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This paper studies corporate debt structure over the business cycle and its implications for aggregate 

macroeconomic dynamics. We develop a tractable macro-finance model featuring debt heterogeneity with both 

secured and unsecured debt. Unlike secured debt, unsecured debt gives the lenders no access to the 

borrowers’ assets in the event of default, and borrowers keep their assets at the cost of losing future access to 

the unsecured debt market. The difference in the nature of debt contracts leads to different risk taking behavior 

in the two debt markets. Our model generates strongly procyclical unsecured debt and weakly procyclical 

secured debt, in line with the stylized facts in US data. Moreover, we show that the inclusion of heterogeneous 

debt structures creates additional amplification effects relative to Bernanke, Gertler and Gilchrist (1999).
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1. Introduction

Standard macro-finance models often assume a uniform debt structure where collateral-

ized credit is the main channel for the propagation and amplification of economic shocks.

While this approach may help in building tractable theoretical models, it ignores the fact

that firms are financed by different types of debt, and, importantly, these debts present

different cyclical patterns across the business cycle. In this paper, we aim to explain the

driving forces behind the dynamics of different debt instruments and study whether, and

how, the conclusions of standard models of financial frictions change when firms have access

to different types of debt.

We start by documenting the empirical patterns of firms’ debt structures using U.S. firm

level data. We find that firms operate with different debt structures. High credit quality

firms rely almost exclusively on unsecured debt, while low credit quality firms use a large

share of secured debt, confirming the finding by Rauh and Sufi (2010). We also find that

unsecured and secured debt have different dynamics during the business cycle. Unsecured

debt is strongly procyclical while secured debt is at best weakly procyclical, consistent with

the empirical findings by Azariadis, Kaas and Wen (2016).

To explain the cyclicality of secured and unsecured debt, we build a tractable dynamic

stochastic general equilibrium model with debt heterogeneity. In the model, firms bor-

row secured or unsecured debt from perfectly-competitive lenders subject to idiosyncratic

productivity shocks and costly-state-verification problems similar to Bernanke, Gertler and

Gilchrist (1999) (henceforth BGG). In the secured debt contract, the lender takes over the

firm’s assets in the event of default, and the borrower exits with nothing left. In the unse-

cured debt contract, the lender receives no payment in the event of default and the borrower

keeps a fraction of revenue and keeps operating.1 Firm’s track record of default evolves

endogenously over time and can be observed by lenders. Specifically, firms with a default

record will be punished by being excluded from using unsecured credit in the future and

will only borrow in the secured debt market. This is undesirable because we assume secured

debt is costly to initiate, and borrowers prefer unsecured debt contracts.2

1In the data, secured and unsecured debt do have very different recovery rates. Acharya, Bharath and
Srinivasan (2007) use Standard and Poors Credit Pro data and find that collateralized instruments have
mean recovery rates ranging from 63% to 94%. For un-collateralized bonds, the mean recovery rate is 39%.
Based on Moodys Default Risk Service data, Mora (2012) finds that the recovery rate for senior secured
debt is 56%, whereas unsecured and subordinated debt has recovery rates ranging from 27% to 37% only.

2The initialization cost for secured debt has some justifications. In a secured debt contract, the lender
gets the collateral in case of default, so it is reasonable for the lender to monitor the quality of the collateral.
For example, loans and mortgages which constitute a large part of secured debt are routinely screened and
monitored ex ante, usually by banks. In fact, in our model, what is needed is that ex ante monitoring is
related to higher recovery rate ex post. This is supported by data. Mora (2012) finds that bank loans (which
are usually secured) have higher recovery rates than bonds (which are usually unsecured).
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The characteristics of secured and unsecured debt contracts affect firms’ incentives to

borrow. Similar to BGG, the optimal secured (unsecured) debt contract can be characterized

by a threshold level of idiosyncratic productivity below which the borrower defaults. Under

this setup, borrowers are subject to a moral hazard problem. They reap the benefits of

potential upside risk, i.e., when idiosyncratic productivity is above the threshold, and do

not need to bear the full costs of downside risk, i.e., when idiosyncratic productivity is

below the threshold and default takes place. Importantly, the moral hazard problem is more

severe for secured debt borrowers. In the downside risk scenario, secured debt borrower has

“less skin in the game” compared to unsecured debt borrower. Secured debt borrower goes

bankrupt with zero continuation value regardless of the indebtedness, whereas unsecured

debt borrower stays in business with a penalty on their track record and a loss of continuation

value. As a result, secured borrowers care less about downside risk compared to unsecured

borrowers.

The contractual framework also implies that lenders face different incentives when they

supply credit in the two debt markets. A lender in the secured debt market worries less

about default, simply because the lender is able to recover a fraction of secured borrowers’

asset in the event of default, but cannot recover anything from unsecured borrowers.

The above reasoning holds over the business cycle. In response to a negative productiv-

ity shock, the capital stock in the economy decreases, and the expected return on capital

increases, which drives up borrowers’ demand for credit.3 Secured borrowers, who worry less

about downside risks, increase their credit demand more than unsecured borrowers. Mean-

while, with higher expected returns, secured debt lenders are happy to increase credit supply

more than unsecured debt lenders. Therefore, during economic downturns, the leverage ratio

of secured borrowers increases more than that of unsecured borrowers.4 For secured borrow-

ers, a rise in the leverage ratio together with a fall in net worth in the economic downturn

results in a relatively stable level of secured debt over the business cycle. In contrast, the

increase in the leverage ratio for unsecured borrowers is more limited. Together with a fall

in net worth, it implies a larger fall in unsecured debt in a downturn.

To explore the quantitative significance of this channel, we embed our contractual frame-

work into a standard dynamic stochastic general equilibrium model and calibrate the model

based on US corporate debt data. With a TFP shock and a shock to the cross-sectional dis-

persion of idiosyncratic firm productivity similar to Christiano, Motto and Rostagno (2014),

our model-simulated moments feature strongly procyclical unsecured debt and weakly pro-

3A negative productivity shock reduces the price of capital and the return on capital on impact. Sub-
sequently, the price of capital gradually rises back to the steady state from below, and this ‘capital gains’
effect associated with rising price of capital increases the expected return on capital after the negative shock.

4Leverage ratio is defined as asset per unit net worth.
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cyclical secured debt, consistent with US data.

A key implication of this paper is that the introduction of unsecured debt contracts

amplifies the financial accelerator effect in BGG. In the one-sector BGG model, the financial

accelerator effect exists because debt falls just when a firm’s net worth falls, which amplifies

the effects of the original shock. By contrast, in our model, in response to a negative shock,

the increase in the leverage ratio in the unsecured debt market is rather limited, so the

fall in debt is more pronounced. This leads to a quantitatively important amplification

effect relative to BGG. Our results suggest that the standard one-sector BGG model may

underestimate the amplification effects of the financial accelerator mechanism.

Finally, we consider several extensions of the model with more realistic features in the

firm sector. We allow for (1) positive recovery ratios for lenders of unsecured debt; (2)

exogenous upgrading of credit ratings; (3) predetermined productivity differences in the

firm sector; and (4) a mixed debt structure in low-credit-rating firms. We find that our key

finding is robust, that unsecured debt is more procyclical than secured debt in each of these

extensions.

Our paper is related to two strands of literature. First, this paper is related to a vast

literature incorporating financial frictions into macroeconomic models. This paper adopts

a costly state verification approach because it is straightforward to endogenize default. See

Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999), Christiano, Motto and

Rostagno (2014) and Nuno and Thomas (2017). By contrast, default is eliminated as an

equilibrium outcome in models in which financial frictions arise due to limited enforcement

problems (see for example Kiyotaki and Moore (1997), Meh and Moran (2010), Jermann

and Quadrini (2012) and Gertler and Karadi (2011)). Moreover, the theory of Kiyotaki and

Moore (1997) implies that secured debt is strongly procyclical, which cannot explain the

cyclicality of secured and unsecured debt in the data.

Second, there is a large theoretical literature on corporate debt structure, following Di-

amond (1991), Besanko and Kanatas (1993) and Boot and Thakor (1997). This literature

focuses on the determinants of a firm’s financing based on bank debt versus corporate bonds.

For instance, Diamond (1991) argues that high credit quality firms have good reputations

allowing them to avoid the additional costs of bank debt associated with monitoring. Our

model is in this spirit. Chemmanur and Fulghieri (1994), Bolton and Freixas (2000) and

De Fiore and Uhlig (2011) argue that banks have an information advantage about a firm’s

profitability. Such information is particularly useful for assessing the risk of low-quality bor-

rowers. Empirically, Denis and Mihov (2003) find that credit quality is a major determinant

of a firm’s debt structure, with higher credit quality firms choosing public debt and lower

quality firms choosing bank loans. Rauh and Sufi (2010) show that high credit quality firms

rely exclusively on unsecured debt; whereas low credit quality firms rely more on secured
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debt. This literature, however, does not study the macroeconomic effects of corporate debt

structure.

A few papers discuss debt structure and its relation to the macroeconomy. De Fiore and

Uhlig (2015) assume that bank monitoring yields useful information about relatively low

productivity firms. They find that the flexibility in substituting alternative debt instruments

by firms reduces macroeconomic volatility. In Crouzet (2017), firms borrow partly through

banks because banks are more flexible in debt restructuring. The paper argues that since

bond finance cannot be restructured in the future, firms switching from bank finance to bond

finance will deleverage, which increases the negative macroeconomics effects of a shock to the

banking sector. Our paper addresses different aspects of a firm’s debt choice by studying

secured versus unsecured debt to explain the cyclicality of these different types of debt

contracts. In terms of aggregate implications, we argue that unsecured borrowers have less

volatile leverage ratios, so fluctuations in debt are amplified. Therefore, the amplification

due to the financial accelerator mechanism is stronger in an economy with a large fraction

of unsecured debt.

The work of Azariadis, Kaas and Wen (2016) is most relevant to ours. Their model

features multiple equilibria driven by unsecured debt and relies on sunspot shocks to gen-

erate persistent and highly volatile dynamics of macroeconomic variables. They argue that

fluctuations in unsecured debt, but not in secured debt, are driven by sunspot shocks, and

that sunspot shocks account for around half of output volatility. In this paper, we show

that the nature of secured and unsecured debt contracts implies that borrowers and lenders

of unsecured debt are more cautious, and therefore the leverage ratios of unsecured borrow-

ers are less volatile. Our simulation results demonstrate that even with only fundamental

shocks, our endogenous mechanism can account for the relative procyclicality of unsecured

debt observed in US data.

The rest of the paper is organized as follows. Section two provides empirical analysis.

Section three presents the full model with debt heterogeneity. Section four explores the key

properties of credit contracts and explains theoretically why they result in different cyclical

movements in secured and unsecured debt. Section five describes calibration of the model.

Section six discusses the model properties and quantitative results. Section seven compares

the benchmark model with a standard BGG model. Section eight discusses four extensions

to our benchmark models. Section nine concludes.

2. Empirical analysis

In this section, we review important stylized facts about credit ratings and debt struc-

tures. Our main findings can be summarized as follows:

5



1. Debt structure is closely related with a firm’s credit quality. High credit quality firms

rely almost exclusively on unsecured debt while low credit quality firms have a sub-

stantial share of secured debt.

2. A firm’s leverage is countercyclical and there is huge heterogeneity among leverage ra-

tios across credit quality distributions. In particular, high credit quality firms operate

with relatively low leverage while low credit quality firm use higher leverage.

3. Unsecured and secured debt show different dynamics along the business cycle: unse-

cured debt is strongly procyclical, while secured debt is at best weakly procyclical.

We begin with a description of the data and variables in our sample. The sampling uni-

verse includes public traded non-financial and non-utility U.S. firms included in Compustat

with a long-term issuer credit rating in the last one year from 1981 to 2017.5 There are

1142 rated firms in the sample. In line with Azariadis, Kaas and Wen (2016), we use the

item “mortgages and other secured debt” to measure secured debt. We then attribute the

difference between “long term debt + total current debt” and “mortgages and other secured

debt” to unsecured debt. To clean the data, we remove firm-year observations where any of

the variables are missing, negative, or for which secured debt exceeds total debt. We also

winsorized all firm-level variables at the 1% and 99% levels to remove outliers.

We measure leverage as total assets divided by total assets net of the sum of long-term

debt and total current debt. Panel A of Table 1 shows summary statistics for the leverage of

firms in the sample. Rated firm-year observations have a mean leverage ratio of 1.74 and a

negative correlation with contemporaneous GDP -0.15. The dynamics of observed leverage

for all observations over the business cycle is summarized in Column 4. The results show

counter-cyclical dynamics for the average firm, with a correlation between leverage and GDP

of -0.37, consistent with the findings of Halling, Yu and Zechner (2016). Panel B shows the

leverage ratios across credit quality distributions. Interestingly, we observe that leverage

stays low for firms with high credit ratings and jumps to more than 2.0 for firms rated CCC

and below, implying a big difference in a firm’s financing choice and capital structure.

Next we focus on how debt structure varies across the credit quality distribution. Figure

1 plots the time series of unsecured debt share by credit rating. On average, 75% of rated

firms’ total debt financing comes from unsecured debt, implying a non-negligible role of

unsecured debt in firms’ credit. Moreover, there is debt heterogeneity. Unsecured debt

constitutes a substantial part of high credit quality firms’ debt financing and is much lower

for firms with low credit ratings. In particular, the share of unsecured debt for BBB and

5Coverage by Capital IQ is comprehensive only from 2001 onwards, therefore we restrict our main sample
to Compustat. This allows us to have long enough sample periods to calculate correlations and other business
cycle moments.
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above rated firms ranges from 0.75 to 0.90. In contrast, it drops down to around 0.6 for BB+

and below rated firms. Note that the difference in the unsecured debt share between high

and low credit ratd firms is smaller than that found by Rauh and Sufi (2010). One reason

for this is that Compustat is biased towards large public firms which have greater access to

bond markets and other forms of unsecured debt financing. Therefore we explore the debt

information of private firms in Capital IQ as well. Figure 1 shows the time series of the

unsecured debt share for samples obtained from Compustat and Capital IQ. Once private

firms are included, the disparity in unsecured debt shares based on credit ratings increases

substantially. For instance, the average unsecured debt share in Capital IQ for BBB firms

is 0.81, which is higher than 0.49 for B- firms. Moreover, the differences in debt structure

widens over time after 2000, represented by a sharply declining use of unsecured debt by

low credit rating firms and a steadily increasing use of unsecured debt by high credit rating

firms.6

In line with the previous literature, the time series variation shows that unsecured debt

plays a much stronger role in output dynamics than secured debt. We deflate the annual time

series from Compustat by the gross value added index for business (a price index constructed

by the Bureau of Economic Analysis), and detrend all series using HP filter (smoothing

parameter = 100). As shown in Table 2, the contemporaneous correlation between output

and unsecured debt is 0.48 and but only 0.06 for secured debt. While our sample focuses

on firms that are credit-rated, the vast majority of U.S. firms are not. To complement, we

also compute the cyclical properties for all firms regardless of credit rating. The correlation

between output and unsecured debt is 0.50 and 0.15 for secured debt, similar to the results

obtained from our main sample, suggesting that our results are robust.

The empirical findings above confirm Azariadis, Kaas and Wen (2016)’s key result that

unsecured firm credit is more procyclical than secured credit.7 This finding suggests that

macro-finance models should not only analyze secured credit, but also look at unsecured

credit. In the next session, we build a model that features both secured and unsecured debt

contracts. We show that by taking into account debt heterogeneity, the model is able to

explain the stylized facts in US data.

6We check that high credit quality firms still rely more on unsecured debt than low credit quality firms
after controlling for firm size, age and industry.

7Azariadis, Kaas and Wen (2016) use linear detrending and find Corr(Secured debt, GDP ) = −15−15%
and Corr(Unsecured debt, GDP ) = 70 − 75% with different winsorization. These correlations are close to
what we find.
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Table 1
Summary statistics on leverage.

Panel A: Sample Summary Statistics on Leverage
Rated Only All Observations

Correlation Correlation
Mean with GDP Mean with GDP
1.78 -0.15 1.83 -0.37

Panel B: Leverage Ratios Across Quality Distribution
Leverage Ratio Leverage Ratio

AA and above 1.53 B- and below 1.95
BBB and above 1.62 CCC and below 2.13
BBB- and above 1.65 CC and below 2.31

This table reports summary statistics of firm leverage. Statistics are calculated for
the Compustat sample of U.S. rated firms and all firms (both rated and non-rated) in
Panel A. Panel B summarizes the leverage ratios across credit ratings.

Table 2
Debt volatilities and correlations with GDP.

Rated Only All Observations

Std. Deviation Corr. with GDP Std. Deviation Corr. with GDP
Secured Debt 10.16 0.06 10.07 0.15
Unsecured Debt 13.94 0.48 15.29 0.50

This table reports the standard deviations and contemporaneous correlations of debt with GDP. The left
panel shows rated firms only. The right panel shows all firms (both rated and non-rated). GDP is deflated
by the GDP deflator. Debt is deflated by business gross valued index. All series have been logged and HP
filtered with λ = 100.
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Fig. 1. This figure shows the share of unsecured debt for public and private U.S. firms by credit ratings.
(Compustat, 1981-2016 and Capital IQ, 2001-2016)

3. Model

The model economy is composed of four types of agents: households, investors, capital

goods producers and firms. Households lend to investors in the form of deposits without

any frictions. Risk-neutral investors use the funds to lend to a continuum of firms, subject

to credit frictions. Specifically, each firm is subject to an idiosyncratic shock to its capital

quality, but the lender cannot observe its realization without cost. This gives rise to a costly-

state-verification problem similar to Bernanke, Gertler and Gilchrist (1999). The lender,

however, has a record-keeping technology. A firm has either high or low credit quality. If

the firm has low credit quality, the lender does not lend unless the credit is secured. Setting

up a secured debt contract requires an initialization cost, and if the firm defaults, the lender

has access to the firm’s assets. On the other hand, setting up an unsecured debt contract

does not require an initialization cost, but if the firm defaults, the lender has no access to

the firm’s asset.8 Moreover, there is a positive probability that the firm can walk away with

its assets, but the firm’s credit quality will become low in the future. Investors lend to many

firms and diversify perfectly.

8The assumption that lenders in an unsecured debt contract receive no payment and borrowers lose
reputation in a default event follows from Azariadis, Kaas and Wen (2016) and Cui and Kaas (forthcoming).
One interpretation is that a defaulting G firm liquidates its assets and the owner starts a new firm.
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The real side of the model is standard. In each period, after production takes place, firms

use their credit to buy physical capital from capital goods producers. In the beginning of

the next period, the idiosyncratic shock realises, and firms use their stock of effective capital

and labor from households to produce a final good. The good is purchased by households

for consumption and by capital goods producers, who combine undepreciated capital and

investment goods to produce new capital. The markets for labor, physical capital and final

good clear every period.

The following discusses the behavior of each type of agent and the market clearing

conditions.

3.1. Households

Infinite-lived representative households derive utility from consumption and disutility

from supplying labor. The problem of the representative household is given by:

E0

∞∑
t=0

βt
[
ln(Ct − hCt−1)− χ L

1+ϕ
t

1 + ϕ

]
, (1)

subject to the following budget constraint:

wtLt +Rt−1Dt−1 + ΠK
t = Ct +Dt + trt, (2)

where χ governs the weight on labor disutility, h < 1 captures the habit persistence in

consumption, and ϕ governs the inverse of Frisch labor elasticity.9 In each period, a repre-

sentative household receives wage income wtLt, makes deposits Dt and consumes Ct. ΠK
t

denotes profits transferred from capital producing firms, and trt denotes startup funds paid

to new firms and revenues remitted from exiting firms.

The consumption Euler equation and labor supply equation are:

1 = RtEt(Λt,t+1), (3)

wt = χLϕt U
−1
Ct , (4)

where Λt,t+1 = βUCt+1/UCt and UCt = (Ct − hCt−1)−1 − βhEt(Ct+1 − hCt)−1.

3.2. Investors

Investors collect deposits from households and lend to firms. They observe the credit

quality of each firm and issue debt to them. Investors require a risk-free return Rt in every

9We include habit persistence to better match the standard deviation of output and investment in the
data. It does not affect the cyclicality of secured and unsecured debt qualitatively.
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state of the world for both secured and unsecured debt. Investors do not play a meaningful

role in the model other than making sure that households hold a diversified loan portfolio

across firms.

3.3. Capital goods producers

A representative capital goods producer buys previously installed capital and combines

it with investment good It to produce new capital. Newly produced capital is sold back to

the firms within the same period. Production of new capital is subject to convex investment

adjustment cost Adjt = 0.5ΨI (It/It−1 − 1)2. The evolution of aggregate capital Kt is given

by:

Kt = (1− δ)Kt−1 + (1− Adjt)It. (5)

Capital goods producers maximize the sum of discounted expected future profits, Et
∑∞

s=0 Λt,t+sΠ
K
t+s,

where ΠK
t = Qt[Kt− (1− δ)Kt−1]− It. The first order condition for the optimal investment

choice is:

1 = Qt

[
1− Adjt −ΨI It

It−1

(
It
It−1

− 1

)]
+ Et

[
Λt,t+1Qt+1ΨI

(
It+1

It

)2(
It+1

It
− 1

)]
.(6)

3.4. Firms

In the firm sector, there is a unit measure of firms j ∈ [0, 1]. Each firm carries a publicly

observed label i ∈ {G,B} which denotes high and low credit quality respectively.10 The

label may change over time and we discuss how the label determines a firm’s borrowing

options later. Firms produce with the following Cobb-Douglas production function:

Y i
jt = At(ωjtK

i
jt−1)α(Lijt)

1−α, (7)

where At denotes the total factor of productivity (TFP), and ωjt denotes a privately observ-

able idiosyncratic shock to the firm’s capital quality. The variable ωjt follows an exogenous

log-normal distribution with mean 1 and variance σ2
t−1, i.e., log(ωjt) ∼ N(−1

2
σ2
t−1, σ

2
t−1).

The cumulative distribution function and probability density function are F (ωjt;σt−1) and

f(ωjt;σt−1) respectively. The idiosyncratic shock is independently distributed across firms

and time, and is orthogonal to aggregate shocks.

In period t − 1, a firm with label i purchases capital Ki
jt−1 at the price Qt−1. At the

beginning of period t, the firm faces an idiosyncratic productivity shock, and effective capital

becomes ωjtK
i
jt−1. The firm then hires labor, produces and sells depreciated capital to capital

10Note that there is no intrinsic difference between firms with different credit quality, however. This
assumption is relaxed in Section 8.3.
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producing firms. The firm chooses labor to maximize (Y i
jt − wtLijt), and optimal choice of

labor satisfies wtL
i
jt = (1−α)Y i

jt, which implies that all firms have the same labor to output

ratio. The marginal product of capital is given by rKt = αY i
jt/(ωjtK

i
jt−1).11 It is helpful to

define the average return on capital of the firm sector as:

RK
t ≡

rKt + (1− δ)Qt

Qt−1

. (8)

The return on capital of firm j is given by ωjtR
K
t .

A firm with label i has net worth N i
jt−1 in period t−1. To finance its purchase of capital,

it borrows Bi
jt−1 from lenders with one-period risky debt contracts. The credit contracts

available to a firm depends on the firm’s label. Firms with label G are eligible for secured and

unsecured debt contracts, whereas firms with label B are eligible for secured debt contract

only.12 We will show later that in equilibrium G firms issue unsecured debt only.

Secured debt contracts: In the secured debt contract, the lender seizes the firm’s

asset in case of default. To borrow secured debt, the firm is subject to an initialization cost,

which equals a proportion κ of the firm’s net worth.13 Therefore, a firm needs to borrow

BB
jt−1 = Qt−1K

B
jt−1 − (1− κ)NB

jt−1 to finance its purchase of capital. The contract specifies

the amount borrowed BB
jt−1 and a gross non-default loan rate, ZB

jt . It is helpful to define a

default threshold, ω̄Bjt, where

ω̄BjtR
K
t Qt−1K

B
jt−1 = ZB

jtB
B
jt−1. (9)

When ωjt ≥ ω̄Bjt, the firm repays the promised amount ZB
jtB

B
jt−1. If ωjt < ω̄Bjt, the firm

defaults and shuts down.14 In this situation the lender monitors the firm and gets to keep

the net receipt (1−µ)ωjtR
K
t Qt−1K

B
jt−1, where µ is a proportional default cost.15 The payoff

structure of secured debt is summarized in Table 3.

Unsecured debt contracts: In the unsecured debt contract, the loan is not backed

up by an underlying asset and lenders will not be paid in case of default. A firm borrows

BG
jt−1 = Qt−1K

G
jt−1−NG

jt−1. The firm promises a gross non-default loan rate ZG
jt . We similarly

11This means that rKt ≡ αAt[(1− α)At/wt]
(1−α)/α.

12In Section 8.4, we relax this assumption and B firms can issue both types of debt.
13Footnote 3 provides a discussion why it is more costly to raise secured debt than unsecured debt. We

will show that within a certain range of values, the cost κ ensures that G firms have no incentives to raise
secured debt, and we will focus on this case.

14We also consider a model which relaxes this assumption by allowing B firms to keep some assets in the
event of default. Details are presented in Section 8.4. If the fraction of assets B firms can keep is small, our
main results go through.

15Following Bernanke, Gertler and Gilchrist (1999), we assume a cost of bankruptcy. It can be interpreted
as the auditing and legal cost, as well as losses associated with liquidation.
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Table 3
Payoff structure of secured debt.

Defaults: (ωjt < ω̄Bjt) Does not default: (ωjt ≥ ω̄Bjt)

B firm Gets nothing. Repays debt and keeps profit.
Lender Gets liquidation value Receives repayment.

of the firm.

define a cutoff threshold ω̄Gjt, where

ω̄GjtR
K
t Qt−1K

G
jt−1 = ZG

jtB
G
jt−1. (10)

When ωjt < ω̄Gjt, the firm is insolvent and declares defaults. When ωjt ≥ ω̄Gjt, the firm is

financially capable to make the repayment. In this situation the firm may choose to honor its

debt contract. But it can also engage in a strategic default.16 By doing so the firm refuses to

pay off the debt but then is unable to borrow on an unsecured basis in the future, i.e., losing

the G label.17 After it defaults, the firm undergoes debt restructuring. With probability

ζ, debt restructuring is successful and the firm retains its operating profit ωjtR
K
t Qt−1K

G
jt−1.

With probability 1− ζ, debt restructuring is unsuccessful and the firm shuts down and exits

the market. Without loss of generality, assuming that the G firm chooses to default when

ωjt < ω̃Gjt, where ω̃Gjt ≥ ω̄Gjt, we get the following summarized payoff of unsecured debt in

Table 4.18

Table 4
Payoff structure of unsecured debt.

Defaults: (ωjt < ω̃Gjt) Does not default: (ωjt ≥ ω̃Gjt)

G firm With Prob= ζ, keeps assets Repays debt
and becomes B firm; and keeps profit.
With Prob = 1− ζ, gets nothing.

Lender Gets nothing. Receives repayment.

At this point, let us drop the firm subscript j on all variables. This minimizes notation,

and reflects the fact (see below) that the equilibrium values of these variables in any period

only depend on the type i ∈ {G,B} of the firm in that period but not on j. For this reason,

in the discussion below, we treat firms of the same type in a given period as a single agent.

16We call the decision by a borrower to stop making payments (i.e., to default) on a debt, despite having
the financial ability to make the payments, as strategic default.

17In the data, high credit quality is positively correlated with a firm’s historical productivity. This is
reflected in our model because the precedence of a credit downgrade implies that B firms on average have
lower historical productivity.

18To see why ω̃Gjt ≥ ω̄Gjt, suppose a firm draws a shock such that limωjt → (ω̄Gjt)
+. After the repayment,

the firm’s net worth is (ωjt − ω̄Gjt)RKt Qt−1Kjt−1 → 0+. This firm is better off defaulting.
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Perfectly-competitive investors lend in both secured and unsecured debt markets, and

they require a non-state-continent risk-free return Rt.
19 For type i firms, lenders offer a

menu of debt and cutoff values which satisfies the lenders’ participation constraint. The

participation constraint of the secured lender is given by:

RK
t Qt−1K

B
t−1

[∫
ω̄Bt

ω̄Bt dFt−1 + (1− µ)

∫ ω̄Bt

ωdFt−1

]
≥ Rt−1B

B
t−1, (11)

where the left hand side is the expected gross return on the loan and the right hand side is

the opportunity cost of lending measured by the risk-free return.

The participation constraint of the unsecured lender is:

RK
t Qt−1K

G
t−1

(∫
ω̃Gt

ω̄Gt dFt−1

)
≥ Rt−1B

G
t−1. (12)

An unsecured lender takes strategic defaults into account. The left hand side represents the

gross expected return from borrowers who experience ω ≥ ω̃Gt , and the borrower does not

engage in strategic default. For borrowers who experience ω < ω̃Gt , they either are incapable

of making the repayment or choose to deliberately default on their debt. In both situations

the return to the lender will be zero. The right hand side measures the opportunity cost of

lending.20

We are ready to spell out the borrowers’ problems. Let V i
t (N i

t ) denote the firms’ valuation

function. We then have the following Bellman equations. First, for B firms:

V B
t (NB

t ) = max
KB
t ,ω̄

B
t+1

EtΛt,t+1

∫
ω̄Bt+1

{
θV B

t+1[(ω − ω̄Bt+1)RK
t+1QtK

B
t ]

+(1− θ)(ω − ω̄Bt+1)RK
t+1QtK

B
t

}
dFt. (13)

where the parameter θ is the exogenous survival probability common across firm types.21

With probability (1− θ) the firm exits and transfer the net worth to the households.

The Bellman equation of G firms is

V G
t (NG

t ) = max
KG
t ,ω̄

G
t+1

EtΛt,t+1

∫
max

{
V G,ND
t+1 , V G,D

t+1

}
dFt, (14)

19Lenders get a certain return by investing in a lot of firms.
20We assume that in every state of the world, there are at least some borrowers who make the repayment

such that unsecured lenders always break even. In this paper we do not consider a potential bad equilibrium
in which all G firms are expected to default and the unsecured debt market shuts down. This equilibrium is
analyzed by Cui and Kaas (forthcoming), Azariadis, Kaas and Wen (2016) and Gu, Mattesini, Monnet and
Wright (2013).

21Following Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999) and Gertler and Karadi
(2011), this assumption prevents firms from growing out of their financial constraints.
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where V G,ND denotes the firm value when it repays and V G,D denotes the firm value when

it defaults. They are given by:

V G,ND
t = θV G

t [(ω − ω̄Gt )RK
t Qt−1K

G
t−1] + (1− θ)(ω − ω̄Gt )RK

t Qt−1K
G
t−1, (15)

and

V G,D
t = θζV B

t [ωRK
t Qt−1K

G
t−1] + (1− θ)ζωRK

t Qt−1K
G
t−1. (16)

To summarize, B firms maximize their value (13) subject to the participation constraint

(11) in the secured debt market, whereas G firms maximize their value (14) subject to the

participation constraint (12) in the unsecured debt market. They take the prices RK
t , Rt

and Qt as given.

Since both objectives and participation constraints are constant returns to scale, it follows

that all firms of the same type select the same cutoff value and the same capital to net worth

ratio. We guess the value functions are given by V i
t (N i

t ) = λitN
i
t for i ∈ {B,G}, where λBt

and λGt are the marginal values of net worth of B firms and G firms respectively. We define

the leverage ratio of B firms as φBt ≡ QtK
B
t /[(1− κ)NB

t ], and the leverage ratio of G firms

as φGt ≡ QtK
G
t /N

G
t . Let us also define ξt ≡ ω̄Gt /ω̃

G
t as strategic default decision of G firms,

so a larger ξt means fewer strategic defaults.

In Appendix B, we show that when the initialization cost for secured debt satisfies

κ ∈ (κ0, κ1) (the lower bound makes sure that unsecured debt is preferable to secured debt,

or λGt > λBt , and the upper bound makes sure that B firms prefer keeping their business

to liquidation, or λBt > 1), there is a separating equilibrium in which G firms only borrow

unsecured debt.22 Due to the existence of financial frictions, the firms’ return on capital is

higher than the cost of borrowing, so all firms will borrow up to the limit, which means that

the participation constraints for both types of firms hold with equality. Moreover, the G

firms choose a default strategy given by:

ξt = 1− ζΩB
t

ΩG
t

≤ 1, (17)

where Ωi
t ≡ θλit + 1− θ for i ∈ {B,G} are the probability weighted average of the marginal

values of net worth of continuing and exiting firms at t + 1. Since λGt > λBt , (17) implies

that ξ ∈ (0, 1), i.e. some G firms default strategically. One can think of the ratio ΩG
t /Ω

B
t as

22The parametric expressions for κ0 and κ1 are given in Appendix B. In our numerical exercise, our
calibrated initialization cost κ is 0.017, which is in between κ0 = 0.013, κ1 = 0.041. In a similar setting, De
Fiore and Uhlig (2011) use a screening cost of 2.8% of firms’ net worth for European banks.
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the reputation of being a G firm. When the ratio is large, it is costly to default strategically

so we expect fewer strategic defaults. Indeed, (17) shows that ξt is increasing in ΩG
t /Ω

B
t .

The marginal values of net worth for B firms and G firms are given by:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt, (18)

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]
. (19)

Consider (18) first. Conditional on realized ω, a unit of net worth in a B firm is leveraged

up by (1 − κ)φBt times, yielding a discounted aggregate return Λt,t+1ΩB
t+1R

K
t+1. If ω ≥ ω̄Bt+1

the firm receives a share (ω− ω̄Bt+1) of the revenue after debt repayment. Equation (19) can

be understood similarly.

The firms’ optimal demand for secured and unsecured debt respectively are given by the

following two conditions:

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

. (20)

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1[1− F (ω̃Gt+1)]

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

. (21)

Once ω̄Bt+1 and ω̃Gt+1 are solved for, one can use the participation constraints to back out the

quantity of each type of debt.

3.5. Aggregation and accumulation of net worth

Since each type of firms has the same capital to labor ratio and leverage ratio, we

only need to keep track of sector-level quantities. For X ∈ {Y,K,L,N,B}, we define

X i
t ≡

∫
i
X i
jtdj, where i ∈ {G,B}. We also define economy-wide variables Xt ≡ XG

t + XB
t .

We have:

NG
t φ

G
t = QtK

G
t , (22)

(1− κ)NB
t φ

B
t = QtK

B
t . (23)

It is helpful to define the aggregate leverage ratio of the economy as φt ≡ QtKt/Nt.

We write down the evolution of net worth for G and B firms. We assume that in each

period, new firms enter to keep the number of firms of each type constant. We assume

households transfer to a new firm a small fraction τ of the net worth of the average firm
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with the same credit rating.23 These initial funds are one-time lump-sum transfer. G firms’

net worth evolves as follow:

NG
t = θ

∫
ω̃Gt

(ω − ω̄Gt )RK
t Qt−1K

G
t−1dFt−1 + τNG

t−1, (24)

where the first term represents the net worth of firms which are G firms in period t− 1 and

remain G firms in period t. The second term denotes the transfer received by new entrants.

Net worth of B firms evolves as follow:

NB
t = θ

∫ ω̃Gt

ζωRK
t Qt−1K

G
t−1dFt−1

+θ

∫
ω̄Bt

(ω − ω̄Bt )RK
t Qt−1K

B
t−1dFt−1 + τNB

t−1. (25)

The first term represents the net worth of G firms who default in the last period and becomes

B firms in period t. The second term represents the net worth of B firms in period t − 1

who remain B firms in period t. The last term is the transfer received by new entrants.24

The goods market clearing condition is given by:

Yt = Ct + It + (1− ζ)

∫ ω̃Gt

ωdFt−1R
K
t Qt−1K

G
t−1

+µ

∫ ω̄Bt

ωdFt−1R
K
t Qt−1K

B
t−1 + κNB

t . (26)

Goods are consumed, invested, wasted due to default by G firms and B firms, and spent as

initialization costs for B firms. Finally, the debt market clears:

Dt = Bt. (27)

3.6. Shocks

There are two shocks in the economy, namely a TFP shock and a shock to σt, the cross-

sectional variance of ω, which we call a risk shock, following Christiano, Motto and Rostagno

23The parameter τ is small in the calibration, and it has little impact to the dynamics of the system.
24The net transfer from households is given by:

trt = τNt−1 − (1− θ)
∫
ω̃G

t

(ω − ω̄Gt )RKt Qt−1K
G
t−1dFt−1

−(1− θ)
∫ ω̃G

t

ζωRKt Qt−1K
G
t−1dFt−1 − (1− θ)

∫
ω̄B

t

(ω − ω̄Bt )RKt Qt−1K
B
t−1dFt−1.
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(2014). These shocks follow exogenous AR(1) processes as follows:

lnAt = ρA lnAt−1 + εAt, εAt ∼ N(0, s2
A) (28)

lnσt = (1− ρσ) lnσ + ρσ lnσt−1 + εσt, εσt ∼ N(0, s2
σ). (29)

This completes the description of the model.25

4. Model properties

In this section, we explore the key properties of the credit contracts. Due to the different

payoff structures for the borrowers and lenders in secured and unsecured contracts, the

resulting leverage ratios for G firms and B firms as well as their dynamics are different. We

first discuss the leverage ratios in levels, and then turn to their dynamics over the business

cycle.

4.1. Level of leverage ratios

We first study the borrowers. Their credit demand satisfies the first order conditions

(20) and (21). Let us define Et(R
K
t+1)/Rt as the external finance premium. By rearranging

the first order conditions, we relate the external finance premium to the cutoff values for B

firms and G firms respectively:26

Et

(
RK
t+1

Rt

)
= Etρ

B(ω̄Bt+1;σt) ≥ 1, (30)

Et

(
RK
t+1

Rt

)
= Etρ

G(ω̃Gt+1, ξt+1;σt) ≥ 1. (31)

We discuss the key properties of the ρB and ρG functions. First, ∂ρB/∂ω̄B > 0 and

∂ρG/∂ω̃G > 0. For a given risk-free rate, a higher expected return on capital induces firms

to take on more debt and risk higher chance of default, so the cutoff values rise. Second, ρB

and ρG, and so the external finance premium, are weakly greater than unity in equilibrium

due to financial frictions. Resources lost in the event of default have to be compensated by

the wedge between the risk-free rate and the expected return on capital. Third, ∂ρB/∂σ

and ∂ρG/∂σ > 0 because, given the same external finance premium, a more spread-out

distribution of idiosyncratic shock increases the chance of default, which induces firms to

borrow less.

25Appendix A shows the full system.
26The functional forms of ρB and ρG and proofs regarding their mathematical properties are provided in

Appendix B.
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Most important, for any given cutoff value ω̄, the slope of ρG with respective to the cutoff

value is always steeper than the slope of ρB. The difference in slopes is due to the different

payoff structures to the borrowers of secured and unsecured debt. For secured borrowers,

when the realization of the idiosyncratic shock ω is below a certain default threshold ω̄, the

borrower goes bankrupt and payoff is zero; when ω is above the default threshold, secured

borrowers make the promised repayment and keep the profit, which is increasing linearly

with ω. For unsecured borrowers, when ω < ω̄, default occurs but the borrowers avoid

bankruptcy with positive probability, so the payoff is positive and increasing in ω over this

range; and when ω ≥ ω̄, unsecured borrowers make the promised repayment and the payoff

is increasing in ω (at a faster rate). The piecewise linear payoff structure for both types

of borrowers means that they enjoy the upside risk above the face value of their debt, and

they have an incentive to borrow excessively and shift the downside risk to the lenders. This

risk-shifting incentive is more prominent for secured borrowers, because the marginal value

with respect to ω for secured borrowers is more ‘convex’ than for unsecured borrowers.

Therefore, suppose that a secured borrower and an unsecured borrower choose the same

cutoff value at some given expected return. The above argument implies that a marginal

increase in expected return would induce the secured borrower to demand more credit rel-

ative to the unsecured borrower, and the cutoff value for the secured borrower rises more

than for the unsecured borrower. In other words, the slope of the function ρB with respect

to the cutoff value is less steep than that of ρG.

The top panel of Figure 2 plots the ρB function (blue solid line) and the ρG function (red

dashed line) against the cutoff value ω̄, fixing other variables at their steady-state values

(with the benchmark calibration). As discussed above, these two lines are upward sloping,

and the slope of ρG is always steeper than the slope of ρB for any ω̄.

We now turn to the lenders’ side. It is useful to write the lenders’ participation constraint

in each market as a relationship between the cutoff threshold and the leverage ratio specific

to the borrower type:

φBt−1 = PCB

(
ω̄Bt ,

RK
t

Rt−1

;σt−1

)
≡

{
1− RK

t

Rt−1

[∫
ω̄Bt

ω̄Bt dFt−1 + (1− µ)

∫ ω̄Bt

ωdFt−1

]}−1

,(32)

φGt−1 = PCG

(
ω̃Gt , ξt,

RK
t

Rt−1

;σt−1

)
≡

[
1− RK

t

Rt−1

(
ξt

∫
ω̃Gt

ω̃Gt dFt−1

)]−1

. (33)

For both participation constraints, the leverage ratio is increasing in the respective cutoff

value. The reason is that, other things unchanged, when a firm borrows more, it has a higher

chance of default, and the lender has to be compensated by a higher contractual interest

rate, which implies a higher cutoff value.
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Fig. 2. Comparative static analysis of credit demand functions (ρG, ρB), and participation constraints
(PCG, PCB) based on steady-state calibrations. The top panel plots the external finance premium with
respect to cutoff value, and the bottom panel plots the leverage with respect to cutoff value. × denotes
the steady state values of the external finance premium and leverage obtained by benchmark calibration in
Section 5.
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The two participation constraints have different slopes. Suppose a secured borrower and

an unsecured borrower choose credit contracts that imply the same cutoff value. What

happens if both borrowers ask for an additional unit of debt? The lender will require a

larger increase in the cutoff value of the unsecured debt contract than in the secured debt

contract. This is because the lender receives nothing when the unsecured borrower defaults;

on the other hand, the lender receives the remaining value of the firm when the secured

borrower defaults. In other words, for any given cutoff value, the slope of the participation

constraint is steeper for secured lenders than unsecured lenders.

The bottom panel of Figure 2 plots the PCB function (blue solid line) and the PCG

function (red dashed line) against the cutoff value ω̄, fixing other variables at their steady-

state values. It is observed that the two lines are upward-sloping. Furthermore, PCB is

always above PCG and the slope always steeper.

The differences in the relative slopes of the ρ functions and PC functions imply that, in

equilibrium, the leverage ratio of G firms is always lower than the leverage ratio of B firms.

Figure 2 illustrates the intuition. As explained above, in the top panel, ρG is steeper than

ρB. Facing the same external finance premium, unsecured borrowers choose a lower cutoff

value than secured borrowers, i.e., ω̃Gt+1 < ω̄Bt+1. In the bottom panel, PCB is steeper than

PCG, so we must have φBt > φGt . Our result that G firms have lower leverage than B firms

is consistent with stylized fact 2.

4.2. Dynamics of leverage ratios

This subsection explains why our model is consistent with stylized fact 3, i.e. that

unsecured debt has a higher correlation with output than secured debt. We start with a

comparative static analysis to show the key intuition.

Figure 3 illustrates what happens when there is a negative TFP shock.27 The top panels

represent the credit demand functions (ρB, ρG), and the bottom panels show the participation

constraints (PCB, PCG). The left and right panels refer to the secured and unsecured

debt contracts respectively. The shock leads to a fall in the stock of capital, and a rise in

expected return of capital, which drives up the external finance premium. From the figure,

both secured and unsecured borrowers demand more credit per unit net worth, so cutoff

values increase. The bottom panels show that a rise in the external finance premium, ceteris

paribus, increases lenders’ revenue for any ω̄, so the participation constraints shift up (from

blue lines to red lines). As a result, the leverage ratios in both debt markets increase.

27The numerical values in Figure 3 correspond to the benchmark calibration to be discussed in the next
section. We assume that the system is in the steady state initially. The magnitude of the rise in the external
finance premium is the initial jump in the corresponding impulse response function. In this comparative
statics exercise, we assume ξ and σ are fixed at the steady state.
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Fig. 3. This figure illustrates the relationships among cutoff values, the external finance premium and
leverage. The top left and right panels plot the credit demand functions in secured and unsecured debt
contracts. The bottom left and right panels plot the participation constraints in secured and unsecured debt
contracts. All plots use the calibrated parameters in the benchmark calibration. Blue lines represent the
steady-state relationships. Red lines show the relationships after the external finance premium increases by
the initial jump in response to a one standard deviation negative TFP shock. The reputation value ξ and
cross-sectional dispersion of idiosyncratic productivity σ are fixed at the steady state values throughout. ×
denotes the partial equilibrium before shock. o denotes the partial equilibrium after shock.
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Moreover, the rise in the external finance premium has different effects on secured and

unsecured debt contracts. As ρG is steeper than ρB, so ω̃Gt+1 shifts to the right by less than

ω̄Bt+1. In addition, the participation constraint PCG is less steep than PCB, which further

moderates the rise in φG, relative to φB.28 In summary, the contractual features are such

that in a downturn borrowers of secured debt are relative more willing to borrow and lenders

of secured debt more willing to lend. As a result, the leverage ratio of secured borrowers

rises more than the leverage ratio of secured borrowers.

How does this account for the cyclicality of secured and unsecured debt? To answer this

question, we rewrite BG
t and BB

t in terms of their net worth and leverage ratios as follows:

BG
t = (φGt − 1)NG

t , BB
t = (1− κ)(φBt − 1)NB

t .

These equations state that the level of unsecured and secured debt is increasing in net

worth and the leverage ratio. A negative shock reduces both NG
t and NB

t . But, as explained

above, the leverage ratio of unsecured borrowers rises less than the leverage ratio of secured

borrowers, unsecured debt falls more than secured debt. As a result, unsecured debt is more

procyclical than secured debt.

In the rest of the paper, we study whether this channel can quantitatively match the

cyclical pattern of secured and unsecured debt in the data.

5. Calibration

We solve and simulate the model numerically by log-linearizing the system around its

non-stochastic steady state. This section discusses our calibration strategy.

Each period is a year. The parameters in production and household sectors are relatively

standard in the macroeconomic literature and are given in Table 5. We set β = 0.96, which

corresponds to around 4% steady-state interest rate. We set χ = 5, so households devote

41 percent of their time to work. The parameter that governs the Frisch elasticity of labor

supply is set to ϕ = 1. For production, the capital share is α = 0.33, and the depreciation

rate to δ = 0.08. The curvature of investment adjustment costs ΨI and the consumption

habit parameter h are set to match the output and investment volatility in the US data.

Our calibration strategy for financial parameters is as follows.29 The survival rate of firms

is θ = 0.87 so that an average firm exits in 7.7 years.30 Following Davydenko, Strebulaev and

28Of course, there is an effect coming from the change in reputation value ξ. It turns out that this effect is
quantitatively small and dominated by the relative slopes of the credit demand functions and participation
constraints.

29Appendix C shows the details of our calibration.
30Morris (2009) estimates that US firms have average life expectancies of 7 to 11 years.
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Table 5
Calibrated parameters.

Parameter Value Meaning
β 0.96 Subjective discount factor
α 0.33 Capital share in production
δ 0.08 Capital depreciation rate
χ 5 Labor disutility
ϕ 1 Inverse of Frisch labor elasticity
ΨI 0.85 Convexity of investment adjustment costs
h 0.49 Consumption habit
θ 0.87 Firm survival probability
κ 0.017 Initialization cost for secured debt
µ 0.2 Default costs
ζ 0.31 Debt restructuring success rate
σ 0.257 Steady-state std. dev. of idiosyncratic shock
τ 0.068 Firm initial transfer
ρA 0.58 Persistence of TFP shock
ρσ 0.87 Persistence of risk shock
sA 0.024 Std. dev. of TFP shock innovation
sσ 0.023 Std. dev. of risk shock innovation

Zhao (2012), we set the default cost to µ = 0.2, which is between the value used in BGG

and Carlstrom and Fuerst (1997). We calibrate the remaining parameters to match four

targets. First, the external finance premium RK/R is 2% following Gilchrist and Zakrajsek

(2012). Second, we target an unsecured debt to total debt ratio BG/B = 0.75, consistent

with the Compustat data in Figure 1. Third, we target a steady-state leverage ratio of B

firms to φB = 2.4. Fourth, we target a steady-state leverage ratio of G firms to φG = 1.5.

These leverage ratios are in line with the leverage ratios of firms with credit quality ‘AA

and above’ and ‘CC or below’ in our dataset as well as the findings of Rauh and Sufi (2010).

They imply that the aggregate leverage of the firm sector is 1.59, which is in between 2

used in BGG and 1.43 found in De Fiore and Uhlig (2011) for the period 1999-2007. These

conditions pin down {σ, ζ, κ, τ}.
The shock parameters are calibrated as follows. We calibrate the persistence and stan-

dard deviation of the risk shock using annual industry-level TFP data in 1982-2011 by the

National Bureau of Economic Research and the Center for Economic Studies. We linearly

detrend each industry-level TFP series and compute the cross-sectional variance at each

point in time. We fit an AR(1) process and obtain ρσ = 0.87 and sσ = 0.023. This proce-

dure follows Nuno and Thomas (2017). For the TFP shock we use the annual TFP series

in 1982-2011 constructed by the CSIP at the Federal Reserve Bank of San Francisco. The
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log-TFP series is HP-filtered (smoothing parameter =100) fitted with an AR(1) process. We

get ρA = 0.58 and sA = 0.024.

6. Model results

6.1. Impulse responses

Figures 4 and 5 show the response of macroeconomic and financial variables to a one

standard deviation fall in TFP and a one standard deviation increase in the cross-sectional

dispersion of idiosyncratic productivity respectively. All variables are presented as percent-

age deviation from their steady-state value. For sectoral variables, the blue solid lines denote

G firms and the red dashed lines denote B firms.

In Figure 4, a negative TFP shock reduces the realized return on capital. This reduces the

net worth of all firms in the economy and limits their ability to borrow in subsequent periods.

As a result, investment demand drops, the price of capital Q falls, and the external finance

premium rises. A fall in the price of capital further reduces the realized return on capital,

increasing the break-even contractual interest rate. Therefore, the cutoff values rise. This

increases the initial fall in the net worth of the firms through the financial accelerator effect

discussed in BGG. This effect leads to a large and persistent fall in output and investment.

We are interested in the dynamics of secured and unsecured debt, which is driven by the

net worth effect and the leverage effect. Figure 4 shows that, as a negative TFP shock hits,

NB falls by more than 8% whereas NG falls by around 5%. Since B firms borrow with a

higher steady-state leverage ratio than G firms, NB is more volatile. Meanwhile, φB rises by

about 3.5%, which is more than four times the rise φG (0.8%). The mechanism behind the

different responses in leverage ratio is explained in Section 4. A fall in net worth combined

with a dampened response in the leverage ratio of G firms implies that unsecured debt falls

strongly. By contrast, a sharp increase in the leverage ratio of B firms partially offsets the

fall in secured debt, resulting in a small fall in secured debt.

Figure 5 shows the response to a rise in the cross-sectional dispersion of idiosyncratic

firm productivity. This shock increases the default probability of the firms. Ceteris paribus,

lenders require higher cutoff values to break even. This reduces firms’ net worth and the

price of capital, triggering the financial accelerator mechanism.

The effects of a risk shock on unsecured and secured debt borrowing can be understood

similarly. Following the shock, both the price of capital and net worth fall. Since a risk

shock is mean-preserving, its effect on the price of capital and firms’ net worth is smaller

than a TFP shock. The shock affects the leverage ratios through multiple channels. First, a

risk shock increases the external finance premium. The secured and unsecured debt markets

respond differently as the credit demand functions (ρG, ρB) and the participation constraints
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(PCG, PCB) have different slopes. Second, a risk shock shifts up ρG and ρB. Intuitively,

when there is more cross-sectional risk, firms borrow less for a given external finance pre-

mium. In equilibrium, the upward shift of ρG and ρB reduces the initial jump of the default

thresholds ω̃Gt+1 and ω̄Bt+1. Third, a risk shock shifts PCG and PCB downwards because,

ceteris paribus, lenders have to cut lending to break even. So both φGt and φBt jump up by

less. Figure 5 shows that, in response to the shock, the leverage ratio of B firms increases

whereas the leverage ratio of G firms falls on impact. As a result, unsecured debt falls by

about 1% and secured debt rises by more than 1%.

6.2. Comparing model with data

We now take the model to the U.S. data. We use the observed TFP and cross-sectional

dispersion series to simulate the predicted output, investment, aggregate leverage, and the

secured/unsecured debt ratio. Figure 6 plots the model predicted time series with the U.S.

data for the period 1982-2011. As shown, the model is able to replicate the movements in

output and investment over the sample period. Importantly, the model does a great job in

matching the dynamics of the secured and unsecured debt ratio, including the long-lasting

fall in the ratio between mid 1990s and mid 2000s as well as the sharp rise in the ratio

during the Great Recession. Regarding the aggregate leverage, the model-generated series is

highly countercyclical due to the financial accelerator effect. It captures relatively well the

dynamics of leverage after 2000, though it fails to match the highly volatile and procyclical

movement in leverage in the first half of the sample period.

Table 6 presents the model’s performance along with the empirical moments. Panel

A shows the standard deviation of output produced by the model, while Panel B and C

report the relative standard deviation and correlation of other variables with output. The

most important result that emanates from Table 6 is that the model is able to reproduce

the cyclicality of secured and unsecured debt. Unsecured debt is highly procyclical with

Corr(BG, Y ) = 0.62, whereas secured debt is only slightly procyclical Corr(BB, Y ) = 0.22.

They are close to the corresponding empirical moments for rated firms (and all firms):

0.48(0.50) for unsecured debt and 0.06(0.15) for secured debt. The model performs well in

terms of matching other moments characterizing the business cycle. Output and investment

volatility perfectly match the US data as they are calibration targets. Consumption in the

model is less volatile than output, although a bit less than its empirical counterpart. The

correlations of consumption and investment with output in the model is also consistent with

the data. Lastly, the model is able to reproduce the correlation of total debt with output.

The model underestimates the volatility of secured, unsecured, and total debt compared

to the data. This result is not unexpected as a BGG type model is not able to generate large
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Table 6
Moments.

U.S. Data Benchmark Model
Panel A: Standard Deviation
Output (Y ) 1.81 1.81

Panel B: Standard Deviation/ std.(Y)
Consumption (C) 0.90 0.60
Investment (I) 3.18 3.18
Unsecured Debt (BG) 7.68 1.35
Secured Debt (BB) 5.60 1.18
Total Debt (B) 4.39 1.18

Panel C: Correlation with Output
Consumption (C) 0.94 0.97
Investment (I) 0.87 0.98
Unsecured Debt (BG) 0.48 0.62
Secured Debt (BB) 0.06 0.22
Total Debt (B) 0.53 0.58

Moments of U.S. data are computed by using annual data from 1981 to 2016. The
numbers from the model are theoretical moments based on the benchmark calibration.
Panel A reports the standard deviation of output. Panel B reports the relative standard
deviations with respect to output. Panel C reports the contemporaneous correlations
with output. Model-generated series are HP-filtered with smoothing parameter 100.

fluctuations in debt.31 Rannenberg (2016) compares moments generated by different types

of models with financial frictions and shows that a Gertler and Karadi (2011) type model

with financial frictions in the banking sector can better match the standard deviation of

debt to output. Nevertheless, our model is able to capture the relative size of the volatility

of secured, unsecured, and total debt, with unsecured debt the most volatile and total debt

the least.

7. Comparison with one-sector financial accelerator model

What are the macroeconomic implications of using a model with both secured and un-

secured debt? To answer this question, we compare our model with a standard one-sector

BGG model and a real business cycle (RBC) model without financial frictions.32

To make the comparison fair, we calibrate the one-sector BGG model to have the same

steady-state aggregate leverage ratio and external finance premium as the benchmark model.

31Using our calibrated parameters, a standard BGG model yields std(B)/std(Y ) = 1.18, much smaller
than US data.

32We describe the details of the one-sector BGG system and the RBC model in the Appendix.
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We assume that the monitoring technology µ is available to the one sector BGG model.

Finally, we assume that in the one-sector BGG model the initialization cost is given by

κ̃ = κN̄B/N̄ , where N̄B are N̄ are the steady-state value of NB
t and Nt in the benchmark

model. This means that the initialization costs are now shared evenly by every firm. Other

parameters are common across all three models. With these assumptions the steady state

of the one-sector BGG model is very close to the benchmark model.

Figure 7 and 8 show the impulse responses to a negative TFP shock and a positive

risk shock.33 The financial mechanism embedded in the benchmark model and one-sector

BGG model leads to more volatile fluctuations in macroeconomic variables, relative to the

RBC model. Furthermore, our model has stronger amplification than the one-sector BGG

model, as shown by the larger fall in aggregate net worth and debt, and also by the sharper

increase in the external finance premium. For instance, in response to a risk shock, the fall

in output and investment nearly doubles that in the one-sector BGG model; whereas the

fall in aggregate debt, asset prices and the external finance premium more than double.

To understand these results, notice that the financial accelerator mechanism has two ef-

fects, which affect macroeconomic volatility in opposite directions. In response to a negative

shock, firms’ net worth falls, but firm leverage increases. In the one-sector BGG model, the

fall in firms’ net worth dominates, so debt falls at a time when firms’ net worth is low. This

financial accelerator mechanism magnifies the fall in investment and the price of capital. In

our model, both secured and unsecured debt are subject to the financial accelerator mech-

anism. Moreover, for unsecured borrowers, the rise in the leverage ratio is dampened in a

downturn, so their borrowing capacity is even lower. Overall, there is even less borrowing in

the benchmark economy relative to the one-sector BGG model, and hence larger volatility.

8. Model extensions

In this section we discuss four model extensions. The purpose is to show that our key

mechanism holds under a more general environment. We outline each of the extensions

below and report their key moments (i.e. the correlations of secured and unsecured debt

with output) in Table 7.34 Note that in all extensions, unsecured debt remains highly

procyclical whereas secured debt is much less procyclical.

33Using the way we calibrate the one-sector BGG model, σ̄BGG = 0.465, which is bigger than σ̄ in
the benchmark model. In Figure 8 we show the impulse reponses to a 1 s.d. innovation o cross-sectional
dispersion in the benchmark model, together with a (0.257/0.465) s.d. innovation of cross-sectional dispersion
in the one-sector BGG model.

34Detailed descriptions of each of these extensions are discussed in an additional appendix available from
the authors.
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Table 7
Model extensions.

Correlations with output Unsecured Debt Secured Debt
Data Rated firms 0.48 0.06

All firms 0.50 0.15
Model Benchmark 0.62 0.22

Credit upgrade 0.62 0.23
Positive recovery ratio 0.64 0.30
Different avg. productivity 0.58 0.28
Mixed debt 0.76 0.36

Note: This table reports the contemporaneous correlations with output.

8.1. Credit upgrade

In the benchmark model, firms that are downgraded to B firms will not become G firms

in any future periods. In reality some firms do regain high credit ratings and favorable

terms with lenders. We allow for this in the current extension. Following Cui and Kaas

(forthcoming), we assume there is an exogenous probability γup that a B firm becomes a

G firm in a given period. We also assume an exogenous probability γdown that a G firm

becomes a B firm in the next period. To implement this, the future marginal values of net

worth are modified to:

ΩG
t = θ[(1− γdown)λGt + γdownλBt ] + 1− θ, (34)

ΩB
t = θ[(1− γup)λBt + γupλGt ] + 1− θ. (35)

The rest of the credit contract equations remain unchanged. For small values of γup and

γdown, all of our analytical results remain valid. To simulate this model, we set the credit

upgrade parameter to γup = 0.1 to corresponds to a firm staying at a B rating for 10 years

on average.35 The exogenous downgrade is set to γdown = 0.013 which keeps the steady-state

ratio of net worth in G and B firms roughly the same as in the benchmark model.

8.2. Positive recovery ratio in unsecured debt

We assume in the benchmark model that lenders of unsecured debt do not have access to

a firm’s asset when it defaults. In reality there is usually a secondary market for distressed

unsecured debt, so the recovery rate is not zero. In this extension we allow for a positive

recovery rate for unsecured debt. Specifically, we assume that if a unsecured borrower

defaults, lenders get a fraction % < 1 of the remaining value of the firm. The borrower has a

35This calibration corresponds to the bankruptcy flag for sole proprietors filing for bankruptcy under
Chapter 7 of US Bankruptcy Code.
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probability ζ of retaining the remaining (1− %) fraction of net worth and becomes a B firm.

With probability (1 − ζ) the borrower gets nothing.36 We set % = 0.3 in our simulations,

matching the mean recovery ratio of unsecured debt in the Moody’s Default Risk Service

(DRS) dataset for the period 1970-2008.

8.3. Different average productivity

The benchmark model does not allow for ex ante productivity to differ across firms. As a

result, all firms face the same expected return on capital EtR
K
t+1. In this extension we relax

this assumption. Specifically, in each period a fraction π of firms have high productivity

AH , and the remaining (1 − π) fraction has low productivity AL such that AH > AL. For

simplicity, productivity in each period is uncorrelated. Firms produce with the following

Cobb-Douglas production function:

Y m,i
jt = AtA

m(ωjtK
m,i
jt−1)α(Lm,ijt )1−α, (36)

where At denotes the TFP of the economy, Am where m ∈ {H,L} is the firm’s productivity

type such that AH > AL, and ωjt is an idiosyncratic shock to a firms’ capital quality. Am

has an i.i.d two point distribution with Pr(AH) = π and mean 1. Its realization is observed

by lenders when the loan contracts are decided.

Now, the average return on capital of the firm whose current productivity is Am is given

by:

Rm,K
t ≡ rm,Kt + (1− δ)Qt

Qt−1

. (37)

where rm,Kt ≡ αAtA
m
(

(1−α)AtAm

wt

) 1−α
α

. Clearly RH,K
t > RL,K

t .

For each average productivity {AH , AL}, there are G and B firms. More importantly,

all of our analytical results hold for G and B firms with the same average productivity.

But firms with average productivity AH face a higher expected return and external finance

premium than firms with low average productivity AL.

In the simulation exercise, we set the fraction of productive firms to be π = 20%, which

is common in the literature. We choose AH = (1.15)α, and AL = (1− πAH)/(1− π) so that

the unconditional productivity is 1.

8.4. Mixed debt in low credit quality firms

In the data, low credit quality firms usually have a multi-tier debt structure, borrowing

both secured and unsecured debt (Rauh and Sufi (2010)). In this extension, we assume that

36The benchmark model is a special case in which % = 0.
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B firms borrow a fixed fraction (1 − ν) of unsecured debt and the remaining fraction ν of

secured debt. For simplicity, assume that a firm either repays or defaults all its debt obliga-

tions. In the case of default, the secured lender is entitled to ν(1−µ)ωjt+1R
K
t+1QtK

B
jt fraction

of assets after monitoring. The default B firm undergoes debt restructuring. With proba-

bility ζ, debt restructuring is successful and the firm retains (1− µ)(1− ν)ωjt+1R
K
t+1QtK

B
jt ,

but it loses its B label and is excluded from any loans in future. With probability (1− ζ),

debt restructuring is unsuccessful, the firm shuts down and has nothing left.

We show that it is optimal for a B firm to choose to default when ω < ω̃Bt , where

ω̃Bt = (ξBt )−1ω̄Bt , and ξBt ≤ 1 is the reputation value of being a B firm. Furthermore, the

value of a firm is still given by V i
t (N i

jt) = λitN
i
jt for i ∈ {G,B,X}, where λGt > λBt > λXt > 1

for all t, and ‘X’ is the label for a firm which is excluded from the financial market.

We use the same calibration strategy for financial parameters, targeting a 75% unsecured

debt to total debt ratio [BG + (1− ν)BB]/(BG +BB), and a ν = 80% secured debt share in

B firms.

9. Conclusion

In this paper, we study the important features of firms’ debt structure. We find that

firms with a high-credit-rating rely almost exclusively on unsecured debt, while those with a

low credit quality use a multi-tiered debt structure often consisting of a large share of secured

debt. We show that debt heterogeneity is a first-order aspect of firms’ capital structure, and

is essential to the understanding of debt dynamics and cyclical fluctuations.

We embed secured and unsecured debt in a dynamic stochastic general equilibrium model

featuring costly state verification. In our model, unsecured borrowers may default and still

keep their assets, which allows them to strategically default on their borrowing and run

the risk of losing their high credit rating. Under this contractual arrangement, market

participants of unsecured debt are relatively cautious, relative to participants in the secured

debt market. This accounts for low leverage ratios in high-credit-rating firms. This effect

implies that lenders cut lending disproportionately on unsecured debt in a recession, thus

leading to a higher correlation between output and unsecured debt than for secured debt.

A calibrated version of our economy matches well with the observed volatility and cor-

relations of output, firm credit, and investment. We find that the amplification effect of

an economic shock in our model is larger than that generated by a model featuring secured

debt only. We conclude that unsecured debt and its dynamics are important to a better

understanding of fluctuations in business cycles.
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Appendix A. Full system

The full system has a macroeconomic part and a credit contract part. The macroeco-

nomic part is given by:

Λt−1,t = β
Ct−1

Ct
(A.1)

1 = RtEt(Λt,t+1) (A.2)

wt = χLϕt U
−1
Ct (A.3)

wtLt = (1− α)Yt (A.4)

Yt = AtK
α
t−1L

1−α
t (A.5)

Kt = (1− δ)Kt−1 +

[
1− ψI

2

(
It
It−1

− 1

)2
]
It (A.6)

Yt = Ct + It + (1− ζ)G(ω̃Gt )RK
t Qt−1K

G
t−1 + µG(ω̄Bt )RK

t Qt−1K
B
t−1 + κNB

t (A.7)

1 = Qt

[
1− ψI

2

(
It
It−1

− 1

)2

− ψI It
It−1

(
It
It−1

− 1

)]

+Et

[
Λt,t+1Qt+1ψ

I

(
It+1

It

)2(
It+1

It
− 1

)]
(A.8)

RK
t =

α Yt
Kt−1

+ (1− δ)Qt

Qt−1

(A.9)

38



The credit contract part:

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

{
1− ξt+1[G(ω̃Gt+1) + ω̃Gt+1(1− F (ω̃Gt+1))]

}
(A.10)

1− 1

φGt−1

=
RK
t

Rt−1

ξtω̃
G
t [1− F (ω̃Gt )] (A.11)

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1(1− F (ω̃Gt+1))

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

(A.12)

ω̄Gt = ξtω̃
G
t (A.13)

ξt = 1− ζ(θλBt + 1− θ)
ΩG
t

(A.14)

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1[1−G(ω̄Bt+1)− ω̄Bt+1(1− F (ω̄Bt+1))] (A.15)

1− 1

φBt−1

=
RK
t

Rt−1

{
ω̄Bt [1− F (ω̄Bt )] + (1− µ)G(ω̄Bt )

}
(A.16)

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

(A.17)

Kt = KG
t +KB

t (A.18)

QtK
G
t = NG

t φ
G
t (A.19)

QtK
B
t = (1− κ)NB

t φ
B
t (A.20)

NG
t =

(
θRK

t φ
G
t−1{1−G(ω̃Gt )− ω̄Gt [1− F (ω̃Gt )]}+ τ

)
NG
t−1 (A.21)

NB
t = ζG(ω̃Gt )θRK

t φ
G
t−1N

G
t−1

+(1− κ)θ{1−G(ω̄Bt )− ω̄Bt [1− F (ω̄Bt )]}RK
t φ

B
t−1N

B
t−1 + τNB

t−1 (A.22)

ΩB
t = θλBt + 1− θ (A.23)

ΩG
t = θλGt + 1− θ (A.24)

where f(ω̄t;σt−1) ≡ ∂
∂ω̄t
F (ω̄t;σt−1) is the probability density function of ω̄t, andG(ω̄t;σt−1) ≡∫ ω̄t ωdF (ω, σt−1). The above 24 equations solve the following 24 variables

{Λt−1,t, Ct, wt, Lt, Yt, Kt, It, Qt, R
K
t , Rt, λ

G
t , φ

G
t , ω̃

G
t , ω̄

G
t , ξt, N

G
t , K

G
t ,Ω

G
t , λ

B
t , φ

B
t , ω̄

B
t , N

B
t , K

B
t ,Ω

B
t }.

Appendix A.1. BGG system

This appendix presents the BGG system. The macroeconomic part is identical to our

benchmark model, except that the goods market clearing condition is now given by:

Yt = Ct + It + µG(ω̄t)R
K
t Qt−1Kt−1 + κ̃Nt (A.25)
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The credit contract part is:

λt = (1− κ̃)φtEtΛt,t+1Ωt+1R
K
t+1[1−G(ω̄t+1)− ω̄t+1(1− F (ω̄t+1))] (A.26)

1− 1

φt−1

=
RK
t

Rt−1

{ω̄t[1− F (ω̄t)] + (1− µ)G(ω̄t)} (A.27)

λt =
(1− κ̃)EtΛt+1Ωt+1R

K
t+1[1− F (ω̄t+1)]

Et
RKt+1

Rt
[1− F (ω̄t+1)− µω̄t+1f(ω̄t+1)]

(A.28)

QtKt = (1− κ̃)Ntφt (A.29)

Nt = (1− κ̃)θ{1−G(ω̄t)− ω̄t[1− F (ω̄t)]}RK
t φt−1Nt−1 + τNt−1 (A.30)

Ωt = θλt + 1− θ (A.31)

The 15-equation system solves the following 15 variables:

{Λt−1,t, Ct, wt, Lt, Yt, Kt, It, Qt, R
K
t , Rt, λt, φt, ω̄t, Nt,Ωt}.

Appendix A.2. The simple RBC system

The simple RBC system has a macroeconomic system similar to our benchmark model,

except that the goods market clearing condition is now given by:

Yt = Ct + It, (A.32)

and the return on capital is equal to the risk-free rate:

1 = Et

[
Λt,t+1

αYt+1

Kt
+ (1− δ)Qt+1

Qt

]
. (A.33)

The system solves the following 9 variables:

{Λt−1,t, Ct, wt, Lt, Yt, Kt, It, Qt, Rt}.
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Appendix B. Proofs

This appendix provides the mathematical proofs. The first proposition proves the opti-

mality of the solution to the optimal financial contracting problem stated in Section 3. The

remaining five propositions establish the properties of the ρG, ρB and PCG, PCB functions

claimed in Section 4.

Proposition 1. Suppose that initialization cost satisfies some κ ∈ (κ0, κ1). The solution to

the firms’ problem is characterized by the following features:

1. G firms only borrow unsecured debt.

2. The default strategy of G firms is given by:

ξt = 1− ζΩB
t

ΩG
t

≤ 1, (B.1)

where Ωi
t ≡ θλit + 1− θ for i ∈ {B,G}.

3. The marginal values of net worth for G firms and B firms evolve as follows:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt, (B.2)

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]
.(B.3)

4. The default threshold for secured debt contract, ω̄Bt , satisfies:

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

. (B.4)

5. The default threshold for unsecured debt contract, ω̃Gt , satisfies:

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1[1− F (ω̃Gt+1)]

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

. (B.5)

6. The participation constraints hold with equality.

Proof of proposition 1: The proof has two parts. The first part assumes that G firms only

borrows unsecured debt and derives the optimal decisions for the borrowers. The second

part proves that for κ bigger than some κ0 defined below, even if G firms can use secured

debt, they will choose not to.
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Part 1: With perfect competition, the participation constraints hold with equality. We

begin by solving the problem for the B firms. We substitute the guess into the objective

function. The objective function is rewritten as:

V B
t (NB

jt ) = maxEtΛt,t+1ΩB
t+1R

K
t+1QtK

B
jt

∫
ω̄Bjt+1

(ω − ω̄Bjt+1)dFt, (B.6)

where ΩB
t ≡ θλBt + 1− θ.

We write down the Lagrangian as

V B
t (NB

jt ) = maxEtΛt,t+1ΩB
t+1R

K
t+1QtK

B
jt

∫
ω̄Bjt+1

(ω − ω̄Bjt+1)dFt

+lmB
jt

[
RK
t+1

Rt

QtK
B
jt

(1− κ)

(∫
ω̄Bjt+1

ω̄Bjt+1dFt + (1− µ)

∫ ω̄Bjt+1

ωdFt

)
−

QtK
B
jt

(1− κ)
+NB

jt

]
,

where lmB
jt is the Lagrange multiplier. The envelope condition says that λBt = lmB

jt. The

first order condition for KB
jt is:

KB
jt : 0 = EtΛt,t+1ΩB

t+1R
K
t+1

(∫
ω̄Bjt+1

(ω − ω̄Bjt+1)dFt

)

+λBt

[
RK
t+1

Rt

1

(1− κ)

(∫
ω̄Bjt+1

ω̄Bjt+1dFt + (1− µ)

∫ ω̄Bjt+1

ωdFt

)
− 1

(1− κ)

]
.(B.7)

In this equation, ω̄Bjt is the only firm-specific variable. This implies that every firm chooses

the same cutoff value ω̄Bt . The participation constraint implies every firm chooses the same

leverage ratio:

RK
t+1

Rt

(∫
ω̄Bt+1

ω̄Bt+1dFt + (1− µ)

∫ ω̄Bt+1

ωdFt

)
= 1− 1

φBt
, (B.8)

where φBt ≡ QtK
B
jt/[(1− κ)NB

jt ]. Rearranging the first order condition for KB
jt , we obtain:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt. (B.9)

Using the results that V B
t (NB

jt ) = λBt N
B
jt and φBt = QtK

B
jt/[(1 − κ)NB

jt ], the objective
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function is expressed as:

V B
t (NB

jt ) = EtΛt,t+1ΩB
t+1R

K
t+1QtK

B
jt

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1

∫
ω̄Bt+1

(ω − ω̄Bt+1)dFt. (B.10)

This is the same as the first order condition for KB
jt . Our guess is verified.

The first order condition for ω̄Bt+1 is given by:

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1[1− F (ω̄Bt+1)]

Et
RKt+1

Rt
[1− F (ω̄Bt+1)− µω̄Bt+1f(ω̄Bt+1)]

. (B.11)

In the steady state

λB

θλB + 1− θ
=

(1− κ)[1− F (ω̄B)]

[1− F (ω̄B)− µω̄Bf(ω̄B)]
. (B.12)

We need λB > 1 in the steady state, which requires that κ < κ1 where

κ1 ≡ 1− [1− F (ω̄B)− µω̄Bf(ω̄B)]

[1− F (ω̄B)]
.

We turn to the problem of G firms. We substitute V G
t (NG

jt ) = λGt N
G
jt , V

B
t (NB

jt ) = λBt N
B
jt

into the objective function. The maximization problem in the integral becomes:

max{ΩG
t+1(ω − ω̄Gjt+1), ζΩB

t+1ω}, (B.13)

where Ωi
t ≡ θλit + 1 − θ, for i ∈ {B,G}. This means that default is chosen when ω < ω̃Gjt,

where ω̃Gjt ∈ [ω̄Gjt,∞) (because we rule out the case that all G firms default) and is given by:

ω̃Gt = ξ−1
t ω̄Gt , ξt ≡ 1− ζΩB

t

ΩG
t

. (B.14)

These mean that we can rewrite the objective function as:

V G
t (NG

jt ) = maxEtΛt,t+1ΩG
t+1R

K
t+1QtK

G
jt

(
(1− ξt+1)

∫ ω̃Gjt+1

ωdFt +

∫
ω̃Gjt+1

(ω − ω̄Gjt+1)dFt

)
,
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and the participation constraint as:

RK
t+1QtK

G
jt

(∫
ω̃Gjt+1

ω̄Gjt+1dFt

)
= Rt(QtK

G
jt −NG

jt ). (B.15)

We write down the Lagrangian as

V G
t (NG

jt ) = maxEtΛt,t+1ΩG
t+1R

K
t+1QtK

G
jt

(
(1− ξt+1)

∫ ω̃Gjt+1

ωdFt +

∫
ω̃Gjt+1

(ω − ω̄Gjt+1)dFt

)

+lmG
jt

[
RK
t+1

Rt

QtK
G
jt

(∫
ω̃Gjt+1

ω̄Gjt+1dFt

)
−QtK

G
jt +NG

jt

]
, (B.16)

where lmG
jt is the Lagrange multiplier. The envelope conditions says that λGt = lmG

jt. The

first order condition for KG
jt is:

KG
jt : 0 = EtΛt,t+1ΩG

t+1R
K
t+1

(
(1− ξt+1)

∫ ω̃Gjt+1

ωdFt +

∫
ω̃Gjt+1

(ω − ω̄Gjt+1)dFt

)

+λGt

[
RK
t+1

Rt

(∫
ω̃Gjt+1

ω̄Gjt+1dFt

)
− 1

]
. (B.17)

In this equation, ω̄Gjt is the only firm-specific variable. This implies that every firm chooses

the same cutoff value ω̄Gt . Then the participation constraint implies every firm chooses the

same leverage:

1− 1

φGt
=
RK
t+1

Rt

(∫
ω̃Gt+1

ω̄Gt+1dFt

)
, (B.18)

where φGt ≡ QtK
G
jt/N

G
jt . Rearranging the first order condition for KG

jt , we obtain:

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

(
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

)
. (B.19)

We substitute these results back to the objective function to verify the guess V G
t (NG

jt ) =

λGt N
G
jt is indeed correct:

V G
t (NG

jt ) = EtΛt,t+1ΩG
t+1R

K
t+1QtK

G
jt

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]

λGt = φGt EtΛt,t+1ΩG
t+1R

K
t+1

[
(1− ξt+1)

∫ ω̃Gt+1

ωdFt +

∫
ω̃Gt+1

(ω − ω̄Gt+1)dFt

]
. (B.20)
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This is the same as the first order condition for KG
jt . Our guess is verified.

The first order condition for ω̃Gt+1 is given by:

λGt =
EtΛt+1R

K
t+1ΩG

t+1ξt+1[1− F (ω̃Gt+1)]

Et
RKt+1

Rt
ξt+1[1− F (ω̃Gt+1)− ω̃Gt+1f(ω̃Gt+1)]

. (B.21)

In the steady state, this implies:

λG

θλG + 1− θ
=

1− F (ω̃G)

1− F (ω̃G)− ω̃Gf(ω̃G)
> 1. (B.22)

Part 2: This part of the proof is by construction. Suppose some G firms j deviate from

the above in period t and choose to borrow secured debt. Because lenders observe the G

labels of these firms, they may agree on a contract with different cutoff values and amounts

borrowed. In order for secured lenders to participate, the following participation constraint

has to hold:

RK
t Qt−1K

G
jt−1

(∫
ω̂Gjt

ω̂GjtdFt + (1− µ)

∫ ω̂Gjt

ωdFt

)
= Rt−1[Qt−1K̂

G
jt−1− (1−κ)NG

jt−1], (B.23)

where ω̂Gjt and K̂G
jt−1 denote the cutoff value and capital a deviating G firm would choose.

Note that since the firm borrows secured debt, the firm is subject to the initialization cost κ.

The deviating firms’ value function, called V̂ G
t (NG

jt ) is given by:

V̂ G
t (NG

jt ) = max
ω̂Gjt+1,K̂

G
jt

EtΛt,t+1

∫
ω̂Gjt+1

{
θV G

t+1[(ω − ω̂Gjt+1)RK
t+1QtK

G
jt ] + (1− θ)(ω − ω̂Gjt+1)RK

t+1QtK
G
jt

}
dFt

(B.24)

Notice that the firm only deviates in period t, so in period t+ 1, if the firm does not default

or exit, the firm keeps the G label, and so we have V G
t+1 on the right hand side.

We conjecture that V̂ G
t (NG

jt ) = λ̂Gt N
G
jt where λ̂Gt is the marginal value of the firm if it

deviates. We maximize (B.24) subject to (B.23). Following similar steps as part 1 of the
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proof above, we get that ω̂Gjt+1, K̂
G
jt , λ̂

G
t satisfies the following first order conditions:

λ̂Gt =
QtK̂

G
jt

NG
jt

EtΛt,t+1ΩG
t+1R

K
t+1

∫
ω̂Gjt+1

(ω − ω̂Gjt+1)dFt (B.25)

λ̂Gt =
(1− κ)EtΛt,t+1ΩG

t+1R
K
t+1[1− F (ω̂Gjt+1)]

Et
RKt+1

Rt
[1− F (ω̂Gjt+1)− µω̂Gjt+1f(ω̂Gjt+1)]

(B.26)

and the participation constraint (B.23). After some algebra, one can show that ω̂Gjt+1 = ω̄Bt+1.

Clearly, a large κ discourages G firms from deviating. By construction, we can find κ0

such that for κ > κ0, we have λGt > λ̂Gt , in which case no G firm will find borrowing secured

debt rather than unsecured debt profitable. In the steady state, the last equation implies:

κ0 ≡
λG[1− F (ω̄B)− µω̄Bf(ω̄B)]

ΩG[1− F (ω̄B)]
.

In our numerical exercise, κ0 = 0.013, κ1 = 0.041. We calibrate κ = 0.017, which is within

the bounds.

Proposition 2. The cutoff value for secured debt contract, ω̄Bt , satisfies:

Et

(
RK
t+1

Rt

)
= Etρ

B(ω̄Bt+1;σt) ≥ 1, (B.27)

where the function ρB(ω̄Bt+1;σt) is increasing in the cutoff value ω̄Bt+1, and increasing in the

cross-sectional dispersion of idiosyncratic productivity σt. Furthermore limω̄Bt+1→0 ρ
B(ω̄Bt+1;σt) =

1.

Proposition 3. The cutoff value for the unsecured debt contract, ω̃Gt , satisfies:

Et

(
RK
t+1

Rt

)
= Etρ

G(ω̃Gt+1, ξt+1;σt) ≥ 1, (B.28)

where the function ρG(ω̃Gt+1, ξt+1;σt) is increasing in the cutoff value ω̃Gt+1, decreasing in ξt+1,

and increasing in the cross-sectional dispersion of idiosyncratic productivity σt. Furthermore,

limω̃Gt+1→0 ρ
G(ω̃Gt+1, ξt+1;σt) = 1.

Proof of proposition 2 and 3: We first derive the functions ρB(ω̄B;σ) and ρG(ω̃G, ξ;σ)
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and then prove some important properties. It is helpful to define:

G(ω̄t;σt−1) ≡
∫ ω̄t

ωdF (ω, σt−1),

Γ(ω̄t;σt−1) ≡ G(ω̄t;σt−1) + ω̄[1− F (ω̄t;σt−1)].

The function G denotes the mean of the idiosyncratic shock conditional on the shock below

a given threshold ω̄. The function Γ adds the function G and a constant return ω̄ if the

realization of idiosyncratic shock is above the threshold. This function is the share of revenue

transferred to lenders (before monitoring) in the secured debt contract. We denote Gω,Γω

the first derivatives of G and Γ with respect to ω̄, and denote Gσ,Γσ the first derivatives of

G and Γ with respect to σ, and so on. In the following, we suppress the arguments of the

functions when this does not cause any confusions.

To derive the function ρB, we first note that the evolution of λBt , the optimal threshold

ω̄Bt+1 and the participation constraint can be written as:

λBt = (1− κ)φBt EtΛt,t+1ΩB
t+1R

K
t+1[1− Γ(ω̄Bt+1)], (B.29)

λBt =
(1− κ)EtΛt+1ΩB

t+1R
K
t+1Γω(ω̄Bt+1)

Et
RKt+1

Rt
[Γω(ω̄Bt+1)− µGω(ω̄Bt+1)]

, (B.30)

1− 1

φBt−1

=
RK
t

Rt−1

[Γ(ω̄Bt )− µG(ω̄Bt )]. (B.31)

We roll the participation constraint one period forward, rearrange these three equations to

eliminate the leverage ratio and the marginal value λBt to get, up to a first order approxi-

mation:

Et

(
RK
t+1

Rt

)
= Etρ

B(ω̄Bt+1;σt), (B.32)

where

ρB(ω̄Bt+1) ≡
Γω(ω̄Bt+1)

[1− Γ(ω̄Bt+1)][Γω(ω̄Bt+1)− µGω(ω̄Bt+1)] + [Γ(ω̄Bt+1)− µG(ω̄Bt+1)]Γω(ω̄Bt+1)
. (B.33)

Following the same procedures, we show that for the unsecured debt contract, we have,

Et

(
RK
t+1

Rt

)
= Etρ

G(ω̃Gt+1, ξt+1;σt), (B.34)
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where

ρG(ω̃Gt+1, ξt+1) ≡
Γω(ω̃Gt+1)

[1− ξt+1Γ(ω̃Gt+1)][Γω(ω̃Gt+1)−Gω(ω̃Gt+1)] + ξt+1[Γ(ω̃Gt+1)−G(ω̃Gt+1)]Γω(ω̃Gt+1)
.

(B.35)

We now analyze the properties of ρB, ρG. First, it is straightforward to show that:

F (ω̄;σ) = Φ

(
log ω̄ + 0.5σ2

σ

)
> 0, G(ω̄;σ) = Φ

(
log ω̄ − 0.5σ2

σ

)
> 0.

where we define Φ(.), φ(.) as the cdf and pdf of a standard normal distribution.

The first derivatives are:

Fω =
1

σω̄
φ

(
log ω̄ + 0.5σ2

σ

)
> 0,

Fσ = − 1

σ
φ

(
log ω̄ + 0.5σ2

σ

)(
log ω̄ − 0.5σ2

σ

)
> 0,

Gω =
1

σω̄
φ

(
log ω̄ − 0.5σ2

σ

)
> 0,

Gσ = − 1

σ
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
> 0,

Γω = 1− F > 0,

Γσ = Gσ − ω̄Fσ = −φ
(

log ω̄ − 0.5σ2

σ

)
< 0,

where
(

log ω̄−0.5σ2

σ

)
<
(

log ω̄+0.5σ2

σ

)
< 0 because the default probability is small in economi-

cally relevant cases.37

37To derive the expression for Γσ we note that:

ω̄Fσ = − ω̄
σ

(
log ω̄ − 0.5σ2

σ

)
φ

(
log ω̄ + 0.5σ2

σ

)
,

= − ω̄
σ

(
log ω̄ − 0.5σ2

σ

)
1√
2π

exp

{
−1

2

[(log ω̄ − 0.5σ2) + σ2]2

σ2

}
,

= − ω̄
σ

(
log ω̄ − 0.5σ2

σ

)
1√
2π

exp

{
−1

2

(log ω̄ − 0.5σ2)2

σ2

}
exp(− log ω̄),

= − 1

σ

(
log ω̄ − 0.5σ2

σ

)
φ

(
log ω̄ − 0.5σ2

σ

)
.
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The following second derivatives are useful:

Gωω = − 1

σω̄2
φ

(
log ω̄ − 0.5σ2

σ

)
− 1

σ2ω̄2
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ − 0.5σ2

σ

)
= − 1

σω̄2
φ

(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
> 0,

Gωσ = − 1

σ2ω̄
φ

(
log ω̄ − 0.5σ2

σ

)
− 1

σ2ω̄
φ′
(

log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
=

1

σ2ω̄
φ

(
log ω̄ − 0.5σ2

σ

)[(
log ω̄ − 0.5σ2

σ

)(
log ω̄ + 0.5σ2

σ

)
− 1

]
> 0,

Γωω = −Fω < 0,

Γωσ = −Fσ < 0,

where we have used φ′(x) = −xφ(x).

Using the above relations it is easy to show that ρG, ρB ≥ 1, and

ρBω =
µ(1− Γ)

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]2
(ΓωGωω − ΓωωGω) > 0. (B.36)

ρGω =
(1− ξΓ)

[(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]2
(ΓωGωω − ΓωωGω) > 0. (B.37)

ρBσ =
(1− Γ)µ[ΓωGωσ −GωΓωσ] + µΓω[ΓωGσ − ΓσGω]

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]2
> 0. (B.38)

ρGσ =
(1− ξΓ)[ΓωGωσ −GωΓωσ] + ξΓω[ΓωGσ − ΓσGω]

[(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]2
> 0. (B.39)

Next, we show that ρGξ < 0. Clearly,

ρGξ = − Γω
[(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω]2

(ΓGω −GΓω). (B.40)

Notice that

ΓGω −GΓω = [G+ ω̄(1− F )]Gω −G(1− F ),

= GGω + (1− F )(ω̄Gω −G).

The first term is clearly positive. We show that the second term is also positive by studying

the function Gω:

Gω =
1

σω̃G
φ

(
log ω̃G − 0.5σ2

σ

)
=

1

σ
φ

(
log ω̃G + 0.5σ2

σ

)
.
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This means that limω̃G→0Gω(ω̃G) = 0. Furthermore, Gωω > 0 for ω ∈ [0, ω̃G]. These mean

that

ω̃GGω(ω̃G) >

∫ ω̃G

0

Gωdω = G(ω̃G)− lim
ω̃G→0

G(ω̃G) = G(ω̃G).

Therefore, ω̃GGω > G, so ΓGω −GΓω > 0, which means that ρGξ < 0.

Finally, since limω̄→0Gω(ω̄) = 0 and limω̄→0G(ω̄) = 0, we substitute these results into

ρG, ρB to get limω̄→0 ρ
G(ω̄) = limω̄→0 ρ

B(ω̄) = 1.

Proposition 4. For any ξt ∈ (µ, 1), σt−1 > 0 and ω̄t > 0, we have

∂ρG(ω̄t, ξt;σt−1)

∂ω̄t
>
∂ρB(ω̄t;σt−1)

∂ω̄t
, (B.41)

and ρG(ω̄t, ξt;σt−1) > ρB(ω̄t;σt−1).

Proof of proposition 4: Consider ρBω , ρ
G
ω in (B.36) and (B.37). We evaluate these functions

at a given ω̄ > 0. Clearly, the numerator of ρBω is smaller than the numerator of ρGω .

Furthermore, the denominator of ρBω is larger than the denominator of ρGω . To see this,

notice that

[(1− Γ)(Γω − µGω) + (Γ− µG)Γω]− [(1− ξΓ)(Γω −Gω) + ξ(Γ−G)Γω],

= Gω[1− µ+ Γ(µ− ξ)] + (ξ − µ)GΓω,

> Gω[Γ(1− µ) + Γ(µ− ξ)] + (ξ − µ)GΓω,

> GωΓ(1− ξ),

> 0,

for ξ > µ. Therefore, ∂ρG(ω̄t,ξt;σt−1)
∂ω̄t

> ∂ρB(ω̄t;σt−1)
∂ω̄t

. Together with the fact that ρG and ρB

are continuous in ω̄, and limω̄→0 ρ
G(ω̄) = limω̄→0 ρ

B(ω̄) = 1, it follows that ρG(ω̄t, ξt;σt−1) >

ρB(ω̄t;σt−1).

Proposition 5. For any ξt ∈ (µ, 1), RK
t /Rt−1 > 1, σt−1 > 0 and ω̄t > 0, we have

∂PCB
(
ω̄t,

RKt
Rt−1

;σt−1

)
∂ω̄t

>
∂PCG

(
ω̄t, ξt,

RKt
Rt−1

;σt−1

)
∂ω̄t

> 0, (B.42)

and PCB
(
ω̄t,

RKt
Rt−1

;σt−1

)
> PCG

(
ω̄t, ξt,

RKt
Rt−1

;σt−1

)
.
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Proof of proposition 5: We consider the two participation constraints:

1− 1

φBt−1

=
RK
t

Rt−1

[Γ(ω̄Bt )− µG(ω̄Bt )], (B.43)

1− 1

φGt−1

=
RK
t

Rt−1

ξt[Γ(ω̃Gt )−G(ω̃Gt )]. (B.44)

When ω̄t = ω̄Bt = ω̃Gt ,

1− 1

φBt−1

=
RK
t

Rt−1

[Γ(ω̄t)− µG(ω̄t)] >
RK
t

Rt−1

ξt[Γ(ω̄t)−G(ω̄t)] = 1− 1

φGt−1

. (B.45)

Therefore, φBt−1 > φGt−1.

Furthermore,

∂
(

1− 1
φBt−1

)
∂ω̄t

=
RK
t

Rt−1

[Γω(ω̄t)− µGω(ω̄t)] >
RK
t

Rt−1

ξt[Γω(ω̄t)−Gω(ω̄t)] =
∂
(

1− 1
φGt−1

)
∂ω̄t

.

Therefore,

∂φBt−1

∂ω̄t
>

(
φBt−1

φGt−1

)2
∂φGt−1

∂ω̄t
>
∂φGt−1

∂ω̄t
. (B.46)

Next, we prove that the two participation constraints are upward-sloping. We consider

the function Ψ(ω̄) ≡ Γ(ω̄) − G(ω̄) and show that Ψω > 0 for a relevant range of ω. To see

this we write:

Gω(ω̄) = ω̄f(ω̄) = ω̄h(ω̄)(1− F (ω̄)) > 0,

Γω(ω̄) = Gω(ω̄) + (1− F (ω̄))− ω̄f(ω̄) = 1− F (ω̄) > 0,

Ψω(ω̄) = Γω(ω̄)−Gω(ω̄) = (1− F (ω̄))(1− ω̄h(ω̄)),

where h(ω̄) = f(ω̄)/(1−F (ω̄)) is the hazard rate. For the log-normal distribution, ω̄h(ω̄) = 0

when ω̄ = 0, limω̄→∞ ω̄h(ω̄) = ∞, and ω̄h(ω̄) is increasing in ω̄. Hence, there exists an ω̄∗

such that Ψω(ω̄) > 0 for ω̄ < ω̄∗ and Ψω(ω̄) < 0 for ω̄ > ω̄∗. For any ω̄1 such that ω̄1 > ω̄∗,

there exist a ω̄2 such that ω̄2 < ω̄∗ < ω̄1 and Ψ(ω̄2) = Ψ(ω̄1). Since the smaller ω̄2 implies a

smaller bankruptcy rate for the borrower than ω̄1 while keeping the lenders’ share of profit

unchanged, any ω̄1 > ω̄∗ will never be chosen. Hence, ω̄ has an interior solution and in the
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optimal contract Ψω(ω̄) > 0. This means that:

∂PCB
(
ω̄t,

RKt
Rt−1

)
∂ω̄t

>
∂PCG

(
ω̄t, ξt,

RKt
Rt−1

)
∂ω̄t

> 0. (B.47)

Finally, as PCB and PCG are continuous in ω̄, and PCB
(

0,
RKt
Rt−1

)
= PCG

(
0, ξt,

RKt
Rt−1

)
= 1,

the previous result implies that PCB
(
ω̄t,

RKt
Rt−1

)
> PCG

(
ω̄t, ξt,

RKt
Rt−1

)
for ω̄t > 0.

Proposition 6. In equilibrium, the leverage ratio of G firms is always lower than the leverage

ratio of B firms. That is φBt > φGt .

Proof of proposition 6: We know from Proposition 1 that limω̄t→0 ρ
B(ω̄t) = limω̄t→0 ρ

G(ω̄t, ξt) =

1, and ρB, ρG are increasing in ω̄t. Moreover, Proposition 2 show that ρGω (ω̄t, ξt) > ρBω (ω̄t).

These mean that, for any external finance premium such thatEt(R
K
t+1)/Rt = Etρ

G(ω̃Gt+1, ξt+1) =

Etρ
B(ω̄Bt+1), we must have ω̃Gt+1 < ω̄Bt+1.

Then

φGt = PCG

(
ω̃Gt+1, ξt+1,

RK
t+1

Rt

)
< PCB

(
ω̃Gt+1,

RK
t+1

Rt

)
< PCB

(
ω̄Bt+1,

RK
t+1

Rt

)
= φBt , (B.48)

where the first inequality is proved in Proposition 3, and the second inequality makes use of

the fact that PCB is increasing in ω̄ and that ω̃Gt+1 < ω̄Bt+1.
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Appendix C. Details of calibration

We discuss our calibration strategy of the benchmark model. We first use the following

equations for the secured debt contracts:

λB = (1− κ)φBβΩBRK [1−G(ω̄B)− ω̄B(1− F (ω̄B))] (C.1)

1− 1

φB
= βRK

{
ω̄B[1− F (ω̄B)] + (1− µ)G(ω̄B)

}
(C.2)

λB =
(1− κ)ΩB[1− F (ω̄B)]

[1− F (ω̄B)− µω̄Bf(ω̄B)]
(C.3)

ΩB = θλB + 1− θ (C.4)

We use the steady-state conditions for the unsecured debt contracts:

λG = φGβΩGRK
{

1− ξ[G(ω̃G) + ω̃G(1− F (ω̃G))]
}

(C.5)

1− 1

φG
= βRKξω̃G[1− F (ω̃G)] (C.6)

λG =
ΩGξ(1− F (ω̃G))

ξ[1− F (ω̃G)− ω̃Gf(ω̃G)]
(C.7)

ξ = 1− ζ(θλB + 1− θ)
ΩG

(C.8)

ΩG = θλG + 1− θ (C.9)

Furthermore, the steady-state ratio of secured and unsecured debt is given by:

BG

BB
=

KG −NG

KB − (1− κ)NB
=

KG

NG − 1
KB

NB
NB

NG − (1− κ)N
B

NG

=
NG

NB
× φG − 1

(φB − 1)(1− κ)
(C.10)

where the evolution of net worth of B firms in the steady state gives the following relation:

NG

NB
=

1− τ − (1− κ)θ{1−G(ω̄B)− ω̄B[1− F (ω̄B)]}RKφB

ζG(ω̃G)θRKφG
.

The evolution of net worth of G firms in the steady state gives the following relation:

τ = 1− θRKφG{1−G(ω̃G)− ξω̃G[1− F (ω̃G)]} (C.11)

The four steady-state conditions pin down RK/R, φB, φG, BG/BB. The above eleven

equations solve for the remaining steady-state values of {ω̄B, ω̃G, λB, λG,ΩB,ΩG, ξ} and the

parameters {σ, κ, ζ, τ}.
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