benchmark is the prior density used in the baseline analysis, with a prior
mean of 0.99 and a prior variance of 0.01. Flexible denotes a prior density with a prior mean of 0.95 and
a prior variance of 0.01. Loose indicates a prior density with a prior mean of 0.90 and a prior variance of
0.01. Each prior follows a Normal distribution truncated to the interval (0, 1). We also show the contribution
of each return (i.e., the variance plus the covariances) and uncertainty components. All components are
scaled by the predictive variance of a one-period excess return to ease the comparison across horizons as in
Equation (17). Parameter estimates are from a Gibbs sampling algorithm with 100,000 iterations (following
a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data from December 1799
to December 2023 for the UK relative to the US, sourced from Global Financial Data.

Horizon in Years 1 10 20 30 50

Benchmark

Predictive Variance 1.06 1.69 2.00 2.15 2.28
Foreign Bond Excess Return 0.49 0.36 0.29 0.25 0.23
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.77
Real Exchange Rate Return 0.55 0.89 1.08 1.18 1.28
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.17 =0.57 =0.65 =0.68 =0.71
Future Uncertainty 0.12 1.21 1.64 1.83 2.00
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Flexible

Predictive Variance 1.06 1.67 1.98 2.13 2.25
Foreign Bond Excess Return 0.49 0.35 0.28 0.24 0.22
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.78
Real Exchange Rate Return 0.55 0.88 1.07 1.17 1.26
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.16 =0.55 =0.63 =0.66 =0.69
Future Uncertainty 0.12 1.18 1.60 1.79 1.95
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Loose

Predictive Variance 1.06 1.65 1.95 2.10 2.22
Foreign Bond Excess Return 0.49 0.34 0.27 0.23 0.20
Real Interest Rate Differential 0.02 0.45 0.64 0.71 0.78
Real Exchange Rate Return 0.55 0.87 1.05 1.15 1.24
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.16 =0.53 =0.61 =0.63 =0.66
Future Uncertainty 0.12 1.15 1.55 1.74 1.90
Current Uncertainty 0.12 0.06 0.03 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00
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Table 8: The Impact of ρηu Priors

This table shows the impact of three distinct priors for the correlations between unexpected returns and
shocks to the unobservable predictor in ρuη on the predictive variance of the UK-US strategy. Benchmark
is the prior density used for the UK-US strategy, with a prior mean of −0.5 and 95% of its probability
mass within the interval [−0.75,−0.25]. Flexible denotes a prior density with a prior mean of −0.50 and
95% of its probability mass within the interval [−1, 0] Loose indicates a prior density with a prior mean of
0 and all its probability mass confined to the interval [−1, 1]. Each prior is derived from a Normal prior on
the cross-covariance Σηu. Each prior is derived from a Normal prior on the cross-covariance Σηu. We also
show the contribution of each return (i.e., the variance plus the covariances) and uncertainty components.
All components are scaled by the predictive variance of a one-period excess return to ease the comparison
across horizons as in Equation (17). Parameter estimates are from a Gibbs sampling algorithm with 100,000
iterations (following a burn-in of 20,000) and retaining every tenth draw. The sample includes monthly data
from December 1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data.

Horizon in Years 1 10 20 30 50

Benchmark

Predictive Variance 1.06 1.69 2.00 2.15 2.28
Foreign Bond Excess Return 0.49 0.36 0.29 0.25 0.23
Real Interest Rate Differential 0.02 0.44 0.63 0.71 0.77
Real Exchange Rate Return 0.55 0.89 1.08 1.18 1.28
IID Uncertainty 0.97 0.97 0.97 0.97 0.97
Mean Reversion =0.17 =0.57 =0.65 =0.68 =0.71
Future Uncertainty 0.12 1.21 1.64 1.83 2.00
Current Uncertainty 0.13 0.07 0.04 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Flexible

Predictive Variance 1.04 1.59 1.90 2.04 2.18
Foreign Bond Excess Return 0.47 0.28 0.19 0.14 0.11
Real Interest Rate Differential 0.02 0.46 0.66 0.74 0.81
Real Exchange Rate Return 0.55 0.85 1.05 1.16 1.26
IID Uncertainty 0.96 0.96 0.96 0.96 0.96
Mean Reversion =0.15 =0.53 =0.61 =0.64 =0.66
Future Uncertainty 0.12 1.09 1.51 1.70 1.87
Current Uncertainty 0.12 0.06 0.03 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00

Loose

Predictive Variance 1.05 1.63 1.94 2.09 2.22
Foreign Bond Excess Return 0.46 0.27 0.18 0.14 0.10
Real Interest Rate Differential 0.02 0.49 0.71 0.80 0.87
Real Exchange Rate Return 0.57 0.87 1.05 1.15 1.25
IID Uncertainty 0.93 0.93 0.93 0.93 0.93
Mean Reversion =0.13 =0.44 =0.51 =0.54 =0.56
Future Uncertainty 0.13 1.09 1.49 1.68 1.84
Current Uncertainty 0.11 0.05 0.03 0.02 0.01
Estimation Risk 0.00 0.00 0.00 0.00 0.00
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A Decomposition of Cov
(
rki,T , r

k
j,T | DT

)
In Equation (8), we demonstrate that the long-horizon predictive covariance can be decom-

posed into two parts: the expectation of the conditional covariance of k-period returns and

the covariance of the conditional expectation of k-period returns. Proposition 1 reveals that

the first component can be further decomposed into three primary sources of uncertainty,

namely, iid uncertainty, mean reversion, and future expected return uncertainty. Meanwhile,

Proposition 2 shows that the second component is driven by two main sources of uncer-

tainty, i.e., : current expected return uncertainty and estimation risk. Here, we derive the

expressions for these components in closed-form.

A.1 Proof of Proposition 1

Proof. Since xi,t (the observable predictor of return i at time t) in Equation (3) follows a

first-order autoregression with −1 < γi < 1, we can rewrite xi,t as

xi,t =
1

bi
(Eri − ai) +

∞∑
l=0

γlivi,t−l, (A.1)

whenever bi ̸= 0. Similarly, since 0 < δi < 1, we can rewrite πi,t (the unobserved predictor of

asset i at time t) in Equation (4) as

πi,t =
∞∑
l=0

δliηi,t−l. (A.2)

From Equations (2)–(5), the k-period return of asset i can be written as

ri,T+k =ai + (1− γk−1
i )(Eri − ai) + biγ

k−1
i xi,T + bi

k−1∑
l=1

γk−l−1
i vi,T+l

+ δk−1
i πi,T +

k−1∑
l=1

δk−l−1
i ηi,T+l + ui,T+k. (A.3)
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The k-period return from period T + 1 through period T + k is then

rki,T =
k∑
l=1

ri,T+l = kEri +
1− γki
1− γi

(ai + bixi,T − Eri) + bi

k−1∑
l=1

1− γk−li

1− γi
vi,T+l

+
1− δki
1− δi

πi,T +
k−1∑
l=1

1− δk−li

1− δi
ηi,T+l +

k∑
l=1

ui,T+l. (A.4)

The conditional covariance Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
of the k-period returns rki,T and rkj,T can

be obtained from Equation (A.4) as

Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
= kσuiuj+

bibj
σvivj

(1− γi)(1− γj)

(
k − 1− γi

1− γk−1
i

1− γi
− γj

1− γk−1
j

1− γj
+ γiγj

1− γk−1
i γk−1

j

1− γiγj

)
+

bi
σviηj

(1− γi)(1− δj)

(
k − 1− γi

1− γk−1
i

1− γi
− δj

1− δk−1
j

1− δj
+ γiδj

1− γk−1
i δk−1

j

1− γiδj

)
+

bj
σηivj

(1− δi)(1− γj)

(
k − 1− δi

1− δk−1
i

1− δi
− γj

1− γk−1
j

1− γj
+ δiγj

1− δk−1
i γk−1

j

1− δiγj

)
+

σηiηj
(1− δi)(1− δj)

(
k − 1− δi

1− δk−1
i

1− δi
− δj

1− δk−1
j

1− δj
+ δiδj

1− δk−1
i δk−1

j

1− δiδj

)
+

bi
σviuj
1− γi

(
k − 1− γi

1− γk−1
i

1− γi

)
+ bj

σuivj
1− γj

(
k − 1− γj

1− γk−1
j

1− γj

)
+

σηiuj
1− δi

(
k − 1− δi

1− δk−1
i

1− δi

)
+

σuiηj
1− δj

(
k − 1− δj

1− δk−1
j

1− δj

)
. (A.5)

We can simplify Equation (A.5) by setting

Aχ(k) = 1 +
1

k

(
−1− χ

1− χk−1

1− χ

)

Bχψ(k) = 1 +
1

k

(
−1− χ

1− χk−1

1− χ
− ψ

1− ψk−1

1− ψ
+ χψ

1− χk−1ψk−1

1− χψ

)
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for χ = {γi, γj, δi, δj} and χψ = {γiγj, δiδj, γiδj, δiγj}, and obtaining

d̄i =

(
1 + δi
1− δi

R2
i

1−R2
i

σ2
πi

σ2
ri
− σ2

ui

)1/2

ēi =

(
1 + γi
1− γi

R2
i

1−R2
i

σ2
xi

σ2
ri
− σ2

ui

)1/2

for s = {i, j} from the following relationships

σ2
ηi
= σ2

πi
(1− δ2i ) = σ2

ri
(1− δ2i )R

2
i

σ2
πi

σ2
ri
− σ2

ui

= σ2
ui
(1− δ2i )

R2
i

1−R2
i

σ2
πi

σ2
ri
− σ2

ui

,

σ2
vi
= σ2

xi
(1− γ2i ) = σ2

ri
(1− γ2i )R

2
i

σ2
xi

σ2
ri
− σ2

ui

= σ2
ui
(1− γ2i )

R2
i

1−R2
i

σ2
xi

σ2
ri
− σ2

ui

,

which hold when returns are predictable. Finally, take the expectation with respect to DT

and break up the expectation of the conditional covariance into the three sources given by

Equations (10)–(12).

A.2 Proof of Proposition 2

Proof. We finally derive a closed-form expression for the second term of the right side of Equa-

tion (8). For ease of exposition, let Eki,T = E
(
rki,T | πT , ϕ,DT

)
and Ekj,T = E

(
rkj,T | πT , ϕ,DT

)
.

The covariance of Eki,T and Ekj,T given DT can be decomposed as

Cov
(
Eki,T ,Ekj,T | DT

)
= E

[
Cov

(
Eki,T , Ekj,T | ϕ,DT

)
| DT

]
+ Cov

[
E
(
Eki,T | ϕ,DT

)
,E
(
Ekj,T | ϕ,DT

)
| DT

]
. (A.6)

Analogous to Pástor and Stambaugh (2012), let ci,T be the conditional mean of the unob-

served predictor πi,T on ϕ and DT and denote as qij,T the conditional covariance between the
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unobserved predictors πi,T and πj,T as

ci,T = E(πi,T | ϕ,DT )

qij,T = Cov(πi,T , πj,T | ϕ,DT ).

By Equation (A.4),

Eki,T = kEri +
1− γki
1− γi

(ai + bixi,T − Eri) +
1− δki
1− δi

πi,T .

It follows that

E
(
Eki,T | ϕ,DT

)
= kEri +

1− γki
1− γi

(ai + bixi,T − Eri) +
1− δki
1− δi

ci,T , (A.7)

and

Cov
(
Eki,T ,Ekj,T | ϕ,DT

)
=

1− δki
1− δi

1− δkj
1− δj

qij,T . (A.8)

Substituting Equation (A.7) and Equation (A.8) into Equation (A.6) and adding the con-

ditional expectation on DT gives Equation (13). Note that Eri = ai + biθi/(1 − γi) and

bi,T = ai + bixi,T − Ers .
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B Bayesian Estimation

B.1 Predictive System in Compact Form

The predictive system in Equations (2)–(5) can equivalently be written as

yt = Xt−1β + Zπt−1 + εt (A.9)

πt = δπt−1 + ηt, (A.10)

with  εt

ηt

 iid∼ N

 0

0

 ,
 Σεε Σ′

ηε

Σηε Σηη

 . (A.11)

The vector yt, which combines returns and observed predictors, is given by

yt =

 rt

xt


2m×1

with m denoting of number of returns.

The matrix Xt−1, which includes the lagged observable predictors, is defined as

Xt−1 =



X1,t−1 0 · · · · · · · · · 0

0
. . . . . . . . . . . .

...
...

. . . Xm,t−1
. . . . . .

...
...

. . . . . . X1,t−1
. . .

...
...

. . . . . . . . . . . . 0

0 · · · · · · · · · 0 Xm,t−1


2m×4m

with Xi,t−1 = [1, xi,t−1].
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The vector β is defined as

β =



vec

 a′

diag(b)′



vec

 θ′

diag(γ)′




4m×1

,

where diag(b) denotes the diagonal elements of b, the matrix of slope coefficients with zero

off-diagonal elements, whereas diag(γ) refers to the diagonal elements of γ, the matrix of

first-order autoregressive coefficients with zero off-diagonal elements.

The vector εt collects unexpected returns and shocks to observable predictors as follows

εt =

 ut

vt


2m×1

and its covariance matrix Σεε is defined as

Σεε =

 Σuu Σ
′
vu

Σvu Σvv


2m×2m

. (A.12)

Finally, the matrix Z is given by

Z =

 Im

0m


2m×m

,

where Im is an m-dimensional identity matrix and 0m is a m-dimensional zero matrix. In

our empirical analysis, m = 3.

A–6



B.2 An Equivalent Representation with Orthogonal Shocks

As we want to impose a negative prior on the covariance between ut and ηt as in Pástor and

Stambaugh (2012), it is convenient to rewrite the system in Equations (A.9)–(A.11) with

orthogonal shocks to yt and πt.

Define a zero-mean random vector ζt that is orthogonal to εt as

ζt = ηt − ΣηεΣ
−1
εε εt

with covariance matrix given by

Σζζ = Σηη − ΣηεΣ
−1
εε Σ

′
ηε,

and substitute into Equation (A.10) to obtain

πt = δπt−1 + ΣηεΣ
−1
εε εt + ζt.

We can then rewrite the predictive system in equations (A.9)–(A.11) as

yt = Xt−1β + Zπt−1 + εt (A.13)

πt = Nt−1φ+ ζt (A.14)

with  εt

ζt

 i.i.d.∼ N

 0

0

 ,
 Σεε 0

0 Σζζ

 . (A.15)
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The matrix Nt−1 is defined as

Nt =


N1,t−1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 Nm,t


m×m(2m+1)

where Ni,t−1 = [πi,t−1, (Σ
−1
εε εt)

′], and the vector φ given by

φ =

 vec

 diag(δ)′

Σ′
ηε

 
m(2m+1)×1

B.3 Summary of the Algorithm

We estimate ϕ = [β, φ,Σεε,Σζζ ], the unknown parameters of the predictive system in Equa-

tions (A.13)–(A.15), using a Gibbs Sampling algorithm that conditions on DT = {y1, . . . , yT}
and π = [π1, . . . , πT ]

′. The latter is sampled in one block using the forward filtering, back-

ward sampling approach of Carter and Kohn (1994). We draw 100,000 iterations (beyond

a burn-in sample of 20,000 iterations) from the conditional posterior distributions and then

keep a draw every 10 draws for a total of 10,000 draws.

The algorithm consists of the following steps:

1. Initialize β,Σεε,Σζζ , and π0 using random draws from the prior distributions,

2. Sample φ | DT , π, ϕ−φ from a conditional Normal posterior distribution,

3. Sample Σ−1
ζζ | DT , π, ϕ−Σζζ

from a conditional Wishart posterior distribution,

4. Sample β | DT , π, ϕ−β from a conditional Normal posterior distribution,

5. Sample Σ−1
εε | DT , π, ϕ−Σεε from a conditional Wishart posterior distribution,

6. Sample π | ϕ using Carter and Kohn (1994),
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7. Go to step 2 and continue until you reach a total of 120,000 iterations.

We now describe the prior distributions, the posterior distributions and the algorithm of

Carter and Kohn (1994).

B.4 Priors

We now describe the priors on the parameters of the predictive system in Equations (A.9)–

(A.11). The prior parameters for the benchmark priors are described in Section 4.1, whereas

the prior parameters on the alternative priors in Section 5.1.

� β is a vector consisting of ai, bi, θi, and γi for i = {1, 2, 3}, and follows a multivariate

normal distribution as

β ∼ N (b, B) ,

where b is the vector of prior means and B is the prior covariance matrix with off-

diagonal elements set to zero. The prior density for β is specified as

p(β) ∝ exp

[
−1

2
(β − b)′B−1(β − b)

]
· 1β∈R,

where 1β∈R represents the acceptance region. In this case, the acceptance region is

unbounded for ai, bi, and θi, while γi is constrained as |γi| < 1 to ensure stationarity.

� φ is a vector comprising δi, the elements of Σηu (the covariances between unexpected

returns and shocks to unobservable predictors), and the elements of Σηv (the covariances

between shocks to unobservable predictors and shocks to observable predictors). We

specify a multivariate normal distribution as

φ ∼ N
(
g,G

)
where g is the vector of prior means and G is the diagonal prior covariance matrix with

off-diagonal elements set to zero. The elements of Σηu have prior means and variances
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so that the implied prior on ρηiui has a given mean and a probability mass within a

given interval. The elements of Σηv have always prior means equal to zero and prior

variances equal to one. The prior density for φ is specified as

p(φ) ∝ exp

[
−1

2
(φ− g)′G−1(φ− g)

]
· 1φ∈R,

where 1φ∈R represents the acceptance region. In this case, the acceptance region for

δi is constrained as 0 < δi < 1 to ensure stationarity and positive correlation with the

predicted return. Additionally, the acceptance region for the implied correlations ρηivi

and ρηiui is between [−1, 1].

� Σ−1
εε follows a Wishart distribution as

Σ−1
εε ∼ W

(
S−1
ε , sε

)
where S−1

ε is a positive definite prior scale matrix with off-diagonal element set to

zero, and sε is the prior degree of freedom. This is equivalent to saying that Σεε ∼
W−1 (Sε, sε) and E (Σεε) = S−1

ε /(sε − 2m− 1) with sε > 2m+ 1. We set S−1
ε equal to

the sample least-square estimate of Σεε, whereas sε = 2m + 2. The prior density for

Σ−1
εε is specified as

p(Σ−1
εε ) ∝

∣∣Σ−1
εε

∣∣ (sε−2m−1)

2 exp

[
−1

2
tr
(
Σ−1
εε Sε

)]
.

� Σ−1
ζζ follows a Wishart distribution as

Σ−1
ζζ ∼ W

(
S−1
ζ , sζ

)
,

where S−1
ζ is a positive definite prior scale matrix with off-diagonal element set to

zero, and sζ is the prior degree of freedom. Since Σζζ ∼ W−1
(
Sζ , sζ

)
, we have that

E (Σζζ) = Sζ/(sζ −m− 1) with sζ > m+1. We set Sζ equal to an identity matrix and
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sζ = m+ 2. The prior density for Σ−1
ζζ is specified as

p(Σ−1
ζζ ) ∝

∣∣Σ−1
ζζ

∣∣ (sζ−m−1)

2 exp

[
−1

2
tr
(
Σ−1
ζζ Sζ

)]
.

� π0 follows a normal distribution as

π0 ∼ N (b0, Q0) ,

where b0 is the vector of prior means and Q0 is a diagonal prior covariance matrix with

off-diagonal elements set to zero. We set the prior means equal to zero and the prior

covariance matrix equal to an identity matrix. The density of π0 is

p(π0) ∝ exp

[
−1

2
(π0 − b0)

′Q−1
0 (π0 − b0)

]
.

B.5 Posterior Distributions

The joint posterior distribution is defined as

p (ϕ, π | DT ) ∝ p (DT | ϕ, π)× p(π | ϕ)× p(ϕ) (A.16)

where the likelihood p (DT | ϕ, π) is defined as

p (DT | ϕ, π) =
∏T

t=1
p(yt | πt, ϕ)

∝ |Σεε|−
T
2 exp

[
−1

2

∑T

t=1
(yt −Xt−1β − Zπt−1)

′ Σ−1
εε (yt −Xt−1β − Zπt−1)

]
,

the joint prior distribution p(ϕ) of the unknown parameters is simply

p (ϕ) = p (β) p (φ) p
(
Σ−1
εε

)
p
(
Σ−1
ζζ

)
,
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and the prior distribution p (π | ϕ) of the state vector π is

p (π | ϕ) =
∏T

t=1
p (πt | πt−1, ϕ)

∝ |Σζζ |−
T
2 exp

[
−1

2

∑T

t=1
(πt −Nt−1φ)

′Σ−1
ζζ (πt −Nt−1φ)

]
.

While the joint posterior distribution does not take a convenient form, the conditional dis-

tributions are easy to derive. We now show the conditional posterior distributions.

B.5.1 Conditional Posterior of β

Start from the joint posterior distribution in Equation (A.16), set ỹt = yt − Zπt−1 and write

the conditional posterior distribution of β as

p (β | DT , π, ϕ−β) ∝ p (DT | ϕ, π)× p (β)

∝ exp

−1

2

 ∑t (ỹt −Xt−1β)
′ Σ−1

εε (ỹt −Xt−1β)

+(β − b)′B−1(β − b)

 · 1β∈R

∝ exp

−1

2


∑

t ỹ
′
tΣ

−1
εε ỹt − 2

∑
t β

′X ′
t−1Σ

−1
εε ỹt

+
∑

t β
′X ′

t−1Σ
−1
εε Xt−1β

+β′B−1β − 2b′B−1β + b′B−1b


 · 1β∈R.

Remove the terms that do not contain β, set B = (B−1 +
∑

tX
′
t−1Σ

−1
εε Xt−1)

−1 and b =

B(B−1b+
∑

tX
′
t−1Σ

−1
εε ỹt), and obtain

p (β | DT , π, ϕ−β) ∝ exp
{
−1

2

[
(β − b)′B

−1
(β − b)

]}
· 1β∈R.

It follows that β has a conditional (truncated) normal posterior distribution

β | DT , π, ϕ−β ∼ N
(
b, B

)
· 1β∈R,
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with

B =
(
B−1 +

∑
t
X ′
t−1Σ

−1
εε Xt−1

)−1

and

b = B
[
B−1b+

∑
t
X ′
t−1Σ

−1
εε (yt − Zπt−1)

]
.

B.5.2 Conditional Posterior of Σ−1
εε

Start from the joint posterior distribution, set ỹt = yt −Xt−1β − Zπt−1 and write the condi-

tional posterior distribution of Σ−1
εε as

p
(
Σ−1
εε | DT , π, ϕ−Σεε

)
∝ |Σεε|−

T
2 exp

[
−1

2

∑
t
ỹ′tΣ

−1
εε ỹt

]
×
∣∣Σ−1

εε

∣∣ (sε−2m−1)

2 exp

[
−1

2
tr
(
Σ−1
εε Sε

)]

∝
∣∣Σ−1

εε

∣∣ (T+sε−2m−1)

2 exp

[
−1

2

∑
t
ỹ′tΣ

−1
εε ỹt

]
× exp

[
−1

2
tr
(
Σ−1
εε Sε

)]
.

Using the properties of the trace operator,5 we can rewrite the conditional posterior of Σ−1
εε

as

p
(
Σ−1
εε | DT , π, ϕ−Σεε

)
∝

∣∣Σ−1
εε

∣∣ (T+sε−2m−1)

2 exp

{
−1

2
tr
[
Σ−1
εε

(∑
t
ỹtỹ

′
t + Sε

)]}

∝
∣∣Σ−1

εε

∣∣ (sε−2m−1)
2 exp

{
−1

2
tr
[
SεΣ

−1
εε

]}
,

where Sε = Sε +
∑

t ỹtỹ
′
t and sε = T + sε. It follows that Σ−1

εε has a conditional posterior

Wishart distribution as

Σ−1
εε | DT , π, ϕ−Σεε ∼ W

(
S
−1

ε , sε

)
,

5Recall that i) the trace of a scalar is the scalar itself, i.e., tr(a) = a; ii) the trace operator is invariant under
cyclic permutation, i.e., tr(AB) = tr(BA); and iii) the trace is linear mapping, i.e., tr(A+B) = tr(A)+tr(B).
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with

Sε = Sε +
∑

t
(yt −Xt−1β − Zπt−1) (yt −Xt−1β − Zπt−1)

′

sε = T + sε.

B.5.3 Conditional Posterior of φ

Start from the joint posterior distribution and write the conditional posterior of φ as

p (φ | DT , π, ϕ−φ) ∝ exp

−1

2

 ∑t (πt −Nt−1φ)
′Σ−1

ζζ (πt −Nt−1φ)

+(φ− g)′G−1(φ− g)

 · 1φ∈R

∝ exp

−1

2


∑

t π
′
tΣ

−1
ζζ πt − 2

∑
t π

′
tΣ

−1
ζζ Nt−1φ

+
∑

t φ
′N ′

t−1Σ
−1
ζζ Nt−1φ

+φ′G−1φ− 2g′G−1φ+ g′G−1g


 · 1φ∈R.

Remove the terms that do not contain φ, set G = (G−1 +
∑

tN
′
t−1Σ

−1
ζζ Nt−1)

−1 and g =

G
(
G−1g +

∑
tN

′
t−1Σ

−1
ζζ πt

)
, and obtain

p (φ | DT , π, ϕ−φ) ∝ exp
{
−1

2

[
(φ− g)′G

−1
(φ− g)

]}
· 1φ∈R.

It follows that φ has a conditional posterior normal distribution as

φ | DT , π, ϕ−φ ∼ N
(
g,G

)
· 1φ∈R,

where

G =
(
G−1 +

∑
t
N ′
t−1Σ

−1
ζζ Nt−1

)−1

g = G
(
G−1g +

∑
t
N ′
t−1Σ

−1
ζζ πt

)
.
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B.5.4 Conditional Posterior of Σ−1
ζζ

Start from the joint posterior distribution, set π̃t = πt − Nt−1φ and write the conditional

posterior of Σ−1
ζζ as

p
(
Σ−1
ζζ | DT , π, ϕ−Σζζ

)
∝ |Σζζ |−

T
2 exp

[
−1

2

∑
t
π̃′
tΣ

−1
ζζ π̃t

]
×
∣∣Σ−1

ζζ

∣∣ (sζ−m−1)

2 exp

[
−1

2
tr
(
Σ−1
ζζ Sζ

)]

∝
∣∣Σ−1

ζζ

∣∣ (T+sζ−m−1)

2 exp

{
−1

2
tr
[
Σ−1
ζζ

(∑
t
π̃tπ̃

′
t + Sζ

)]}

∝
∣∣Σ−1

ζζ

∣∣− (sζ−m−1)

2 exp

[
−1

2
tr
(
Σ−1
ζζ Sζ

)]
.

It follows that Σ−1
ζζ has a conditional posterior Wishart distribution as

Σ−1
ζζ | DT , π, ϕ−Σζζ

∼ W
(
S
−1

ζ , sζ

)
,

where

Sζ = Sζ +
∑

t
(πt −Nt−1φ) (πt −Nt−1φ)

′

sζ = T + sζ .

B.6 Sampling π | ϕ using Carter and Kohn (1994)

We sample the vector π in one block from the full conditional posterior distribution p(π |
DT , ϕ) using the forward filtering, backward sampling method of Carter and Kohn (1994).

We will omit ϕ throughout this section for simplicity.
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B.6.1 Forward Filtering

Recall the state space system in Equations (A.9)–(A.11),

yt = Xt−1β + Zπt−1 + εt

πt = δπt−1 + ηt,

with  εt

ηt

 i.i.d.∼ N

 0

0

 ,
 Σεε Σ′

ηε

Σηε Σηη

 .

Let Dt = {yt, Dt−1} be the information set at time t. Forward filtering consists of the

following steps:

a) Initial condition at time t− 1

πt−1 | Dt−1 ∼ N (bt−1, Qt−1) .

b) Prior at time t

πt | Dt−1 ∼ N (at, Pt) ,

where

at = E (πt | Dt−1) = δE (πt−1 | Dt−1) = δbt−1

Pt = V ar (πt | Dt−1) = δV ar (πt−1 | Dt−1) δ
′ + Σηη = δQt−1δ

′ + Σηη.

c) Prediction at time t

yt | Dt−1 ∼ N (ft, St) ,
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where

ft = E (yt | Dt−1) = Xt−1β + ZE (πt−1 | Dt−1) = Xt−1β + Zbt−1

St = V ar (yt | Dt−1) = ZV ar (πt−1 | Dt−1)Z
′ + Σεε = ZQt−1Z

′ + Σεε.

d) Joint distribution at time t

 yt

πt
| Dt−1

 ∼ N

 ft

at

 ,
 St Gt

G′
t Pt

 ,

where

Gt = Cov (yt, πt | Dt−1)

= ZV ar (πt−1 | Dt−1) δ
′ + Cov (εt, ηt | Dt−1)

= ZQt−1δ
′ + Σ′

ηε.

e) Posterior at time t

πt | Dt ∼ N (bt, Qt) ,

where

bt = E (πt | yt, Dt−1) = at +G′
tS

−1
t (yt − ft)

Qt = V ar (πt | yt, Dt−1) = Pt −G′
tS

−1
t Gt.

The posterior hyperparameters bt and Qt are easily derived since πt | Dt is equivalent to

πt | yt, Dt−1. Using the joint distribution of yt and πt presented above, it is easy to obtain

the conditional distributions from a multivariate normal distribution.
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B.6.2 Backward Filtering

The backward sampling method builds on the following Markov property

p (ξ1, . . . , ξT | DT ) = p (ξT | DT ) p (ξT−1 | ξT , DT−1)× · · · × p (ξ1 | ξ2, D1) .

We sample πT from p (πT | DT ) and then πt from the conditional density p (ξt | ξt+1, Dt) for

t = T − 1, . . . , 1, where ξt = [yt, πt]
′. We derive the conditional density p (ξt | ξt+1, Dt) as

follows  yt

πt


︸ ︷︷ ︸

ξt

=

 0 Z

0 δ


︸ ︷︷ ︸

M

 yt−1

πt−1


︸ ︷︷ ︸

ξt−1

+

 0 β

0 0


︸ ︷︷ ︸

L

 1

Xt−1


︸ ︷︷ ︸

Λt−1

+

 εt

ηt


︸ ︷︷ ︸

et

and recall that

ξt+1 | Dt ∼ N


 ft+1

at+1


︸ ︷︷ ︸

at+1

,

 St+1 Gt+1

G′
t+1 Pt+1


︸ ︷︷ ︸

At+1


and

ξt | Dt ∼ N


 yt

bt


︸ ︷︷ ︸

bt

,

 0 0

0 Qt


︸ ︷︷ ︸

Bt

 .

The joint density is then straightforward to derive as ξt

ξt+1

| Dt

 ∼ N

 bt

at+1

 ,
 Bt Gt

G
′
t At+1

 ,
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where

Gt = Cov (ξt, ξt+1 | Dt)

= Cov (ξt,Mξt + LΛt + et+1 | Dt)

= V ar (ξt | Dt)M
′

= BtM
′.

Hence, we have obtained

ξt | ξt+1, Dt ∼ N (ht, Ht) ,

where

ht = E (ξt | ξt+1, Dt) = bt +GtA
−1

t+1 (ξt+1 − at+1)

Ht = V ar (ξt | ξt+1, Dt) = Bt −GtA
−1

t+1G
′
t.

B.6.3 Summary

We now summarize the forward filtering and backward filtering algorithm as

a) Prediction Equations

E (πt | Dt−1) : at = δbt−1

V ar (πt | Dt−1) : Pt = δQ′
t−1δ + Σηη

E (yt | Dt−1) : ft = Xt−1β + Zbt−1

V ar (yt | Dt−1) : St = ZQt−1Z
′ + Σεε

Cov (yt, πt | Dt−1) : Gt = ZQt−1δ + Σ′
ηε.
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b) Updating Equations

E (πt | yt, Dt−1) : bt = at +G′
tS

−1
t (yt − ft)

V ar (πt | yt, Dt−1) : Qt = Pt −G′
tS

−1
t Gt.

c) Sample π∗
T from p (πT | DT , ϕ)

π∗
T ∼ N (bT , QT ) .

d) Sample π∗
t from p (πt | πt+1, Dt, ϕ) starting from t = T − 1, . . . , 1

π∗
t ∼ N (ht,π, Ht,π) ,

where

E (ξt | ξt+1, Dt) : ht = bt +GtA
−1

t+1 (ξt+1 − at+1)

V ar (ξt | ξt+1, Dt) : Ht = Bt −GtA
−1

t+1G
′
t,

with

bt =

 yt

bt

 , Gt = BtM
′, Bt =

 0 0

0 Qt

 , M =

 0 Z

0 δ

 ,

At+1 =

 St+1 Gt+1

G′
t+1 Pt+1

 , at+1 =

 ft+1

at+1

 , ξt+1 =

 yt+1

πt+1

 .
The generated vector [π∗

1, . . . , π
∗
T ]

′ corresponds to a random draw from p(π1, . . . , πT | DT ).
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Figure A.1: Unobservable Predictors

This figure plots the unobservable predictors of the predictive system in Equations (2)–(5). Parameter
estimates are from a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and
retaining every tenth draw. Each unobservable predictor is sampled in one block using the forward filtering,
backward sampling approach of Carter and Kohn (1994). The sample includes monthly data from December
1799 to December 2023 for the UK relative to the US, sourced from Global Financial Data. The shaded areas
are NBER recession periods from the FRED database.
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Panel B: Uncertainty Decomposition
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Panel C: Underlying Variances
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Figure A.2: Predictive Variance of an Equally-Weighted Portfolio

This figure presents the predictive variance of the excess return for a strategy buying 10-year constant maturity bonds in foreign currency with
equal weights while borrowing at the 3-month interest rate in US dollars. Panel A presents the predictive variance of the strategy, whereas
Panel B breaks down the predictive variance into iid uncertainty, mean reversion, and future expected return uncertainty via Proposition 1,
and the latter into current expected return uncertainty and estimation risk via Proposition 2. Panels C and D plot the underlying variances
and covariances (each counted twice) of foreign bond excess return, real interest rate differential, and real exchange rate return, , respectively.
All components are scaled by the predictive variance of a one-period excess return to ease the comparison across horizons as in Equation (17).
Parameter estimates are from a Gibbs sampling algorithm with 100,000 iterations (following a burn-in of 20,000) and retaining every tenth
draw. The sample includes monthly data from December 1799 to December 2023 for Australia, Canada, Germany, Japan, New Zealand, Norway,
Sweden, Switzerland, and the UK relative to the US, sourced from Global Financial Data.

A
–22


	Digital_Money_Adoption_and_Redemption_Convenience_Revised0216.pdf
	Introduction
	Background
	History of Bunz and BTZ Redemption
	Data Description

	Theory
	Primitives
	Equilibrium Conditions
	Equilibrium Structure
	Existence of Non-monetary Equilibria
	Money Acceptance, Flows, and Holdings

	BTZ Rollout and Redemption Network
	Redemption Network and Merchant Visit
	BTZ adoption
	Bunz Transaction: Buy or Sell
	Redemption Convenience by Distance
	Redemption Convenience by Merchant Type
	Token velocity and Token Holdings

	Redemption Network Collapse
	Description of Redemption Network Collapse
	BTZ Adoption Reverse: Evidence from Post data
	BTZ Transaction usage: Evidence from BTZ Transaction data
	Token Holdings after Collapse
	Survival Bias

	Conclusion
	References
	Figures
	Figures
	Figures
	Figures
	Figures
	Proofs

	ADP584.tmp
	1. Introduction
	2. Institutional Background and Contribution to the Literature
	2.1 Carbon pricing background                                                                                                                                                                                                                              ...
	2.2 Contribution to the literature                                                                                                                                                                                                                         ...

	3. Data and Summary Statistics
	3.1 Data                                                                                                                                                                                                                                                   ...
	3.2 Descriptive statistics
	3.3 Are carbon pricing initiatives effective in reducing emissions?

	4. Effects of Carbon Pricing on Firm Profitability
	4.1 Baseline results
	4.2 Dynamic effect analysis
	4.3 Stacked regression
	4.4 Robustness tests
	4.5 Effect of carbon prices on firm profitability
	4.6 Carbon pricing and components of firm profits
	4.7 Effects of carbon pricing on industry-level profitability
	4.8 Cross-country heterogeneity tests

	5. Effects of Carbon Pricing on Firm Value and Real Investments
	6. Conclusion
	References

	Manuscript_Nan He(2).pdf
	Introduction
	The Structure of Renminbi Foreign Exchange Markets
	Onshore RMB Exchange Rate System
	Offshore RMB Exchange Rate System

	The Stylised Empirical Facts
	Data
	Volatility smile
	Spot Rates
	Empirical and option-implied volatilities
	Empirical volatilities
	Implied volatilities


	Regime-switching model
	Model calibration
	Goodness of fitting
	Jump size
	Abnormal implied volatility— and 
	Arrival intensity
	Robust estimation
	Estimate (t, kt, t) simultaneously
	Simultaneous estimates (t, kt, t) 


	How do onshore and offshore investors perceive RMB policy ex-ante?
	The analytics of option-implied FX probability density functions

	Conclusion

	Manuscript_Nan He(2).pdf
	Introduction
	The Structure of Renminbi Foreign Exchange Markets
	Onshore RMB Exchange Rate System
	Offshore RMB Exchange Rate System

	The Stylised Empirical Facts
	Data
	Volatility smile
	Spot Rates
	Empirical and option-implied volatilities
	Empirical volatilities
	Implied volatilities


	Regime-switching model
	Model calibration
	Goodness of fitting
	Jump size
	Abnormal implied volatility— and 
	Arrival intensity
	Robust estimation
	Estimate (t, kt, t) simultaneously
	Simultaneous estimates (t, kt, t) 


	How do onshore and offshore investors perceive RMB policy ex-ante?
	The analytics of option-implied FX probability density functions

	Conclusion

	Manuscript_Della Corte.pdf
	Introduction
	Framework
	An International Bond Strategy
	Predictive System with Imperfect Predictability
	Multiperiod Predictive Variance
	Expected Conditional Covariance
	Covariance of Expected Returns
	Predictive Variance Ratio

	Data and Preliminary Statistics
	Long-Span Data
	Summary Statistics

	Empirical Results
	Benchmark Priors
	Parameter Estimation
	Predictive Variance: Baseline Case
	Predictive Variance: Cross-Country View
	Multiperiod Predictive Variance: An Expanding Window View

	Robustness
	Role of Priors
	Unobservable Predictors
	Observable Predictors
	Conditional Variance
	Floating Exchange Rate Regime
	Investing in US Bonds

	Conclusions
	Internet appendix
	Appendices
	Decomposition of Cov ( ri,Tk, rj,Tk DT )
	Proof of [prop:expectationcovariance]Proposition 1
	Proof of [prop:covarianceexpectation]Proposition 2

	Bayesian Estimation
	Predictive System in Compact Form
	An Equivalent Representation with Orthogonal Shocks
	Summary of the Algorithm
	Priors
	Posterior Distributions
	Conditional Posterior of 
	Conditional Posterior of -1
	Conditional Posterior of 
	Conditional Posterior of -1

	Sampling  using CK:1994
	Forward Filtering
	Backward Filtering
	Summary






