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Abstract

This paper examines inflation in Hong Kong. Unit root tests suggest that
the inflation series is non-stationary. However, the unconditional distribution of
inflation appears to change culminating in the current deflation. We employ a
two-regime Markov-Switching model to decompose price dynamics into a
sequence of stochastic segmented time trends. The non-linear specification
appears to provide a superior conditional characterisation of the data over the
more usual random walk. There is strong evidence of asymmetric persistence as
the inflationary regime is relatively more volatile and persistent than the
deflationary regime.
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1. Introduction

Arguably the most noteworthy achievement of macroeconomic policy in recent times has

been the reduction of inflation rates in industrialised countries. For example, average inflation in

the G7 economies has declined from 10% during 1974-1983 to levels below 4% since 1996. For

Hong Kong the reduction of inflation has culminated in the current severe and persistent

deflation. While there is a deep literature studying the effect of rapid inflation, little is known

about the dynamics of deflation.

Following Nelson and Plosser (1982) the consensus view is that the majority of

macroeconomic variables including inflation have a univariate time series representation with a

unit root. While Rose (1988) rejects the unit root in US inflation, Evans and Lewis (1995),

Crowder and Hoffman (1996), Crowder and Wohar (1998), and Ng and Perron (2001), inter alia,

find that US inflation is non-stationary, while Edwards (1998) reports extreme persistence in

Latin American inflation. Henry and Shields (2002) present similar results for the USA, UK and

Japan.

Recently a literature has evolved documenting structural breaks and non-linearity in

inflation, see Garcia and Perron (1996), Evans and Wachtel (1993) inter alia. It is well known

that standard unit root tests are biased towards the null hypothesis in the face of one-off changes

in regime see, Zivot and Andrews (1992) and Perron (1990), (1997), inter alia. In the case of

neglected non-linearity unit root tests also suffer from bias, see Pippenger and Goering (1993),

Caner and Hansen (2001), and Henry and Shields (2002) inter alia. Henry and Shields (2002)

employ bootstrap methods based on threshold autoregressive models to distinguish between non-

linearity and/or non-stationarity in US, UK and Japanese inflation.

Much of this existing literature on non-stationarity and non-linearity concentrates on the

great inflation of the 1970’s and 1980’s. The majority of studies conclude that inflationary

shocks are extremely persistent. In contrast this paper focuses on the relatively deep and

persistent deflation suffered by Hong Kong since 1998. In particular we focus on a simple

question: how persistent are deflationary shocks?

The paper is made up of seven sections. Section two of this paper discusses the problems

associated with tests of the unit root hypothesis in inflation. In section three we describe the data

and present the results of the unit root tests. The fourth section describes the Markov model of
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segmented trends. The fifth section presents the estimates of the model and discusses the

implications for Hong Kong. The penultimate section reconciles the results presented in sections

3 and 5, focussing on the likely pitfalls associated with unit root and stationarity tests. The final

section provides a summary and some concluding comments.

2. Testing for a Unit Root in inflation

For ease of exposition, consider the AR(1) model for inflation, tx ,

ttt uxx += −1ρ (1)

If 1=ρ  then tx  is said to contain a unit root and shocks to inflation are infinitely persistent.

On the other hand if 1<ρ  then shocks to inflation have finite lives. In principle testing for a

unit root is relatively straightforward, however in reality distinguishing between stationarity and

infinite persistence in inflation is a non-trivial task.

The null hypothesis of the Dickey-Fuller (1979) unit root test is ( )1~:0 IxH t .

Allowing for a drift, ì and a trend t , these tests are usually performed as a test of H0 : ñ-1=ã=0 in

t
k

i ititt uxtxx +∑+++=
= −− 11 ÄÄ αδγµ (2)

The lag order k is chosen to ensure whiteness of the residuals, ut.

Dejong, Nankervis, Savin and Whiteman (1992) argue that many tests including the ADF

type test have low power when the autoregressive parameter is close to unity. To address this

loss of power, Elliot, Rothenberg and Stock (1996), hereafter ERS, present an asymptotically

efficient test of the unit root hypothesis based on the regression

t
k

i ititt uxxx +∑+=
= −− 11

~Ä~~Ä αγ (3)

where tx~  represents the quasi-differenced data obtained from the GLS regression

( )czxx ttt ξ
'~ += (4)

This class of test requires the choice of, c , the local-to-unity parameter, which following ERS is

selected as
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t

t
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=−
=−

= (5)

Since tx~  has already been detrended the elements of tz  need not be included in (3). The

DFGLS test is based on H0: ã=0 in (3). The results presented in ERS (1996) suggest that GLS

local detrending yields substantial power gains over the standard ADF unit root test constructed

as (2).

On the other hand, in the presence of a large negative moving average root in the

residuals, the majority of unit root tests display significant size distortions resulting in over

rejection of the unit root null hypothesis (Schwert 1990, Ng and Perron 1996 inter aia). Inflation

rates often display large negative MA roots. In constructing the ADF and ERS tests it is

necessary to select k, the autoregressive truncation lag. Ng and Perron (2001) use the GLS

detrended data, tx~ , to construct four further test statistics

( ) κα 2/~
0

21 fxTMZ t −= −  (6)

( ) 2/1
0/ fMSB κ= (7)

xMSBMZMZ t α= (8)

and

( ) { }
( )( ) { }tzfxTcc

zfxTcc
MPT

tt

tt

,1if/~1

1if/~

0
212

0
212{

=−+
=−

= −

−

κ
κ

(9)

where ( )∑= = −
T
t t Tx2

22
1 /κ and 0f  is a estimate of the residual spectral density at the zero

frequency. Again the choice of the autoregressive truncation lag, k, is critical for correct

calculation of 0f . Here k is chosen using the MIC(k) of Ng and Perron (2001) as k = kMIC = arg

minkMIC(k) where

( )
( )( )

max

2ˆln
kT

kkC
kMIC

TT
k −

+
+=

τ
σ (10)
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Where ( ) ( ) ∑= += −
− T

kt ltkT xk 1max
2212 ~ˆˆ γστ  and ( ) ∑−= +=

− T
kt tk ukT 1max

21
max

2 ˆσ̂ . Ng and Perron

(2001) argue that the use of MIC(k) in conjunction with GLS de-trending results in a battery of

tests (6) – (9) with superior size and power properties.

Perron (1990, 1997) and Zivot and Andrews (1992), inter alia, argue that unit root tests

are biased towards the null in the presence of structural breaks. The performance of the Ng and

Perron and ERS tests in the face of such a break is, as yet, unknown. However, Perron (1997)

presents tests for a unit root allowing for a break under both the null and alternative hypotheses.

The first model considered by Perron, usually referred to as the innovational outlier or IO(1)

model allows for a gradual change in the intercept. The test is based on the regression

( ) ( ) ∑ ++++++=
= −−
k

i ititttt tuxxDtDUx
11 Äαρψφβψθµ (11)

Here ( ) ψψ TtDU t <=  if1  and 0 otherwise; and ( ) 1 if1 +== ψψ TtDt  and 0 otherwise. Under

the second model, IO(2),  a change in the intercept and slope are allowed for at time ψT . The

test is based on the regression

( ) ( ) ( ) ∑ ++++++++=
= −−
k

i itittttt tuxxTDDtDUx
11 Äαρψνψφβψθµ (12)

with ( )ψtDU  and ( )ψtD  as before and ( ) ψψψ TtTtDTt >−=    if  and 0 otherwise. The

third test, often referred to as the additive outlier or AO test, the break is in the slope of tx  and is

assumed to occur rapidly. The AO test is performed in two steps. The first step de-trends the data

using

( ) ttt xDTtx
(+++= ψνβµ (13)

The AO test is obtained from

t
k

i ititt uxxx +∑+=
= −− 11

((( αρ (14)

All of the tests (12) – (14) are based on the t-statistic for H0: ñ=1 in the various regressions.

Rejection of the null hypothesis H0 : xt ~I(1) does not imply that xt ~I(0). Kwiatkowski,

Phillips, Schmidt and Shin (1992), hereafter KPSS, present a tests for the null of stationarity, H0 :

xt ~I(0), The KPSS test involves regressing xt  against a constant ì. The test is based upon

∑= 




−

t
fT

t
ST

0
2/22

µη (15)
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Where ∑= =
t
r rt uS 1 ˆ , the partial sum of the residuals and again 0f  represents an estimate of the

spectral density of the residuals at the zero frequency. A similar test for the null of stationarity

about a linear trend, τη , involves regressing xt against a constant, ì, and a linear trend, t.

3. Data Description and test results

Monthly observations on the CPI for Hong Kong were collected for the period 1985:1 to

2002:8. The price data were transformed into annual inflation rates using

( )12/log100 −×= ttt PPx (16)

-Figure 1 Here-

-Figure 2 Here-

Figure 1 presents a time series plot of the CPI index while Figure 2 displays the

associated inflation data. Visual inspection of the time series plots suggests that there are two

distinct regimes in the data. Between 1985:1 – 1998:9 inflation was positive in Hong Kong, but

after late 1998 there has been a deflation. Were the data normally distributed, the empirical

distribution would be

( ) ( ) 




 −−= 2

22

1
exp

2

1
,| µ

σσπ
σµ tt xxg (17)

We estimate the parameters of ( )σµ,|txg  using maximum likelihood methods for the full

sample and for the pre-and post September1998 sub-samples. The results of this procedure are

displayed in table 1.

-Table 1 Here-

For the full sample the average level of inflation is approximately 4.93% on an annual

basis with an estimated standard deviation of roughly 4.67%. In the first sub-sample the

estimated mean of inflation was approximately 7.26% on an annual basis with a standard

deviation of 2.39%. In the second sub-sample the average rate of deflation was –2.67% on an

annual basis with an estimated standard deviation of 1.44%. Clearly using the full sample under-

estimates the level of inflation for the first period and drastically overestimates the standard

deviation of inflation. The full sample estimate misses the deflation in the second sub-sample

and again overestimates the standard deviation of inflation relative to the sub-samples.
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-Table 2 Here-

Table 2 reports ADF, DFGLS, Ng-Perron and KPPS tests for the inflation data. The

results suggest that the inflation data are I(1) series and thus shocks to inflation are infinitely

persistent. Clearly some caution needs to be exercised in interpreting these results given the

potential for these tests to be biased towards the null of non-stationarity in the face of a structural

break. However, table 2 also reports the IO(1), IO(2) and AO tests of Perron (1997) which allow

for a one-off break under both the null and alternative hypotheses. Again we are unable to reject

the null of non-stationarity. There is however conflict in the estimated break dates from the three

tests. The IO(1) model predicts that a gradual change in the intercept took place after May 1998.

This contrasts with the prediction of the IO(2) model that a gradual change in the intercept and

slope occurred after July 1990. The AO model dates a rapid break in slope to February 1993. It is

not easy to resolve this conflicting evidence. However the possibility arises that there are

multiple breaks in the series which could lead to multiple dates if the breaks were of differing

types. Alternatively it may be the case that one or more of the models is incorrectly specifying

the break, leading to unreliable inference. Similarly, it may be that the linear DGP underlying the

IO(1), IO(2) and AO models is inappropriate and that a non-linear functional form should be

considered1. We investigate this third possibility in the next section.

4. The Markov Switching Model of Segmented Trends

The model is motivated by the apparent change in the underlying data described in Table

1. The long swing model is a special case of the Hamilton (1989) approach and was first used by

Engel and Hamilton (1991) to describe long swings in nominal exchange rates2. Let tS  be a

variable taking the value tS =1 when the inflation rate is drawn from an N 


 2
1

,1 σµ  distribution.

On the other hand tS =2 when the data are drawn from an N 


 2
2

,2 σµ  distribution. When tS =1

                                                
1 Pippenger and Goering (1993), Caner and Hansen (2001), and Henry and Shields (2002) inter alia document the
poor performance of commonly used unit root tests in the face of a neglected threshold. Similarly, Nelson, Zivot and
Piger (2001) find that Markov switching can affect unit root tests and also break dating. A Monte-Carlo study of this
point is beyond the scope of the current paper.
2 Henry and Shields (2002) argue that UK and Japanese inflation are threshold non-linear processes. The Caner-
Hansen (2001) Wald test for a threshold was not significant for the Hong Kong data. Tests for a threshold unit root
could not reject the null of a unit root in the data. Further details are available from the author upon request.
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the trend in prices is 1µ , while when tS =2 the trend is 2µ . In practice tS , the variable that

identifies the regime is unobserved. Engel and Hamilton (1991) use a Markov rule to describe

tS :

( )
( )
( )
( ) 221

221

111

111

2|2

12|1

11|2

1|1

pSSp

pSSp

pSSp

pSSp

tt

tt

tt

tt

===

−===

−===

===

−

−

−

−

(18)

Implicitly tS  depends on past realisations of x and S only through 1−tS .

The long swing hypothesis is not imposed on the data but rather occurs when 1µ  and 2µ

are opposite in sign and when the Markov probabilities p11 and p22 are large. Other alternatives

are possible. For example, consider when 1µ  is large and positive and p11 is small while 2µ  is

negative and small in magnitude and p22 is large. Here the model captures short sharp bursts of

inflation but deflationary episodes are slow and persistent. Thus the model is capable of

capturing asymmetry in persistence of the two regimes. In the case of the random walk the

inflation rate this period is completely independent of the inflation rate in the last period. This

case occurs if p11 =1- p22.

The model represents a mixture of distributions. As a further motivation for the Markov

switching model as a potential conditional characterisation of Hong Kong inflation we note the

comment of Engel and Hamilton (1991, p692) that a “histogram of data drawn from such a

distribution would represent the sum of two overlapping bell-shaped curves”. Figure 3 presents a

kernel based estimate of the unconditional distribution of the data, which appears remarkably

similar to “a superposition of two [….] simple normal distributions”, Engel and Hamilton (1991,

p692). The central difference between the Markov model and the mixture of normals is that the

draws of xt are not independent in the Markov model.
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5. Estimation and Inference

Table 3 presents maximum likelihood estimates of the Markov switching model obtained

using Hamilton’s (1989) approach. Clearly 1µ̂ >0 and 2µ̂ <0, while 11p̂  and 22p̂  are large. This

is consistent with a long swing in Hong Kong inflation. The estimates associate state 1 with a

7.26% rate of increase in prices on an annual basis. On the other hand, in state 2 the annual rate

of inflation is –2.66%, that is state 2 is a low mean or deflationary environment. These estimates

are almost identical to the sub-sample estimates of µ  reported in Table 1. The estimates of ó1

and ó2 do not differ from the sub-sample estimates of ó.

-Table 3 Here-

Does the Markov switching model provide a superior conditional characterisation of the

data to the random walk model of inflation implied by the results in Table 2? Testing the null of

no switching in the data is a non-trivial task. Under such a null hypothesis 21 µµ =  and

21 σσ = . However any test will have a non-standard distribution since the transition

probabilities 2211  and pp  are unidentified under the null, a feature known as the Davies Problem

(see Davies 1987, Hansen 1993, Andrews and Ploberger 1994 inter alia). Furthermore there are

problems associated with the Maximum Likelihood Estimator under the restrictions since the

derivative of the likelihood function with respect to 1µ  and 1σ  is identically equal to zero.

Garcia and Perron (1996) present a Likelihood Ratio test adopting the Davies (1987) upper

bound test. Defining 0L  as the value of the log-likelihood under the null and 1L  as the same

measure under the alternative we obtain )01(2 LLLR −= . On the assumption that the likelihood

ratio has a single peak, an upper bound for the significance of LR is given as

[ ] ( ) ( ) ( )2/Ã/2/exp2/2/22Pr DLRDLRLR
D

−+>χ . Note that there are D=2 parameters appearing

only under the alternative and that Γ(.) represents the gamma function. Obviously the upper

bound is greater than [ ]LR
D

>2Pr χ , the usual marginal significance level associated with the LR

test. The 5% upper bound requires a value of LR of 10.95, rather than the usual 2
2χ  value of

5.99.
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Table 4 presents maximum likelihood estimates of the mixture of normals model. The

parameter estimates are consistent with the results in Tables 1 and 3. The log-likelihood value for

the long-swings model was –257.8467. On the other hand the estimation of the mixture of

distributions model implied by the restriction )1( 1122 pp −=  yielded a log likelihood of –

472.9275. The resulting LR statistic is 430.1616, which clearly implies rejection of the null of no

switching at the 5% level.

As an alternative response to the Davies problem, Engel and Nelson (1991) test the more

general hypothesis

211;22110 ;
2

1: σσµµ ≠≠−= ppH (19)

Under H0 the changes in the price level correspond to an ... dii sequence with individual densities

given by a mixture of two normals. Standard distribution theory can be used to test

2211 1:0 ppH −=  because under the null the remaining parameters are identified.

Obtaining estimates of the asymptotic variance of jjp̂ , )ˆr(âv jjp  and )ˆˆv(ôc 2211 pp  from the

inverse of the matrix of second derivatives of the likelihood function, we may construct a Wald

test of 2211 1:0 ppH −= , distributed as 2
1

χ  from

( )[ ]
( ) ( ) ( )[ ]22112211

2211
ˆ,ˆvôc2ˆrâvˆrâv

2ˆ1ˆ

pppp

pp

++
−−

(20)

The Wald statistic is highly significant at any level of confidence (Wald = 244.0854, marginal

significance level = 0.0000). We note that this test statistic also exceeds the 5% Davies upper

bound implying that the more restrictive version of (19) namely 22110 1: ppH −= is also

rejected.

Using a similar approach we test whether the inflation rates are significantly different

across regimes. If 21 µµ =  and 21 σσ ≠  then the states have the same rates of inflation, but

differing variances. We designate this null :
1

0H 21 µµ = , the Wald statistic corresponding

to
1

0H , distributed as 2
1

χ  is
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( )
( ) ( ) ( )[ ]2,121

2
21

ˆˆvôc2ˆrâvˆrâv

ˆˆ

µµµµ
µµ
−+

−
(21)

 Here the Wald statistic is again highly significant at any level of confidence. (Wald = 247.0854,

marginal significance level = 0.0000). Clearly the mean inflation rate differs across the regimes

in a statistically significant fashion.

Finally given the significant difference in mean inflation rates across the regimes, we test

whether the apparent differences in variance are significant. Again, this is a Wald type test

constructed as in (21) and distributed as 2
1

χ  with the null hypothesis :
2

0H 2
2

2
1 σσ = . Under

2

0H the expected rate of inflation differs across regimes, but uncertainty about inflation is

constant. The null hypothesis is clearly not satisfied for the data (Wald = 14.9133, marginal

significance level = 0.0001).

Given the evidence from the LR test and Wald tests (19) – (21) it appears that movements

in Hong Kong inflation are well described by a long swing. Inflation enters into regimes where it

increases or decreases and it remains in these regimes for substantial periods of time. These

differences in means and variances across regimes, coupled with the rejection of

2211 1:0 ppH −=  imply that the long swing model provides a superior conditional data

characterisation to the more typically used random walk model.

Figure 4 plots the smoothed regime probability for regime 2. Clearly regime 2 captures

the low mean inflation regime which coincides with the deflation for Hong Kong. Taking p22>0.5

as evidence for the second regime our estimates imply that inflation moved into the deflationary

regime in September 1998. The IO(1) model dates a break to May 1998, which is not

inconsistent with the prediction of the long swing model. We leave the investigation of the effect

of neglected non-linearity on break dating as a matter for further research.

The expected length of state i is 1/(1-pii). This suggests that the expected length of the

inflationary regime is 238 months, while the deflationary regime would on average be expected

to last 130 months. At the time of writing, the deflation is in its fourth year and has not ended.

However it is unlikely that the current regime will last another six years. This of course

highlights the difficulties associated with measuring the duration of the inflation cycle with less

than one complete cycle.
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What are the advantages of the long swing model over the sub-sample approach followed

in Table 1? First, the long swing approach does not impose the break date, transitions across

regimes are estimated rather than imposed. Secondly the long swing model admits multiple

changes of regime, although only a single transition is detected. Third, the long swing model

uses the entire sample and is likely to provide more efficient estimates of the parameters of the

model. Fourth, one may obtain an estimate of the expected duration of each regime from the long

swing model.

6. Reconciling the results

Nelson, Piger and Zivot (2001) study the properties of unit root tests in the presence of

Markov switching. The Markov switching model can be summarized as

( )
( )

( )ttvt

vtt

ttt

ttt

SS

Nv

SS

v

−+×=

−+×=
+=

1

,0~

1

2
2

2
1

2

2

21

σσσ

σ

µµµ
µπ

(22)

This can easily be written as a model with a constant growth rate of prices, and a serially

correlated heteroscedastic error term

( ) ( )( ) tttt

tt

vSSe

e

+−−+−=
+=

121 µµµµ
µπ

(23)

The effect (if any) of the switching drift and variance on the performance of commonly used unit

root and stationarity tests must be due to te . Nelson, Piger and Zivot (2001) show that the

autocovariance function of te  is

( ) ( ) ( )( )22
21 pSSEeeCov kttktt −−= −− µµ (24)

In the limit, under the assumption of a first order Markov process underlying, tS  this

autocovariance goes to zero. However, te  is heteroscedastic due to the switching variance in

(22). Consider the lag k autocorrelation for te

( ) ( )( )
( ) ( ) 222

21

22
21 1|1

vt

ktt

pp

pSSPp

σµµ
µµ

+−−
−==×− − (25)
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If all terms that depend on the transition probabilities are ignored in (25) the ratio

( ) 22
21 / vtσµµ −  determines the size of the autocorrelations. This may be interpreted as a signal to

noise ratio. The larger the variance of the error term, the larger the noise masking the serial

correlation induced by the drift terms. The larger (smaller) the ratio, the larger (smaller) the

autocorrelations.  The average value of this signal-to-noise ratio is 4.785 in our data. Evaluating

the heteroscedasticity for the cases where 1=tS  and 2=tS  yields the ratio

( ) ( )
( ) ( ) 2

2
22

21

2
1

22
21

σµµ
σµµ

+−−
+−−

pp

pp
(26)

The value of (26) for our data was 1.1373.

The values of (25) and (26) for our data correspond almost exactly to the high correlation,

low heteroscedasticity case studied by Nelson, Piger and Zivot (2001), who demonstrate that the

ADF test is subject to size distortions depending on how the lag truncation is chosen. In the high

correlation, low heteroscedasticity case where 99.0ˆˆ
2211 ≅= pp  the Dickey Fuller test is severely

undersized, rejecting less than 1% of the time, while the ADF test also suffers.

Using the parameters and transition probabilities from the estimated long-swing model

we generated 20000 samples, each containing 200 observations. The lag truncation parameter

was chosen using the Schwarz criterion. In only 24.85% of cases could the ADF test reject the

null hypothesis of a unit root. More interestingly, the KPSS test is unable to distinguish the

Markov Switching drift. The rejection rate of the null hypothesis of the KPSS test was 100%.

Nelson, Piger and Zivot (2001) conclude that the failure of the ADF and DF tests in the presence

of Markov switching drift is a function of the severity of the serial correlation caused by the

probabilistic trend breaks. This is very likely to be the source of the apparent unit root in

inflation in our Data. In the case of the KPSS test there is little distinction between the null and

alternative hypotheses as ( )0~ Ix t in both cases. The uniform rejection is like to be as a result of

very low “power” in the sense that the alternative hypothesis is consistent with the stationary null

hypothesis and does not really constitute an alternative after all.
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7. Summary and Conclusion

Using annual rates of inflation calculated from monthly CPI data we are unable to reject

the null hypothesis of a unit root in the inflation rate. However this result must regarded as

tenuous as there is strong evidence of a break in the unconditional distribution of inflation. It is

well known that unit root tests are biased towards the null hypothesis of non-stationarity in the

face of a structural break. However, using the Perron (1997) approach, which is robust to a one-

off break under the null and alternative hypothesis, we are again unable to reject the null of a unit

root. Interestingly the Perron (1997) approach presents conflicting evidence as to the timing of

any such break.

We employ an alternative model for inflation due to Engel and Hamilton (1990) that

characterises movements in prices as following long swings. Inflation appears to display two

regimes. One regime features increasing prices and relatively high inflation uncertainty. In the

other regime Hong Kong prices are falling, although the uncertainty about deflation is relatively

low. The model dates a single transition across regimes that occurred in September 1998. The

data display asymmetric persistence; the estimated duration of an inflation is approximately

twice that of a deflation, although some caution must be associated with this conclusion.

However, it is clear that deflationary periods can be highly persistent. The results are consistent

with a segmented stochastic trend underlying prices. In such a scenario inflation, as the change in

prices, is stationary. Using a battery of tests that allow for unidentified parameters under the null

hypothesis, the data strongly reject the null of no switching. A consequence of the long swing is

that unit root stationarity tests are likely to be unreliable. A direct implication of this is the

tendency of linear models to dramatically over-estimate the persistence of an inflation shock.

Given the current deflation in Hong Kong the results have important implications for the

construction of economic models and also for the implementation of policy. One implication of

these results is that inference based on linear models of inflation is likely to be highly misleading

as such models are inherently misspecified. A similar criticism applies to VAR based simulation

experiments designed to investigate the effects of policy initiatives to combat the deflation.

Given the pernicious effects of deflation and stagnation, this is clearly an area that merits further

research.
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Tables and Figures

Table 1: Maximum Likelihood Estimates of the Parameters of the Empirical Density of tx

( ) ( ) 




 −−= 2
22

1
exp

2

1
,| µ

σσπ
σµ txtxg

Parameter Full sample
1985:1 – 2002:8

First sub-sample
1985:1 – 1999:9

Second sub-sample
1999:10 – 2002:8

µ 4.9321
(0.3369)

7.2678
(0.1934)

-2.6716
(0.2111)

σ 4.7649
(0.2388)

2.3920
(0.1372)

1.4471
(0.1509)

Table 2: Unit root and stationarity tests

ADF ( )τ ADF ( )µ ADF KPSS( )τ KPSS( )µ
-2.2384

<-3.4340>
-0.3831

<-2.8768>
-0.8489

<-1.9425>
0.3724

<0.1460>
1.0417

<0.4630>
Ng-Perron MZα MZT MSB MPT

{ }ttz ,1= -2.2715
<-17.3000>

-0.9456
<-2.9100>

0.4163
<0.1680>

34.6558
<5.4800>

Ng-Perron MZα MZT MSB MPT

{}1=tz -1.6296
<-8.1000>

-0.7411
<-1.9800>

0.4548
<0.2330>

12.0404
<3.1700>

DFGLS ( )τ DFGLS ( )µ IO(1) IO(2) AO

0.8791
<-2.9430>

-0.7339
<-1.9425>-

-3.0756
<-5.1000>

:ψT 1998:5

-3.2435
<-5.5500>

:ψT 1990:7

-3.2543
<-4.6500>

:ψT 1993:2
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Table 3: Maximum Likelihood Estimates of the Markov Switching Segmented Trend Model
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σσσ

σ

µµµ
µπ

1µ 7.2636
(0.1936) 2µ -2.6620

(0.2128) 11p
0.9958
(0.0048)

2
1

σ 5.7192
(0.6563)

2
2

σ 2.0893
(0.4470) 22p

0.9923
(0.0105)

Ergodic Probabilites
State 1: 0.6446 State 2: 0.3554

Matrix of Markov Transition Probabilities
0.9958 0.0077
0.0042 0.9923

Table 4: Maximum Likelihood Estimates of the Mixture of Normals Model
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(4.3636)
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(25.5236)
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Figure1: The CPI Data

Figure 2: The Inflation Data
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Figure 3: The estimated unconditional density of Hong Kong inflation

Figure 4: The smoothed regime probability for the deflationary regime [ ]2=tSP .
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