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Introduction

The implied cost of capital (ICC) is the expected return that equates a stock’s current price to

the present value of its expected future free cash flows. While most papers examine the role

of ICC in cross-sectional settings, Pastor, Sinha, and Swaminathan (2008) use ICC in a time-

series context to estimate the inter-temporal asset pricing relationship between expected returns

and volatility.2 They theoretically show that the aggregate ICC is perfectly correlated with the

conditional expected stock return under plausible conditions. If the aggregate ICC is a good proxy

for conditional expected returns, it should also be able to forecast future realized market returns.

In this paper, we examine the ability of the aggregate implied risk premium (IRP) to forecast

future excess stock market returns. We estimate IRP as follows. First, we estimate the ICC for

each stock in the S&P 500 index (as of that month) and then value-weight the individual ICCs to

obtain the aggregate ICC. We then subtract the one-month T-bill yield from the aggregate ICC to

compute the implied risk premium and use it to predict future excess market returns.

We find that the implied risk premium is a strong predictor of future excess market returns in

forecasting horizons over the next five years with adjusted R2 of 6.5% at the 1-year horizon and

31.9% at the 4-year horizon. In multivariate regressions, IRP continues to predict future returns

in the presence of existing valuation ratios such as the earnings-to-price ratio, dividend-to-price

ratio, book-to-market ratio, and the payout yield.3 The predictive power of IRP remains strong

even after controlling for other predictors that have been proposed in the literature, including

the business cycle variables such as the term spread and default spread, the net equity issuance,

inflation, stock market variance, long-term government bond yield, lagged stock returns, sentiment

measures, consumption-to-wealth ratio, and investment-to-capital ratio.4

2There is a large literature on ICC. For example, ICC has been used to study the equity premium (Claus and
Thomas (2001), Fama and French (2002)), test theories on betas (Kaplan and Ruback (1995), Botosan (1997), Gode
and Mohanram (2003), Easton and Monahan (2005), Gebhardt, Lee, and Swaminathan (2001)), international asset
pricing (Lee, Ng, and Swaminathan (2009)), default risk (Chava and Purnanandam (2010)), asset anomalies (Wu
and Zhang (2011)), cross-sectional expected returns (Hou, van Dijk, and Zhang (2010)), stock return volatility (e.g.,
Friend, Westerfield, and Granito (1978)), and the cost of equity (Hail and Leuz (2006)). Botosan and Plumlee (2005),
Lee, So, and Wang (2010) compare different ICC estimates.

3A partial list of references on the predictive power of valuation ratios includes Fama and Schwert (1977), Campbell
(1987), Campbell and Shiller (1988), Fama and French (1988a, 1989), Kothari and Shanken (1997), Lamont (1998),
Pontiff and Schall (1998), and Boudoukh, Michaely, Richardson, and Roberts (2007).

4A partial list of references includes: the term spread and default spread (Campbell (1987), Fama and French
(1989)), the net equity issuance (Baker and Wurgler (2000)), inflation (Nelson (1976), Fama and Schwert (1977),
Campbell and Vuolteenaho (2004)), stock market variance (Guo (2006)), long-term government bond yield (Campbell
(1987), Keim and Stambaugh (1986)), lagged stock returns (Fama and French (1988b)), consumption-to-wealth ratio
(Lettau and Ludvigson (2001)), investment-to-capital ratio (Cochrane (1991)), and the sentiment measures (Baker
and Wurgler (2006)).
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Given the well-known statistical issues in predictive regressions, we use a rigorous Monte Carlo

procedure to assess the statistical significance of our regressions.5 Consistent with the litera-

ture (e.g., Lee, Myers, and Swaminathan (1999), Stambaugh (1999), Boudoukh, Richardson, and

Whitelaw (2008)), under the stringent simulated p-value, traditional valuation ratios largely lose

their statistical significance, but the predictive power of IRP remains strong. Our findings are also

robust to a host of checks, including alternative ways of constructing IRP, reasonable perturba-

tions in forecast horizons, and an alternative measure of implied cost of capital proposed by Easton

(2004). Several studies find that analyst forecasts tend to be systematically biased upward. We

further construct a measure for analyst forecast optimism by comparing earnings forecasts to actual

earnings and find that our results are not driven by analyst forecast optimism bias.

Recently, out-of-sample tests have received much attention in the literature. Notably, Welch and

Goyal (2008) show that a long list of predictors from the literature is unable to deliver consistently

superior out-of-sample forecasts of the U.S. equity premium relative to a simple forecast based on

the historical average. To examine the out-of-sample performance of IRP, we perform a variety

of out-of-sample tests and find that it is also an excellent out-of-sample predictor of future excess

market returns in recent years. In the two forecast periods we examine (1998-2010 and 2003-2010),

IRP delivers statistically and economically meaningful out-of-sample R2, and provides positive

utility gains of more than 7% a year to a mean-variance investor. Rapach, Strauss, and Zhou

(2010) argue that it is important to combine individual predictors in the out-of-sample setting. We

further conduct a forecasting encompassing test, which provides strong evidence that IRP contains

distinct information above and beyond that contained in existing predictors.

Our paper contributes to the recent debate on the existence of aggregate stock market pre-

dictability. In particular, a large literature examines whether valuation ratios can forecast market

returns, and has not reached a consensus.6 Similar to existing valuation ratios, IRP measures stock

prices relative to fundamentals and thus it should be positively related to expected returns. How-

ever, IRP offers much better in-sample and out-of-sample forecasting power than existing valuation

ratios, because (a) IRP is estimated from a theoretically justifiable discounted cash flow valuation

5An active recent literature studies econometric methods for correcting the bias associated with predictive re-
gressions and conducting valid inference (see, among others, Hodrick (1992), Cavanagh, Elliott, and Stock (1995),
Stambaugh (1999), Lewellen (2004), Torous, Valkanov, and Yan (2004), Campbell and Yogo (2006), Polk, Thompson,
and Vuolteenaho (2006), and Ang and Bekaert (2007)).

6See, among others, Stambaugh (1986, 1999), Fama and French (1988a), Bekaert and Hodrick (1992), Nelson
and Kim (1993), Lamont (1998), Lewellen (2004), Ang and Bekaert (2007), Boudoukh, Michaely, Richardson, and
Roberts (2007), Boudoukh, Richardson, and Whitelaw (2008), Cochrane (2008), Lettau and Nieuwerburgh (2008),
Rytchkov (2008), Spiegel (2008), and Kelly and Pruitt (2011).
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model and displays superior statistical properties such as faster mean reversion, making it a better

proxy of expected returns and (b) there is a future growth component that is embedded in IRP

but absent from traditional valuation ratios which improves its forecasting power. In our empir-

ical analysis, we show that IRP is also superior to the forecasted earnings-to-price ratio, which

is constructed based on analyst forecasts but does not contain growth beyond the first two years.

Therefore, our approach is consistent with recent literature that has emphasized the importance

of studying return predictability and dividend growth rate jointly (e.g., Fama and French (1988a),

Campbell and Shiller (1988), Cochrane (2008), van Binsbergen and Koijen (2010), and Ferreira

and Santa-Clara (2011)).

Our paper is related to Claus and Thomas (2001) who use a residual income model to estimate

equity premium. While Claus and Thomas (2001) study the unconditional equity premium, we

estimate time-varying conditional equity premium and examine its ability to predict excess market

returns. By suggesting a new measure for expected returns, our work contributes to the time varying

risk premium literature (e.g., Ferson and Harvey (1991, 1993, 1999), Pastor and Stambaugh (2009)).

Our paper is also related in spirit to Lee, Myers, and Swaminathan (1999) (henceforth, LMS) who

use the residual income valuation model to compute the intrinsic value of the Dow Jones Industrial

Average. While LMS estimate intrinsic values, we estimate expected returns, which avoids the

difficulties associated with estimating an appropriate cost of equity from standard asset pricing

models. Compared with LMS who provide an in-sample comparison of the predictive power of

the value-to-price ratio of the Dow and other valuation ratios, we evaluate both the in-sample and

out-of-sample predictive power of IRP against a more comprehensive list of predictors that include

new variables that have been proposed since. Finally, the data in LMS starts in the 1960s and ends

in 1996. Since then we have experienced the bull market of the late 1990s, the subsequent bear

market, and the financial crisis of 2007-2009. Our work evaluates the predictive performance of the

ICC and the other predictive variables during a period covering these important episodes.

Our paper proceeds as follows. We describe the methodology for constructing the aggregate

ICC and IRP in Section I. Section II provides the data source and summary statistics. Section III

and Section IV present the in-sample and out-of-sample return predictions, respectively. Section V

concludes the paper.
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I Empirical Methodology

In this section, we first explain why the implied cost of capital is a good proxy for expected returns,

and then describe the construction of the implied cost of capital.

A. ICC as a Measure of Expected Return

The implied cost of capital is the value of re that solves

Pt =

∞∑
k=1

Et (Dt+k)

(1 + re)
k
, (1)

where Pt is the stock price and Dt is the dividend at time t.

Campbell, Lo, and MacKinlay (1996)(7.1.24) show that

dt − pt = − k

1− ρ
+ Et

(
∞∑
j=0

ρjrt+1+j

)
− Et

(
∞∑
j=0

ρj △ dt+1+j

)
.

By the definition of re,

dt − pt = − k

1− ρ
+ reEt

(
∞∑
j=0

ρj

)
− Et

(
∞∑
j=0

ρj △ dt+1+j

)
,

= − k

1− ρ
+ re

1

1− ρ
− Et

(
∞∑
j=0

ρj △ dt+1+j

)
,

and thus

re = k + (1− ρ) (dt − pt) + (1− ρ)Et

(
∞∑
j=0

ρj △ dt+1+j

)
.

Thus, the ICC contains information about both the dividend yield and future dividend growth.

Pastor, Sinha, and Swaminathan (2008) show that theoretically, ICC can detect an inter-temporal

risk-return relationship that is difficult to detect in tests involving realized returns, demonstrating

its empirical promise in tracking conditional expected returns.

B. Construction of Firm-Level ICC

Our construction of firm-level ICC follows the approach of Pastor, Sinha, and Swaminathan (2008)

and Lee, Ng, and Swaminathan (2009). According to the free cash flow model, the firm-level ICC

is constructed as the internal rate of return that equates the present value of future dividends to

the current stock price. We use the term “dividends” quite generally to describe the free cash

flow to equity (FCFE), which captures the total cash flow available to shareholders including stock

repurchases net of new equity issues.
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To implement equation (1), we need to explicitly forecast free cash flows for a finite horizon.

More specifically, we forecast the free cash flows in two parts: i) the present value of free cash flows

up to a terminal period t+ T , and ii) a continuing value that captures free cash flows beyond the

terminal period. We estimate free cash flows up to year t + T , as the product of annual earnings

forecasts and one minus the plowback rate:

Et (FCFEt+k) = FEt+k × (1− bt+k) , (2)

where FEt+k and bt+k are the earnings forecasts and the plowback rate forecasts for year t + k,

respectively.

We forecast earnings up to year t + T in three stages. (i) We explicitly forecast earnings (in

dollars) for years t + 1 and t + 2 using analyst forecasts. IBES analysts supply a one-year ahead

forecast, FE1, and a two-year-ahead forecast FE2, of earnings per share (EPS) for each firm in the

IBES database. (ii) We then use the growth rate implicit in the forecasts for years t+ 1 and t+ 2

to forecast earnings in year t + 3; that is, g3 = FE2/FE1 − 1, and the three-year-ahead earnings

forecast is given by FE3 = FE2 (1 + g3).
7 Firms with growth rates above 100% (below 2%) are

given values of 100% (2%). (iii) We forecast earnings from year t+4 to year t+T +1 by assuming

that the year t + 3 earnings growth rate g3 reverts to steady-state values by year t + T + 2. We

assume that the steady-state growth rate starting in year t+T +2 is equal to the long-run nominal

GDP growth rate, g, computed as the sum of the long-run real GDP growth rate (a rolling average

of annual real GDP growth) and the long-run average rate of inflation based on the implicit GDP

deflator. Specifically, earnings growth rates and earnings forecasts using the exponential rate of

decline are computed as follows for years t+ 4 to t+ T + 1 (k = 4, ..., T + 1):

gt+k = gt+k−1 × exp [log (g/g3) / (T − 1)] and (3)

FEt+k = FEt+k−1 × (1 + gt+k) .

We forecast plowback rates using a two-stage approach. (i) We explicitly forecast plowback rates

for years t + 1 and t + 2. For each firm, the plowback rate is computed as one minus that firm’s

dividend payout ratio. We estimate the dividend payout ratio by dividing actual dividends from the

7If both FE2 and FE1 are available and positive, then g3 = FE2/FE1−1. Otherwise, we fill them using available
data. For example, if FE1 > 0 and the actual earning from the previous year (FE0) is available and positive, then
LTG = FE1/FE0 − 1, and FE2 = FE1(1 + LTG); if FE2 > 0 and FE0 > 0, then LTG = (FE2/FE0 − 1)1/2, and
FE1 = FE0(1+LTG); if both FE1 and FE2 are missing or negative, but FE0 > 0 and the IBES long-term earnings
growth rate is available and positive, then we use the IBES long-term earnings growth rate to replace LTG, and fill
FE1 and FE2.
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most recent fiscal year by earnings over the same time period.8 We exclude share repurchases due

to the practical problems associated with determining the likelihood of their recurrence in future

periods. Payout ratios of less than zero (greater than one) are assigned a value of zero (one). (ii)

We assume that the plowback rate in year t+ 2, b2 reverts linearly to a steady-state value by year

t + T + 1 computed from the sustainable growth rate formula. This formula assumes that, in the

steady state, the product of the return on new investments and the plowback rate ROE ∗ b is equal

to the growth rate in earnings g. We further impose the condition that, in the steady state, ROE

equals re for new investments, because competition will drive returns on these investments down

to the cost of equity.

Substituting ROE with cost of equity re in the sustainable growth rate formula and solving for

plowback rate b provides the steady-state value for the plowback rate, which equals the steady-state

growth rate divided by cost of equity g/re. The intermediate plowback rates from t + 3 to t + T

(k = 3, ..., T ) are computed as follows:

bt+k = bt+k−1 −
b2 − b

T − 1
. (4)

The terminal value TV is computed as the present value of a perpetuity equal to the ratio of

the year t+ T + 1 earnings forecast divided by the cost of equity:

TVt+T =
FEt+T+1

re
, (5)

where FEt+T+1 is the earnings forecast for year t + T + 1.9 It is easy to show that the Gordon

growth model for TV will simplify to equation (5) when ROE equals re.

Substituting equations (2) to (5) into the infinite-horizon free cash flow valuation model in

equation (1) provides the following empirically tractable finite horizon model:

Pt =
T∑

k=1

FEt+k × (1− bt+k)

(1 + re)
k

+
FEt+T+1

re (1 + re)
T
. (6)

Following Pastor, Sinha, and Swaminathan (2008), we use a 15-year horizon (T = 15) to implement

the model in (6) and compute re as the rate of return that equates the present value of free cash

flows to the current stock price. The resulting re is the firm-level ICC measure used in our empirical

analysis.

8If earnings are negative, the plowback rate is computed as the median ratio across all firms in the corresponding
industry-size portfolio. The industry-size portfolios are formed each year by first sorting firms into 49 industries
based on the Fama–French classification and then forming three portfolios with an equal number of firms based on
their market cap within each industry.

9Note that the use of the no-growth perpetuity formula does not imply that earnings or cash flows do not grow
after period t+ T . Rather, it simply means that any new investments after year t+ T earn zero economic profits. In
other words, any growth in earnings or cash flows after year T is value-irrelevant.
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C. Construction of the Aggregate ICC

Each month, the value-weighted aggregate ICC is constructed as:

ICCt =
n∑

i=1

vi,t−1
n∑

i=1
vi,t−1

ICCi,t,

where i indexes firm, and t indexes time. vi,t−1 is the market value for firm i at time t − 1, and

ICCi,t is the ICC for firm i at time t.

In our empirical analysis, since we forecast excess market returns, the predictive variable we

use in our in-sample and out-of-sample forecast evaluations is the implied risk premium (IRP),

obtained by subtracting the one-month T-bill yield from the aggregate ICC:

IRP t = ICCt − Tbillt.

Our main measure of IRP is the value-weighted measure based on firms in the S&P 500 index,

although we conduct a variety of robustness checks in Subsection III.

II Data and Sample Description

Our measure of ICC uses all prevailing firms in the S&P 500 index between January 1981 and

December 2010. That is, when calculating the aggregate ICC at month t, we only use firms

that belong to the index in that month. We obtain return data from CRSP, accounting data

including common dividend, net income, book value of common equity, and fiscal year-end date

from COMPUSTAT, and analyst forecasts from I/B/E/S. Monthly data on market capitalization

are obtained from CRSP. To ensure we only use publicly available information, we obtain these

items from the most recent fiscal year ending at least 3 months prior to the month in which ICC

is computed. Data on nominal GDP growth rates are obtained from the Bureau of Economic

Analysis. Our GDP data begin in 1930. Each year, we compute the steady-state GDP growth rate

as the historical average of the GDP growth rates using annual data up to that year.

For the aggregate market return, we use the value-weighted market return including dividends

from WRDS.10 There is a long-standing literature focusing on the predictive power of the three

valuation ratios including dividend-to-price-ratio (D/P), earnings-to-price ratio (E/P), and book-

to-market ratio (B/M ). Recently, Boudoukh, Michaely, Richardson, and Roberts (2007) propose

payout yield as an alternative valuation measure and they show that while dividend yield fails to

10Results based on other measures of the aggregate market return such as the S&P 500 return yield similar results.
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predict future market returns, their new payout yield measure exhibits statistically and economi-

cally significant predictability. Since our new predictor IRP is similar to a valuation ratio, we are

particularly interested in its forecasting performance with respect to the following valuation ratios:

• Forecasted earnings-to-price ratio (FY/P). Each month, we construct the aggregate FY/P

by value-weighting the firm-level forecasted earnings-to-price ratio using the same firms in

the S&P 500 index for which we calculate our aggregate ICC. We construct the firm-level

forecasted earnings-to-price ratio by dividing the average of analysts’ one-year-ahead (FE1)

and two-year-ahead (FE2) earning forecasts by the current stock price.

• Trailing earnings-to-price ratio (E/P). Each month, we construct the aggregate E/P by value-

weighting the firm-level E/P using the same firms in the S&P 500 index for which we calculate

our aggregate ICC. We calculate the firm-level E/P by dividing earnings from the most recent

fiscal year end (ending at least 3 months prior) by market capitalization.

• Dividend-to-price ratio (D/P). Each month, we construct the aggregateD/P by value-weighting

the firm-level D/P using the same firms in the S&P 500 index for which we calculate our

aggregate ICC. We calculate the firm-level D/P by dividing the total dividends from the most

recent fiscal year end (ending at least 3 months prior) by market capitalization.11

• Book-to-market ratio (B/M). Each month, we construct the aggregate B/M by value-weighting

the firm-level B/M using the same firms in the S&P 500 index for which we calculate our

aggregate ICC. We calculate the firm-level B/M by dividing the total book value of equity

from the most recent fiscal year end (ending at least 3 months prior) by market capitalization.

• Payout Yield (P/Y ). The payout yield is the sum of dividend yield and repurchase yield,

defined as the ratio of common share repurchases to year-end market capitalization.

Our constructed valuation ratios FY/P, E/P, D/P, and B/M are monthly data from January

1981 to December 2010. P/Y is monthly data from January 1981 to December 2008, obtained

from the website of Michael Roberts. In addition to valuation ratios, we further investigate the

forecasting power of IRP in the presence of a long list of other forecasting variables that have been

proposed in the literature:

11In untabulated results, we use the dividend yield data provided by Michael Roberts used in Boudoukh, Michaely,
Richardson, and Roberts (2007), in which the dividend yield is computed as the difference in the cum and ex-dividend
returns to the CRSP value-weighted index. We find stronger predictability of IRP in the presence of this dividend
yield measure.
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• Default spread (Default). The default spread is the difference between yields on BAA and

AAA-rated corporate bonds obtained from the economic research database at the Federal

Reserve Bank at St. Louis (FRED). It is a measure of the ex-ante default risk in the economy.

• Term spread (Term). The term spread is the yield difference between Moody’s Aaa bonds and

the one-month T-bill rate representing the slope of the treasury yield curve. The one-month

T-bill rate is the average yield on one-month Treasury bill obtained from WRDS.

• Long-term yield (lty). The 30-year government bond yield.

• Net equity expansion (ntis). The ratio of 12-month moving sums of net issues by NYSE listed

stocks divided by the total end-of-year market capitalization of NYSE stocks.

• Inflation (infl). Inflation rate calculated based on the Consumer Price Index (all urban

consumers).

• Stock variance (svar). Computed as the sum of squared daily returns on the S&P 500 index

within a month.

• Lagged excess market returns (vwretd). Because we forecast excess returns in our empirical

analysis, we subtract the one-month T-bill rate from the lagged monthly value-weighted

market return with dividends to obtain vwretd.

• Sentiment index 1 (senti1) and sentiment index 2 (senti2). Two sentiment indices proposed

in Baker and Wurgler (2006). They are based on the first principal component of six (stan-

dardized) sentiment proxies.

The business cycle variables including Default and Term span January 1981 to December 2010.

Variables ntis, infl, and svar are obtained from Amit Goyal’s website, lty and vwretd are ob-

tained from WRDS, the two sentiment measures are taken from Jeffrey Wurgler’s website; all these

variables span January 1981 to December 2008.

Although the ICC is computed each month, we subtract the quarterly one-month T-bill yield

from quarter-end ICC to compute the quarterly IRP measure, and examine the performance of

IRP with respect to two quarterly forecasting variables:

• Consumption-to-wealth ratio (cay): proposed in Lettau and Ludvigson (2001).
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• Investment-to-capital ratio (i/k): the ratio of aggregate (private nonresidential fixed) invest-

ment to aggregate capital for the whole economy. This is the variable proposed in Cochrane

(1991).

cay and i/k are from Amit Goyal’s website and they span the first quarter of 1981 to the fourth

quarter of 2008. It should be noted that the construction of cay and the two sentiment indices uses

future information, so they are not really forecasting variables.

[INSERT TABLE I HERE]

Table I presents univariate summary statistics on the above variables, with Panel A for IRP, FY/P,

E/P, D/P, B/M, Term, and Default using monthly data from 1981.01 to 2010.12; Panel B for IRP,

P/Y, lty, ntis, infl, svar, vwretd, senti1, and senti2 using monthly data from 1981.01 to 2008.12;

and Panel C for IRP, cay, and i/k using quarterly data from 1981.Q1 to 2008.Q4. In Panel A,

the average annualized IRP is 6.74% and its standard deviation is 2.58%, whereas in Panel B, the

average annualized IRP is 6.38% and its standard deviation is 2.27%. Therefore, both the mean

and standard deviation of IRP have increased since 2008. Panel D provides the number of firms

used to construct IRP each year, which increases over time.

As shown in Panel A, IRP exhibits faster mean reversion than other valuation ratios. Its first

order autocorrelation is 0.95, and the autocorrelation declines to 0.04 after 24 months, and becomes

−0.21 after 36 months (Panel A). The autocorrelations of all other valuation ratios, namely, FY/P,

E/P, D/P, B/M, and P/Y, stay well above zero even after 60 months. These results suggest that

IRP is more stationary than other valuation ratios. To formally test the stationarity of these

variables, in Appendix A, we conduct formal unit root tests, and the results confirm that IRP is

indeed more stationary than other valuation ratios. More specifically, we strongly reject the null

of a unit root in IRP at the conventional levels, but for all other valuation ratios, we fail to reject

the null that they contain a unit root.

Table II reports the correlation among the various measures. IRP is positively correlated with

all the valuation ratios, which suggests that they share common information about time-varying

expected returns. IRP is also significantly positively correlated with Term and Default, which

suggests that IRP varies with the business cycle.

The high negative correlation (−0.68) between IRP and i/k (Panel D) suggests that the aggre-

gate investment in the economy drops as the cost of capital rises. This is intuitive and as expected.

Lettau and Ludvigson (2001) advocate cay as a conditioning variable that summarizes investor
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expectations of expected returns, and thus it is not surprising that IRP is positively correlated

with cay. Overall, the results in Table II indicate that IRP has intuitive appeal as a measure of

the conditional expected return.

[INSERT FIGURE 1 HERE]

Figure 1 plots IRP over time, together with its mean and two-standard-deviation bands using all

historical data starting from January 1986. It also marks several important periods: the market

crash of October 1987, the technology-driven bull market of 1998 and 1999, and the subsequent

bear market and the financial crisis period of July 2007 to March 2009. The implied risk premium

reached a high of 13.3% in March 2009 at the depth of the market downturn. At the end of 2010,

the forward-looking implied risk premium was still above 10%.

[INSERT FIGURE 2 HERE]

Figure 2 plots FY/P, E/P, D/P, B/M, and P/Y. The plots suggest that there is some commonality

in the way these valuation ratios vary over time. In comparison, IRP in Figure 1 appears more

stationary.

III In-sample Return Predictions

A. Forecasting Regression Methodology

We begin with the multiperiod forecasting regression test in Fama and French (1988a,b, 1989).

Consider
K∑
k=1

rt+k

K
= a+ b×Xt + ut+K,t, (7)

where rt+k is the continuously compounded excess return per month (quarter) defined as the dif-

ference between the monthly (quarterly) continuously compounded return on the value-weighted

market return including dividends from WRDS and the monthly (quarterly) continuously com-

pounded one-month T-bill rate. Xt is a 1 × k row vector of explanatory variables (excluding the

intercept), b is a k × 1 vector of slope coefficients, K is the forecasting horizon, and ut+K,t is the

regression residual.

We conduct these regressions for different horizons: in monthly regressions, K = 1, 12, 24, 36,

48, and 60 months, and in quarterly regressions, K = 1, 4, 8, 12, and 16 quarters. One problem

with this regression test is the use of overlapping observations, which induces serial correlation
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in the regression residuals. Specifically, under both the null hypothesis of no predictability and

alternative hypotheses that fully account for time-varying expected returns, the regression residuals

are autocorrelated up to lag K − 1. As a result, the regression standard errors from ordinary least

squares (OLS) would be too low and the t-statistics too high. Moreover, the regression residuals are

likely to be conditionally heteroskedastic. We correct for both the induced autocorrelation and the

conditional heteroskedasticity using the Generalized Method of Moments (GMM) standard errors

with the Newey-West correction (see Hansen and Hodrick (1980) and Newey and West (1987)) up to

moving average lags K−1. We call the resulting test statistic the asymptotic Z-statistic. Moreover,

since the forecasting regressions use the same data at various horizons, the regression slopes will

be correlated. It is, therefore, not correct to draw inferences about predictability based on any

one regression. To address this issue, Richardson and Stock (1989) propose a joint test based on

the average slope coefficient. Following their paper, we compute the average slope statistic, which

is the arithmetic average of regression slopes across different horizons, to test the null hypothesis

that the slopes at different horizons are jointly zero. To compute the statistical significance of the

average slope estimate, we conduct Monte Carlo simulations, the details of which are described

below.

As explained earlier, asymptotic Z-statistics are computed using the GMM standard errors.

While these Z-statistics are consistent, they potentially suffer from small sample biases because of

the following reasons. First, while the independent variables in the OLS regressions are predeter-

mined they are not necessarily strictly exogenous. This is especially the case when we use valuation

ratios, since valuation ratios are a function of current price. Stambaugh (1986, 1999) show that in

these situations the OLS estimators of the slope coefficients are biased in small samples. Secondly,

while the GMM standard errors consistently estimate the asymptotic variance-covariance matrix,

Richardson and Smith (1991) show these standard errors are biased in small samples due to the

sampling variation in estimating the autocovariances. Lastly, as demonstrated by Richardson and

Smith (1991), the asymptotic distribution of the OLS estimators may not be well behaved if K is

large relative to T , i.e., the degree of overlap is high relative to the sample size.

To account for these issues, we generate finite sample distributions of Z(b) and the average slopes

under the null of no predictability and calculate the p-values based on their empirical distributions.

Monte Carlo experiments require a data-generating process that produces artificial data whose

time-series properties are consistent with those in the actual data. Therefore, we generate artificial

data using a Vector Autoregression (VAR), and our simulation procedure closely follows Hodrick
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(1992), Swaminathan (1996) and Lee, Myers, and Swaminathan (1999). Appendix B describes the

details of our simulation methodology.12

B. Forecasting Regression Results

In this section we discuss the results from our forecasting regressions involving IRP. We first

compare IRP with the various valuation ratios, and we then compare IRP with a long list of

forecasting variables that have been documented to predict future returns in the literature. Finally,

we conduct various robustness checks.

B.1. Regression Results with Valuation Ratios

Univariate Regression Results We first examine the univariate regression results of IRP and

other commonly used valuation ratios, by setting X = IRP, FY/P, E/P, D/P, B/M, or P/Y in

equation (7). High IRP represents high ex-ante risk premium, and hence we expect high IRP to

predict high excess market returns. Prior literature has shown that high valuation ratios (E/P,

D/P, B/M ) predict high stock returns. Similarly, we expect high FY/P to forecast high stock

returns. Boudoukh, Michaely, Richardson, and Roberts (2007) show that Payout Yield (P/Y ) is

a better forecasting variable than the dividend yield and that it positively predicts future returns.

Thus, for all regressions, a one-sided test of the null hypothesis is appropriate.

[INSERT TABLE III HERE]

Panels A-E of Table III present univariate regression results for IRP, FY/P, E/P, D/P, and B/M,

respectively, using monthly data from 1981.01 to 2010.12. Panel F provides the univariate regres-

sion results for P/Y, using monthly data from 1981.01 to 2008.12. Because Boudoukh, Michaely,

Richardson, and Roberts (2007) use the logarithm of P/Y in their regressions, to be consistent, in

Panel F we also use the logarithm of P/Y as the regressor.

We observe that as expected, all variables have positive slope coefficients. Because a one-sided

test is appropriate, the 5% critical value is 1.65 when we assess statistical significance based on

conventional critical statistics. By this measure, all variables have some forecasting power, espe-

cially at longer horizons, and the adjusted R2s also increase with horizons. That the conventional

12In our reported results below, the variables in the VAR vary with each regression. For example, in the univariate
regression of (7) with only one predictive variable in Xt, the VAR contains two variables, namely, rt and the predictive
variableXt. In a multivariate regression with two predictive variables inXt, the VAR contains three variables, namely,
rt and the two predictive variables in Xt. In unreported results, for predictive variables with the same sample size,
we also run a single VAR containing all variables and obtain similar conclusions.
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significance of forecasting power increases with the forecasting horizon is due to the persistence of

the regressors (see the proof in Cochrane (2005)). However, when judged by simulated p-values, the

commonly used valuation ratios including E/P, D/P, and B/M are no longer significant; the fore-

casted earnings-to-price ratio (FY/P) is also not statistically significant. This finding is consistent

with our discussion in Subsection III.A, and highlights the importance of using simulated p-values

to assess the statistical significance of forecasting variables. Since E/P, D/P, B/M, and FY/P are

not statistically significant at the individual horizons, it is not surprising that these variables are

not significant in the joint horizon test: the simulated p-values of average slope estimates are 0.370,

0.446, 0.328, and 0.480 for E/P, D/P, B/M, and FY/P, respectively.

Unlike the traditional valuation measures, IRP is statistically significant both based on conven-

tional Z(b) and the simulated p-values. In particular, IRP is statistically significant at conventional

levels for all forecasting horizons except the 2-year horizon. For IRP, the adjusted R2 is 6.5% at

the 1-year horizon, and it increases to 31.9% at the 4-year horizon. In comparison to FY/P, E/P,

D/P, and B/M, IRP also has the highest R2 at every forecasting horizon, indicating that IRP

is able to explain a much larger portion of future market returns than commonly used valuation

ratios. Moreover, the average slope coefficient of IRP across all horizons is 1.876, and it is highly

significant (p-value 0.025). This suggests that on average, an increase of 1% in IRP in the current

month is associated with an annualized increase of 1.876% in the excess market return over the next

five years. Economically, this is very significant. Consistent with Boudoukh, Michaely, Richardson,

and Roberts (2007), P/Y has strong forecasting power for future excess market returns: it is sta-

tistically significant at all horizons after a year, and the average slope estimate is also significant

(p-value 0.096).

Bivariate Regression Results Because IRP is positively correlated with traditional valuation

ratios, it is important to know whether IRP still forecasts future market returns in their presence.

Given the high correlation among these valuation ratios (see Table II), to avoid multicollinearity

issues, we run bivariate regressions according to equation (7), with X being one of the following

five sets of regressors: (1) IRP and FY/P, (2) IRP and E/P, (3) IRP and D/P, (4) IRP and

B/M, and (5) IRP and P/Y. In (5), we use logarithm of IRP and P/Y. Again, we expect the slope

coefficients of all forecasting variables to be positive, and therefore, one-sided tests of the null of

no predictability are appropriate.

[INSERT TABLE IV HERE]
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Table IV presents the bivariate regression results. Panel A shows that IRP is still a statistically

and economically significant forecasting variable in the presence of FY/P. The slope coefficients

corresponding to IRP continue to be positive, and they are statistically significant at the 1-month,

3-year, and 4-year horizons according to the simulated p-values. The average slope coefficient

across all forecasting horizons is 1.664 and statistically significant (p-value 0.087), suggesting that

a 1% increase in IRP in the current month is associated with an annualized increase of 1.664% in

the excess market return over the next five years. In contrast, FY/P is insignificant in both the

individual horizon tests and the joint horizon test. This result suggests that IRP contains more

information than FY/P, which forecasts only one-year-ahead and two-year-ahead earnings.

Panel B further confirms the predictive power of IRP in the presence of E/P. IRP is statistically

significant at the 1-year, 3-year, and 4-year horizons, and the average slope coefficient is also

significant (p-value 0.063). Panel C provides bivariate regression results of IRP and D/P. IRP

continues to be significant at the 3-year and 4-year horizons while D/P is not statistically significant

at any horizon. Panel D shows that IRP continues to predict future returns in the presence of

B/M. Panel E shows that even in the presence of a strong predictor such as P/Y, IRP still strongly

forecasts future market returns. The slope coefficients of IRP remain positive at all forecasting

horizons, and they are statistically significant at all horizons after two years. In the presence of

IRP, P/Y remain statistically significant only at the 3-year horizon and is no longer significant

based on the joint average slope test (p-value 0.261).

Our analysis thus far has provided strong evidence that, in both univariate and bivariate regres-

sions, IRP is the best predictor compared with the valuation ratios. Consistent with the existing

findings in the literature (Stambaugh (1986, 1999), Nelson and Kim (1993), Boudoukh, Richardson,

and Whitelaw (2008)), traditional valuation ratios such as D/P, E/P and B/M lose their signifi-

cance when we use the simulated critical values to assess statistical significance. However, the IRP

measure survives these more stringent simulated critical values.

Why does IRP perform better than traditional valuation ratios? Compared with traditional

valuation ratios, IRP also contains important information about future growth, which leads to

the superior predictive power of IRP. This can be clearly seen from the bivariate regression of

IRP and FY/P in Panel A of Table IV: since FY/P is just the average of the next two years’

earnings forecasts, the multiple regression shows that the information in IRP, not in FY/P, is still

very important for predicting future returns. The insight that return predictability and dividend

growth rate predictability are best studied jointly has been emphasized by Fama and French (1988a),
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Campbell and Shiller (1988), Cochrane (2008), van Binsbergen and Koijen (2010), and Ferreira and

Santa-Clara (2011), among others. Subsection I.A theoretically shows that ICC (and thus IRP)

contains information about both dividend yield and future dividend growth.

B.2. Regression Results with Other Forecasting Variables

In this subsection, we compare IRP to a host of other predictors that have been proposed in the

literature, and examine whether IRP continues to forecast future excess returns in the presence

of these measures. The first group of variables are the business cycle variables including the term

spread (Term) and the default spread (Default); the second group of variables includes long-term

yield (lty), net equity expansion (ntis), inflation (infl), stock variance (svar), and lagged excess

market returns (vwretd); the third group of variables includes the sentiment measures in Baker and

Wurgler (2006) (senti1 and senti2 ); and the last group of variables includes consumption-to-wealth

ratio (cay) and investment-to-capital ratio (i/k).

Univariate Regression Results

[INSERT TABLE V HERE]

Table V presents the univariate regression results based on (7) when X = Term, Default, lty, ntis,

infl, svar, vwretd, senti1, senti2, cay, or i/k. In addition to these variables, we also provide a

univariate regression for the quarterly IRP. Panel A presents the univariate regression results for

Term and Default. Since Term and Default move countercyclically with the business cycle, we

expect high default spread and high term spread to predict high stock returns. Thus, for these two

regressions, a one-sided test of the null hypothesis is appropriate. The regression results indicate

that Term is a strong predictor of future market returns. It is statistically significant at 1-year

to 4-year horizons, according to the simulated p-values, and the average slope coefficient is also

significant (p-value 0.070). On the other hand, Default is not a statistically significant predictor of

future returns.

Panel B presents the univariate regression results for lty, ntis, infl, svar, and vwretd. We expect

higher lty to predict higher future market returns. Baker and Wurgler (2000) show that ntis is

a strong predictor of future market returns between 1928 and 1997. In particular, firms issue

relatively more equity than debt just before periods of low market returns. So we expect negative

coefficients for ntis. We do not have a definite sign for infl, svar, and vwretd. For example, for
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vwretd, we expect a positive sign within a year and a negative sign afterwards. Since we do not

have a consistent sign for infl, svar, and vwretd, the average slope coefficient for these variables are

not very informative. We nevertheless report it together with its p-value calculated based on the

assumption that we expect a negative sign for infl, svar, and a positive sign for vwretd.

Consistent with our conjecture, lty has positive slope coefficients, although they are not statis-

tically significant. In contrast to the findings in Baker and Wurgler (2000), we obtain positive slope

coefficients for ntis. This is due to the time period we examine; if we only consider the time period

of 1981.01-1997.12, the coefficients for ntis are negative and statistically significant at horizons less

than a year. Higher inflation tends to predict lower future returns up to a year, and then higher

returns at longer than a year. Higher stock variances tend to predict lower future returns. For

vwretd, we observe the usual momentum effect up to a year, and then the reversal effect at longer

horizons. None of these results are highly significant, however.

Panel C presents the univariate regression results for senti1 and senti2. For both sentiment

indices, we expect a negative sign, which is indeed what we find. The slope coefficients for both

variables are negative across all horizons, and they are statistically significant only at the 1-month

horizon.

Panel D presents the univariate regression results for IRP, cay, and i/k using quarterly data.

We still expect IRP to positively forecast future returns, and this is indeed what we find. IRP

is statistically significant at the 4-year horizons. Its average slope coefficient across four years is

5.495, suggesting that a 1% increase in IRP in the current quarter is associated with an annualized

increase of 1.832% in the excess market return over the next four years.

Lettau and Ludvigson (2001) propose cay as a measure of time-varying expected returns with

high cay predicting high returns. Therefore, we expect a positive sign for cay. Based on Cochrane

(1991), we expect a negative sign for i/k. The regression results show that both cay and i/k have

the expected signs; cay is significant at horizons less than one year, and i/k is significant at the

4-year horizon. We note again that because the sentiment measures (senti1 and senti2 ) and cay

use future information, they are not really forecasting variables; but we still compare IRP to them.

Multivariate regression results To examine the predictive power of IRP in the presence of

these additional forecasting variables, we conduct multivariate regressions. First, we run bivariate

regressions of IRP with business cycle variables and sentiment measures. That is, X is one of the

four combinations: (1) IRP and Term, (2) IRP and Default, (3) IRP and senti1, and (4) IRP
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and senti2. To save space, we run the following two multivariate regressions of IRP with other

variables:

K∑
k=1

rt+k

K
= a+ b× IRP t + c× lty t + d× ntist + e× infl t + f × svar t + g × vwretd t + ut+K,t, (8)

and
K∑
k=1

rt+k

K
= a+ b× IRP t + c× cay t + d× i/k t + ut+K,t. (9)

[INSERT TABLE VI HERE]

Table VI presents the results. In all these regressions, we observe that IRP still positively predicts

future market returns. Panel A reports two bivariate regressions, where the first one is IRP and

Term, and the second one is IRP and Default. We observe that IRP remains statistically significant

at the 1-month, 4-year, and 5-year horizons in the presence of Term; the average slope coefficient is

also statistically significant (p-value 0.029). Although Term strongly predicts future returns with

a positive sign in the univariate regression (Panel A of Table V), its coefficients become negative

in the presence of IRP and become insignificant. The signs of Default are also mostly negative in

the presence IRP. Panel B shows that even after controlling for lty, ntis, infl, svar, and vwretd,

IRP remains statistically significant at the 4-year and 5-year horizons; its average slope coefficient

is also significant (p-value 0.078).

Panel C shows that IRP strongly predicts future excess market returns even in the presence

of both sentiment measures (which use ex-post information). In both bivariate regressions, IRP

remains highly significant at the 1-year, 4-year, and 5-year horizons, and its average slope coefficient

is also significant. The performance of the two sentiment measures is similar to that in the univariate

regressions (Panel C of Table V), where they are significant at the 1-month horizon. These results

indicate that IRP contains distinct information from the sentiment measures.

Panel D indicates that, in the presence of cay and i/k, IRP remains significant after two years.

In the presence of IRP, cay is significant only at the 1-quarter horizon. Although i/k is significant

in the univariate regression (Panel D of Table V), it loses its forecasting power in the multivariate

regression. Given the high correlation between IRP and i/k (−0.68 in Panel D of Table II), it is

not surprising that the presence of IRP diminishes the predictive power of i/k .

Overall, our analysis indicates that IRP has strong predictive power even in the presence of a

variety of other forecasting variables.
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B.3. Robustness Checks

Alternative ways of constructing IRP So far, our measure of implied risk premium is ob-

tained by value-weighting the firm-level ICC for the S&P 500 index firms to obtain the aggregate

ICC, and then subtracting the one-month T-bill yield from the aggregate ICC. In this subsection,

we consider three alternative ways of constructing the implied risk premium. First, we equally-

weight the firm-level ICC for the S&P 500 firms to obtain the aggregate ICC, and then subtract the

one-month T-bill yield to construct an equally-weighted implied risk premium measure (IRP equ).

Second, we value-weight the firm-level ICC to obtain the aggregate ICC. Rather than subtracting

the one-month T-bill yield from the aggregate ICC, we instead subtract the long-term government

bond yield to obtain the implied risk premium (IRP yield). Finally, rather than use the firms in

the S&P 500 index, we compute the value-weighted ICC using only the firms in the Dow Jones

Industrial Average. The third implied risk premium (IRP dj ) is then obtained by subtracting the

one-month T-bill yield from the aggregate ICC based on Dow Jones companies.

[INSERT TABLE VII HERE]

Table VII provides the univariate regression results of using these three alternative measures of

IRP. The results show that all three measures of implied risk premium positively predict future

market returns at all forecasting horizons, and they all display statistical significance at some

forecasting horizons. For example, IRP equ is statistically significant at the 1-month, 4-year, and

5-year horizons. Moreover, all three measures have highly significant average slopes, with p-values

being 0.052, 0.043, and 0.030 for IRP equ, IRP yield, and IRP dj, respectively. At the 5-year

horizon, IRP equ explains 22.7% of future market returns, IRP yield explains 29.0% of future

market returns, and IRP dj explains 26.6% of future market returns.

Alternative Model Specifications As another robustness check, we have also estimated IRP

using free cash flow models with finite horizons of T = 10 and T = 20 (recall our main approach

uses T = 15 in equation (6)). While the horizons affect the average risk premium (the mean of

IRP is 5.63% for T = 10 and 7.62% for T = 20), the regression results are unaffected, both in

univariate and in multivariate regressions. For example, using data from 1981.01 to 2010.12, the

average slope coefficient across all horizons in the univariate regression of excess market returns

on IRP is 2.035 for T = 10 and 1.743 for T = 20, respectively, and they are also statistically

significant (p-value 0.025 if T = 10, and p-value 0.047 if T = 20). We have also estimated implied
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risk premium using the modified PEG approach of Easton (2004) and obtain results comparable to

our main procedure. For example, using data from 1981.01 to 2010.12, the mean of IRP is 6.90%.

The average slope coefficient across all horizons in the univariate regression is 2.067, and it is highly

significant (p-value 0.020).

Analyst Forecast Biases Our calculation of IRP uses analysts’ forecast of future earnings,

which might be biased. Notably, several studies find that analyst forecasts tend to be optimistic.

We now show that the predictive power of IRP is not driven by analyst forecast optimism. Our

main finding is that IRP positively predicts future market returns. Optimistic analyst forecasts,

all else equal, should lead to higher estimates of IRP ; therefore, if our result is driven by analyst

optimism, then analyst optimism bias should positively predict future market returns.

To investigate the predictive power of analyst optimism bias, we compute the following measure

for each firm, each month: the ratio of the difference between the consensus 1-year-ahead analyst

forecast of earnings per share (EPS) and the corresponding actual EPS to the 1-year-ahead forecast.

Note that this is just the negative of the forecast error. Forecast optimism bias will lead to negative

forecast errors and our optimism measure is just the negative of the forecast error. Therefore,

for our IRP results to be explained by analyst optimism, a high value of our optimism measure

should predict high returns and weaken/eliminate the predictive power of IRP. We value-weight the

optimism biases across firms in each month to compute the aggregate analyst optimism. We then

conduct univariate tests based on equation (7) to examine whether the aggregate analyst forecast

optimism positively predicts future excess market returns.

[INSERT TABLE VIII HERE]

Panel A of Table VIII shows that this is not the case; on the contrary, analyst forecast optimism

negatively predicts future market returns in horizons up to 24 months, although the results are not

significant. This result can be understood as follows. If analysts provide too optimistic an estimate

for the one-year-ahead earnings, and if the current market price does not fully account for this bias,

then when the actual one-year-ahead earnings realizes, the market will be disappointed and the

one-year-ahead market price will drop to reflect this market adjustment. In other words, a higher

one-year-head analyst forecast optimism will forecast a negative market returns at the 12-month

horizon. Therefore, if anything, analyst optimism should weaken our findings with respect to IRP.

To further explore whether the predictive power of IRP is robust to analyst forecast optimism,

we estimate a bivariate regression involving the IRP and the aggregate analyst forecast optimism.
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The results are provided in Panel B of Table VIII. We find that IRP continues to positively forecast

future excess market returns at all horizons, and the statistical significance is also comparable to

that provided in the univariate regression of Table III. This provides further evidence that our

results are not driven by analyst optimism.

IV Out-of-Sample Return Predictions

Recently, evaluating the out-of-sample performance of return prediction variables has received much

attention in the literature (see Spiegel (2008) andWelch and Goyal (2008) for more extensive surveys

of the vast literature on return predictability). Most notably, Welch and Goyal (2008) show that a

long list of predictors used in the literature is unable to deliver consistently superior out-of-sample

forecasts of the U.S. equity premium relative to a simple forecast based on the historical average.

In this section, we evaluate the performance of IRP in out-of-sample forecast tests.

A. Econometric Specification

We start with the following predictive regression model:

rt+1 = αi + βixi,t + εi,t+1, (10)

where rt+1 is the continuously compounded excess return per month defined as the difference be-

tween the monthly continuously compounded return on the value-weighted market return including

dividends from WRDS and the monthly continuously compounded one-month T-bill rate, xi,t is the

ith monthly predictive variable corresponding to our IRP measure, FY/P, E/P, D/P, B/M, Term,

Default, and εi,t+1 is the error term. Following Welch and Goyal (2008), we use a recursive method

to estimate the model and generate out-of-sample forecasts of the market returns. Specifically, we

divide the entire sample T into two periods: an estimation period composed of the first m obser-

vations and an out-of-sample forecast period composed of the remaining q = T −m observations.

The initial out-of-sample forecast based on the predictive variable xi,t is generated by

r̂i,m+1 = α̂i,m + β̂i,mxi,m,

where α̂i,m and β̂i,m are obtained using ordinary least squares (OLS) by estimating (10) using

observations from 1 to m. The second out-of-sample forecast is generated according to

r̂i,m+2 = α̂i,m+1 + β̂i,m+1xi,m+1,
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where α̂i,m+1 and β̂i,m+1 are obtained by estimating (10) using observations from 1 to m + 1. So

when generating the next-period forecast, the forecaster uses all information up to the current

period, which mimics the real-time forecasting situation. Proceeding in this manner through the

end of the forecast period, for each predictive variable xi, we can obtain a time series of predicted

market returns {r̂i,t+1}T−1
t=m.13

Following Campbell and Thompson (2008), Welch and Goyal (2008), and Rapach, Strauss, and

Zhou (2010), we use the historical average excess market returns rt+1 =
∑t

j=1 rj as a benchmark

forecasting model. If the predictive variable xi contains useful information in forecasting future

market returns, then r̂i,t+1 should be closer to the true market returns than rt+1. We now introduce

the forecast evaluation method.

B. Forecast Evaluation

Following the literature, we compare the performance of alternative predictive variables using the

out-of-sample R2 statistics, R2
os. This is akin to the familiar in-sample R2, and is defined as

R2
os = 1−

∑q
k=1 (rm+k − r̂i,m+k)

2∑q
k=1 (rm+k − rm+k)

2 .

The R2
os statistic measures the reduction in mean squared prediction error (MSPE) for the predictive

regression (10) using a particular forecasting variable relative to the historical average forecast. For

different predictive variables xi, we can obtain different out-of-sample forecast r̂i,m+k and thus

different R2
os. If a forecast variable beats the historical average forecast, then R2

os > 0. A predictive

variable that has a higher R2
os performs better in the out-of-sample forecasting test.

We formally test whether a predictive regression model using xi has a statistically lower MSPE

than the historical average model. This is equivalent to testing the null of R2
os ≤ 0 against the

alternative of R2
os > 0. The most popular method is the Diebold and Mariano (1995) and West

(1996) statistic, which has a standard normal distribution. However, as pointed out by Clark

and McCracken (2001) and McCracken (2007), the Diebold and Mariano (1995) and West (1996)

statistic has a nonstandard normal distribution when comparing forecasts from nested models.

This is true in our case: setting βi = 0 in (10) reduces our predictive regression using xi to

the benchmark model using the historical average. Therefore, we use the adjusted version of the

13Alternatively, we can use a rolling method to estimate (10) and obtain the out-of-sample forecast. Specifically,
we use observations from 1 to m to estimate the model and generate forecast at time m + 1, and use observations
from 2 to m+1 to estimate the model, and generate forecast at time m+2, and proceed in this manner. This rolling
method is less sensitive to structural breaks in the data. Using the rolling method yields similar results.
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Diebold and Mariano (1995) and West (1996) statistic in Clark and West (2007), which they call

the adjusted-MSPE statistic. The adjusted-MSPE statistic is obtained by first defining

ft+1 = (rt+1 − rt+1)
2 −

[(
(rt+1 − r̂i,t+1)

2
)
−
(
(rt+1 − r̂i,t+1)

2
)]

.

The adjusted-MSPE ft+1 is then regressed on a constant and the t-statistic corresponding to

the constant estimated. The p-value of R2
os is obtained from the one-sided t-statistic (upper-tail)

based on the standard normal distribution. Clark and West (2007) demonstrate that, in Monte

Carlo simulations, this adjusted-MSPE statistic performs reasonably well in terms of size and power

when comparing forecasts from nested linear predictive models.

To explicitly account for the risk borne by an investor over the out-of-sample period, we also

calculate the realized utility gains for a mean-variance investor following existing studies (e.g.,

Marquering and Verbeek (2004), Campbell and Thompson (2008), Welch and Goyal (2008), Wachter

and Warusawitharana (2009), and Rapach, Strauss, and Zhou (2010)). More specifically, based on

the forecasts of expected return and expected variance of stocks, a mean-variance investor with

relative risk aversion parameter γ makes her optimal portfolio decision by allocating her portfolio

monthly between stocks and risk-free asset. If she forecasts the expected return using historical

average, then her allocation to stocks in period t+ 1 is:

w1,t =

(
1

γ

)(
rt+1

σ̂2
t+1

)
, (11)

and if she forecasts the expected return using a particular predictive variable, then her allocation

to stocks is:

w2,t =

(
1

γ

)(
r̂i,t+1

σ̂2
t+1

)
. (12)

In both portfolio decisions, σ̂2
t+1 is the forecast for the variance of stock returns. Similar to Campbell

and Thompson (2008) and Rapach, Strauss, and Zhou (2010), we assume that the investor obtains

σ̂2
t+1 by using a ten-year rolling window of monthly returns.

If an investor uses historical average to make her portfolio decision, her average utility level over

the out-of-sample period is (the utility level can also be viewed as the certainty equivalent return

for the mean-variance investor):

U1 = µ1 −
1

2
γσ̂2

1, (13)

where µ1 and σ̂2
1 correspond to the sample mean and variance of the return on the portfolio formed

based on (11) over the out-of-sample period.
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If an investor uses a predictive variable to make her portfolio decision, then her average utility

level over the out-of-sample period is:

U2 = µ2 −
1

2
γσ̂2

2, (14)

where µ2 and σ̂2
2 correspond to the sample mean and variance for the return on the portfolio formed

based on (12) over the out-of-sample period.14

We measure the utility gain of using a particular predictive variable as the difference between

(14) and (13). We multiply this difference by 1200 to express it in average annualized percentage

return. This utility gain can be viewed as the portfolio management fee that an investor with

mean-variance preferences would be willing to pay to access a particular forecasting variable. We

report the results based on γ = 3 .

In order to explore the information content of IRP relative to other forecasting variables, we also

follow Rapach, Strauss, and Zhou (2010) to conduct a forecasting encompassing test due to Harvey,

Leybourne, and Newbold (1998). The null hypothesis is that the model i forecast encompasses the

model j forecast against the one-sided alternative that the model i forecast does not encompass the

model j forecast. Define gt+1 = (ε̂i,t+1 − ε̂j,t+1) ε̂i,t+1, where ε̂i,t+1 (ε̂j,t+1) is the forecasting error

based on predictive variable i (j), i.e, ε̂i,t+1 = rt+1 − r̂i,t+1, and ε̂j,t+1 = rt+1 − r̂j,t+1. The Harvey,

Leybourne, and Newbold (1998)’s test can be conducted as follows:

HLN = q/ (q − 1)
[
V̂ (g)−1/2

]
g,

where g = 1/q
q∑

k=1

gt+k, and V̂ (g) =
(
1/q2

) q∑
k=1

(gt+k − g)2. The statistical significance of the test

statistic is assessed according to the tq−1 distribution.

C. Out-of-sample Forecasting Results

Existing studies of the out-of-sample forecasting performance of predictive variables are mainly

conducted at lower frequencies, namely, at annual and quarterly frequencies. Because we construct

IRP at the monthly frequency, we evaluate the performance of these variables at a relatively high

frequency. In the out-of-sample forecasting scenario, how to choose the estimation and forecast

periods is ultimately an ad-hoc choice, but the criteria are clear: it is important to have enough

observations in the evaluation period to obtain reliable estimates of the predictive model, and it is

14Following Campbell and Thompson (2008), we constrain the portfolio weight on stocks to lie between 0% and
150% (inclusive) each month, although the results for IRP are also robust to the case where no constraint is imposed.
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also important to have a long-enough period for the model to be evaluated. Therefore, we examine

two specifications with two forecast periods: in the first case, the forecast period is from 1998.01

to 2010.12, and in the second case, the forecast period is from 2003.01 to 2010.12. The reason to

choose the first forecast period is that existing studies such as Welch and Goyal (2008) and Rapach,

Strauss, and Zhou (2010) have shown that many commonly used forecasting variables perform

poorly starting in the late 1990s. In terms of the second forecasting period, we are interested in

finding how various predictive variables performed during the recent housing boom and financial

crisis period. Because the payout yield (P/Y ) is available only up to 2008.12, we do not include

this variable in our out-of-sample discussions.15

As argued in Campbell and Shiller (1988, 1998), aggregate corporate earnings display short-

run cyclical noise, resulting in a short-run cyclical noise in IRP. When we conduct the in-sample

analysis, this problem is less severe because we can forecast excess returns up to 60 months, and

we do observe that the forecasting power of IRP increases with forecasting horizons, as reflected

by the increasing adjusted R2. However, this problem is particularly severe when we conduct the

one-month-ahead out-of-sample forecast. Campbell and Shiller (1988, 1998) propose using the ratio

of a 10-year moving average of earnings-to-prices to mitigate the noise due to short-run earnings

fluctuations. Similar to Campbell and Shiller (1988, 1998), we propose a 3-year moving average

of IRP as our out-of-sample forecasting variable. Similarly, we also do a 3-year moving average of

other valuation ratios including FY/P, E/P, D/P, and B/M.

[INSERT FIGURE 3 HERE]

Before presenting the test statistics R2
os, we first plot the differences between cumulative squared

prediction error for the historical average forecast and the cumulative squared prediction error for

the forecasting models using different predictive variables in Figure 3 for the forecast period of

2003.01-2010.12. This figure provides a visual representation of how each model performs over

the forecasting period. If a curve lies above the horizon line, then the forecasting model using a

particular predictive variable outperforms the historical average model. As pointed out by Welch

and Goyal (2008), the units on these plots are not intuitive, what matters is the slope of the curves:

a positive slope indicates that a particular forecasting model consistently outperforms the historical

average model, while a negative slope indicates the opposite. If a forecasting model consistently

beats the historical average model, then the corresponding curve will have a slope that is always

15In untabulated results, we examine the out-of-sample performance of the payout yield for the two forecast periods
of 1998.01 to 2008.12 and 2003.01 to 2008.12, and we find that it cannot outperform the historical average model.
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positive; the closer a forecasting model is to this ideal, the better the performance of this model.

One notable thing from Figure 3 is that the performance of different forecasting variables were

the most volatile during the recent financial crisis. Among all forecasting variables, IRP seems to

perform the best: it stays above zero for most periods and its slope is closest to being positive.

[INSERT TABLE IX HERE]

Table IX reports the R2
os statistics for each of the forecasting models using alternative predictive

variables for two forecasting periods: 1998.01-2010.12 and 2003.01-2010.12. In both forecasting

periods, IRP produces positive R2
os. In the second forecasting period, the improvement of the

forecast based on IRP relative to the historical average model is 2.9%. Campbell and Thompson

(2008) argue that even very small positive R2
os values, such as 0.5% for monthly data, can signal

an economically meaningful degree of return predictability for a mean-variance investor, which

provides a simple assessment of a variable’s forecasting power in practice. The high R2
os of IRP

indicates that its out-of-sample forecasting performance is quite impressive. On the other hand,

the forecasting models using other predictive variables all yield negative R2
os, suggesting that these

variables cannot beat the simple historical average forecast model. This is consistent with the

findings in Welch and Goyal (2008) that valuation ratios and business cycle variables have poor

out-of-sample forecasting performances. In contrast, IRP consistently beat the historical average

in the two forecasting periods we examine.

As discussed in Subsection IV.B, when R2
os is greater than zero, statistical significance can

be assessed with the adjusted-MSPE measure in Clark and West (2007). Since IRP is the only

variable that produces a positive R2
os, we obtain the p-value of its R2

os based on the adjusted-MSPE

measure of testing R2
os ≤ 0 against the alternative of R2

os > 0. We see that IRP yields statistically

significant R2
os in both forecasting periods. These results are consistent with what we observe in

Figure 3.

Table IX also reports the utility gains using a specific forecasting model versus using the his-

torical average. IRP produces positive utility gains in both forecasting periods, indicating that

mean-variance investors should be willing to pay for access to the information in IRP to form their

optimal portfolios; the utility gain based on IRP is more than 7% a year. Among other forecasting

variables, all variables produce some positive utility gains in the first forecast period; in the sec-

ond forecast period, only Term and Default produce positive utility gains. Overall, the economic

magnitude of the utility gains for other variables is much smaller than IRP.
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[INSERT TABLE X HERE]

Rapach, Strauss, and Zhou (2010) show that, although individual economic variables may fail to

deliver consistent out-of-sample forecasting gains relative to the historical average, combining in-

dividual forecasts could deliver significant out-of-sample gains relative to the historical average.

Therefore, the more important question is whether IRP brings new information that is not con-

tained in the existing variables. The Harvey, Leybourne, and Newbold (1998) test results in Table X

show that IRP does indeed contain distinct information from existing forecasting variables. Panels

A and B show that for IRP, in both forecasting periods, we can strongly reject the null hypothesis

that IRP is encompassed by another valuation ratio at the 1% (or 5%) level; in contrast, we cannot

reject the null hypothesis that IRP encompasses other valuation ratios at conventional levels. This

indicates that IRP contains more information than other valuation ratios. For the business cycle

variables, we still fail to reject the null that IRP encompasses Term and Default, while we strongly

reject the null that Term encompasses IRP in both forecasting periods at the 5% level, and we

marginally reject the null that Default encompasses IRP.

To summarize, our analysis shows that the out-of-sample forecast of the smoothed IRP for

one-month ahead excess market return is quite impressive. More important, the results show that

IRP contains important and distinct information not contained in other commonly used forecasting

variables.

V Conclusion

In this paper, we find that the aggregate ICC is an excellent predictor of aggregate market returns

both in-sample and out-of-sample, thus providing evidence that the aggregate ICC is an excellent

proxy of time-varying expected returns. This significantly extends the findings of Pastor, Sinha, and

Swaminathan (2008) who show theoretically that the aggregate ICC is a good proxy of time-varying

expected returns and find that the aggregate ICC is able to detect the positive inter-temporal

relationship between volatility and expected returns.

We estimate the aggregate ICC for the individual stocks in the S&P 500 index and use a

value-weighted average of individual ICC as an estimate of market-wide expected returns. The

aggregate implied risk premium is then obtained by subtracting the one-month T-bill yield from the

aggregate ICC. This implied risk premium has intuitive properties in its relationship with measures

of aggregate investment and consumption, strongly predicts future (excess) market returns, and
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has the best out-of-sample forecasting power among various predictor variables.

These results have implications for several different strands of the academic literature. Contin-

uing on the work of Pastor, Sinha, and Swaminathan (2008), our work establishes the usefulness of

ICC in aggregate time-series context especially with respect to predicting future returns, while most

current work involving ICC focuses on cross-sectional relationships. Our results also significantly

extend the predictability literature. While most current work has examined predictability using

traditional valuation ratios such as book-to-market, dividend-to-price, and earnings-to-price ratios,

we show that a measure of expected return estimated from a theoretically justifiable discounted

cash flow model has superior forecasting power over such traditional measures. Finally, our work

is also relevant to the behavioral finance literature since it shows that ICC is able to predict future

market returns even in the presence of several macro-variables, which should capture business cycle

information. Thus, the ICC may also be a good proxy of aggregate market mispricing.
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Appendices

Appendix A

In this appendix, we formally test the stationarity of the various variables by conducting Phillips-
Perron unit root tests (see Phillips (1987) and Perron (1988)). We run two types of Phillips-Perron
unit root tests: regressions with an intercept but without a time-trend, and regressions with both
an intercept and a time-trend. The two types of regressions are given below:

Without time trend: ∆Yt = a+ (c− 1)Yt−1 + ut, (15)

With time trend: ∆Yt = a+ bt+ (c− 1)Yt−1 + ut.

The null hypothesis in both regressions is that the variable Yt has a unit root; that is, c = 1. We
report the test statistic based on the regression coefficient, (c−1), which allows for serial correlation
up to twelve lags in the regression residuals.

Table BI summarizes the results of the Phillips-Perron unit root tests. In Panels A and B,
we strongly reject the null hypothesis of a unit root for IRP, but not for the traditional valuation
ratios. This result is consistent with the autocorrelations reported in Panel A of Table I , i.e., it
takes a shorter time for IRP to return to its mean than FY/P, E/P, D/P, B/M, and P/Y. For
other forecasting variables in Panel B of Table V, we reject the null hypothesis of unit root for all
variables except lty. Panel C shows that we cannot reject the null hypothesis that cay, and i/k
contain a unit root.

[INSERT TABLE A.I HERE]

Appendix B

For each regression, we conduct a Monte Carlo simulation using a VAR procedure to assess the
statistical significance of relevant statistics. We illustrate our procedure for the bivariate regression
involving IRP and FY/P. The simulation method is conducted in the same way for other regressions.

Define Zt = (rt, IRP t, FY/Pt)
′, where Zt is a 3 × 1 column vector. We first fit a first-order

VAR to Zt using the following specification:

Zt+1 = A0 +A1Zt + ut+1, (16)

where A0 is a 3× 1 vector of intercepts and A1 is a 3× 3 matrix of VAR coefficients, and ut+1 is a
3× 1 vector of VAR residuals. The estimated VAR is used as the data generating process (DGP)
for the simulation.

The point estimates in (16) are used to generate artificial data for the Monte Carlo simulations.
We impose the null hypothesis of no predictability on rt in the VAR. This is done by setting the slope
coefficients on the explanatory variables to zero, and by setting the intercept in the equation of rt
to be its unconditional mean. We use the fitted VAR under the null hypothesis of no predictability
to generate T observations of the state variable vector, (rt, IRP t, FY /P t). The initial observation
for this vector is drawn from a multivariate normal distribution with mean equal to the historical
mean and variance-covariance matrix equal to the historical estimated variance-covariance matrix
of the vector of state variables. Once the VAR is initiated, shocks for subsequent observations are
generated by randomizing (sampling without replacement) among the actual VAR residuals. The
VAR residuals for rt are scaled to match its historical standard errors. These artificial data are
then used to run bivariate regressions and generate regression statistics. This process is repeated
5, 000 times to obtain empirical distributions of regression statistics. The Matlab numerical recipe
mvnrnd is used to generate standard normal random variables.
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Table I
Summary Statistics of Forecasting Variables

This table provides summary statistics for the variables described in Section II. Panel A provides
summary statistics for the implied risk premium (IRP), the forecasted earnings-to-price ratio (FY/P), the
trailing earnings-to-price ratio (E/P), the dividend-to-price ratio (D/P), the book-to-market ratio (B/M ),
the term spread (Term), and the default spread (Default), using monthly data from 1981.01 to 2010.12.
Panel B provides summary statistics for IRP, the payout yield (P/Y ), long-term yield (lty), net equity
expansion (ntis), inflation (infl), stock variance (svar), lagged excess market returns (vwretd), and two
sentiment measures (senti1 and senti2 ), using monthly data from 1981.01 to 2008.12. Panel C provides
summary statistics for IRP, consumption-to-wealth ratio (cay), and investment-to-capital ratio (i/k), using
quarterly data from 1981.Q1 to 2008.Q4. Panel D provides the number of firms in the S&P 500 index that
is used to calculate IRP, FY/P, E/P, D/P, and B/M. All variables except FY/P, E/P, D/P, B/M, P/Y,
senti1, and senti2 are reported in annualized percentages. The implied risk premium (IRP) is our new
forecasting variable calculated as the difference between the aggregate implied cost of capital and one-month
T-bill yield. The detailed description for these variables are provided in Section II.

Panel A: Univariate Statistics for Forecasting Variables (1981.01-2010.12)

Autocorrelation at Lag

Variable Mean Std. Dev. 1 12 24 36 48 60

IRP 6.74 2.58 0.95 0.55 0.04 -0.21 -0.19 -0.06

FY/P 0.08 0.03 0.98 0.74 0.57 0.49 0.36 0.24

E/P 0.06 0.02 0.98 0.71 0.47 0.44 0.34 0.21

D/P 0.02 0.01 0.99 0.81 0.66 0.60 0.47 0.36

B/M 0.42 0.17 0.99 0.82 0.67 0.58 0.45 0.33

Term 3.22 1.46 0.91 0.34 -0.13 -0.39 -0.38 -0.09

Default 1.10 0.49 0.96 0.45 0.25 0.22 0.14 0.12
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Panel B: Univariate Statistics for Forecasting Variables (1981.01-2008.12)

Autocorrelation at Lag

Variable Mean Std. Dev. 1 12 24 36 48 60

IRP 6.38 2.27 0.94 0.47 0.02 -0.16 -0.18 -0.12

P/Y 0.11 0.03 0.97 0.69 0.57 0.40 0.31 0.24

lty 7.34 0.74 0.98 0.77 0.64 0.57 0.41 0.30

ntis 8.38 7.34 0.97 0.43 0.18 0.08 0.01 -0.06

infl 3.19 1.15 0.51 0.21 0.26 0.29 0.19 0.17

svar 3.17 1.99 0.43 0.02 0.00 0.00 -0.03 0.00

vwretd 5.11 15.47 0.11 -0.03 0.07 -0.03 0.00 -0.09

senti1 0.32 0.68 0.97 0.58 0.24 0.18 0.09 -0.07

senti2 0.37 0.65 0.98 0.50 0.21 0.16 0.05 -0.12

Panel C: Univariate Statistics for Forecasting Variables (1981.Q1-2008.Q4)

Autocorrelation at Lag

Variable Mean Std. Dev. 1 12 24 36 48 60

IRP 6.42 2.21 0.85 -0.15 -0.09 0.19 -0.11 -0.15

cay 2.33 8.17 0.93 0.46 0.18 -0.27 -0.39 -0.34

i/k 14.48 1.34 0.97 0.14 -0.44 -0.27 0.02 0.11

Panel D: Number of Firms for IRP

Year 1981 1982 1983 1984 1985 1986 1987 1988

Obs. 301 294 303 317 323 316 317 323

Year 1989 1990 1991 1992 1993 1994 1995 1996

Obs. 319 317 315 318 325 331 336 343

Year 1997 1998 1999 2000 2001 2002 2003 2004

Obs. 356 362 372 391 388 392 404 421

Year 2005 2006 2007 2008 2009 2010

Obs. 430 435 430 419 405 443
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Table II
Correlation Among Forecasting Variables

This table provides the correlation among the variables described in Section II. Panel A provides the
correlation among the implied risk premium (IRP), the forecasted earnings-to-price ratio (FY/P), the trailing
earnings-to-price ratio (E/P), the dividend-to-price ratio (D/P), the book-to-market ratio (B/M ), the term
spread (Term), and the default spread (Default), using monthly data from 1981.01 to 2010.12. Panel B
provides the correlation among IRP, the payout yield (P/Y ), long-term yield (lty), net equity expansion
(ntis), inflation (infl), stock variance (svar), lagged excess market returns (vwretd), and two sentiment
measures (senti1 and senti2 ), using monthly data from 1981.01 to 2008.12. Panel C provides the correlation
among IRP, consumption-to-wealth ratio (cay), and investment-to-capital ratio (i/k), using quarterly data
from 1981.Q1 to 2008.Q4.

Panel A: Correlation Among Forecasting Variables (1981.01-2010.12)

Variable IRP FY/P E/P D/P B/M Term Default

IRP 1.00 0.31 0.33 0.37 0.39 0.82 0.48

FY/P 1.00 0.96 0.95 0.97 -0.02 0.68

E/P 1.00 0.94 0.96 0.00 0.76

D/P 1.00 0.98 0.08 0.65

B/M 1.00 0.09 0.71

Term 1.00 0.24

Default 1.00

Panel B: Correlation Among Forecasting Variables (1981.01-2008.12)

Variable IRP P/Y lty ntis infl svar vwretd senti1 senti2

IRP 1.00 0.49 0.21 0.09 -0.13 0.17 -0.05 0.02 0.02

P/Y 1.00 0.59 -0.31 0.09 0.00 0.04 0.05 0.03

lty 1.00 0.04 0.29 -0.13 -0.02 0.55 0.50

ntis 1.00 0.06 -0.19 0.03 -0.10 -0.09

infl 1.00 -0.28 -0.05 0.13 0.08

svar 1.00 -0.42 0.00 0.00

vwretd 1.00 -0.11 -0.12

senti1 1.00 0.96

senti2 1.00

Panel C: Correlation Among Forecasting Variables (1981.01-2008.04)

Variable IRP cay i/k

IRP 1.00 0.18 -0.68

cay 0.18 1.00 -0.22

i/k -0.68 -0.22 1.00
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Table III
Univariate Regressions for IRP and Valuation Ratios

This table summarizes the univariate forecasting regression results for equation (7). The dependent variable
in these regressions is continuously compounded excess return per month defined as the difference between
the monthly continuously compounded return on the value-weighted market return including dividends from
WRDS and the monthly continuously compounded one-month T-bill rate. The independent variables are
the implied risk premium (IRP), the forecasted earnings-to-price ratio (FY/P), the trailing earnings-to-price
ratio (E/P), the dividend-to-price ratio (D/P), the book-to-market ratio (B/M ) and the payout yield (P/Y )
in Panels A-F, respectively. The data span from 1981.01 to 2010.12 in Panels A-E, and span from 1981.01
to 2008.12 in Panel F. In Panel F, P/Y is in logarithm form. In all regressions, we are predicting monthly
excess market returns in percentages. In Panels A-E, we obtain the corresponding monthly values for IRP,
FY/P, E/P, D/P, and B/M measured in percentages. The rescaling of data does not affect the significance
of slopes. In Panel F, Log(P/Y ) is the logarithm of monthly P/Y not in percentages. Horizon is in months.
In forecasting horizons beyond one-month, the regressions use overlapping observations. b is the slope
coefficient from the OLS regressions. avg. is the average slope coefficient. Z(b) is the asymptotic Z-statistics
computed using the GMM standard errors with Newey-West correction. These standard errors correct for
the autocorrelation in regressions due to overlapping observations and for generalized heteroskedasticity. The
adj.R2 is obtained from the OLS regression. The p-values of Z-statistics and the average slope coefficient
are obtained by comparing the test statistics with their empirical distribution generated under the null of
no predictability from 5,000 trials of a Monte Carlo simulation. The artificial data for the simulation are
generated under the null using the VAR approach described in Appendix B.

Panel A: IRP Panel B: FY/P Panel C: E/P

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 2.083 1.662 0.078 0.009 0.331 0.288 0.566 0.000 0.912 0.639 0.466 0.001

12 1.827 2.096 0.105 0.065 1.214 1.180 0.335 0.033 1.449 1.252 0.358 0.036

24 1.955 2.068 0.143 0.153 1.274 1.777 0.242 0.091 1.334 1.619 0.319 0.075

36 2.098 2.931 0.078 0.272 1.075 1.688 0.286 0.106 1.084 1.429 0.402 0.080

48 1.824 4.026 0.041 0.319 1.046 2.208 0.234 0.159 1.131 1.993 0.327 0.139

60 1.467 3.500 0.080 0.293 1.015 2.799 0.196 0.219 1.090 2.526 0.289 0.188

avg. b 1.876 0.025 0.993 0.370 1.167 0.446

Panel D: D/P Panel E: B/M Panel F: Log(P/Y )

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 3.106 0.995 0.353 0.003 0.134 0.734 0.467 0.002 1.112 1.157 0.138 0.006

12 4.239 1.649 0.277 0.058 0.203 1.362 0.369 0.039 1.362 2.263 0.063 0.097

24 3.850 1.858 0.277 0.119 0.186 1.594 0.356 0.081 1.300 2.404 0.078 0.235

36 3.207 1.961 0.301 0.135 0.158 1.584 0.402 0.096 0.913 2.648 0.080 0.180

48 3.251 2.825 0.205 0.218 0.156 2.141 0.343 0.149 0.703 3.162 0.065 0.161

60 3.081 3.617 0.163 0.283 0.151 2.732 0.283 0.203 0.570 3.252 0.080 0.152

avg. b 3.456 0.328 0.165 0.480 0.993 0.096
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Table IV
Bivariate Regressions Involving IRP and Valuation Ratios

This table summarizes the bivariate forecasting regression results involving the implied risk premium (IRP)
and forecasted earnings-to-price ratio (FY/P) in Panel A, the implied risk premium (IRP) and trailing
earnings-to-price ratio (E/P) in Panel B, the implied risk premium (IRP) and dividend-to-price ratio (D/P)
in Panel C, the implied risk premium (IRP) and book-to-market ratio (B/M ) in Panel D, and the implied
risk premium (IRP) and the payout yield (P/Y ) in Panel E. The data span from 1981.01 to 2010.12 in Panels
A-D, and span from 1981.01 to 2008.12 in Panel E. In Panel E, both IRP and P/Y are in logarithm forms.
The dependent variable in these regressions is continuously compounded excess return per month defined as
the difference between the monthly continuously compounded return on the value-weighted market return
including dividends from WRDS and the monthly continuously compounded one-month T-bill rate. In all
regressions, we are predicting monthly excess market returns in percentages. In Panels A-E, we obtain the
corresponding monthly values for IRP, FY/P, E/P, D/P, and B/M measured in percentages. The rescaling
of data does not affect the significance of slopes. In Panel E, Log(P/Y ) is the logarithm of monthly P/Y
not in percentages. Horizon is in months. In forecasting horizons beyond one-month, the regressions use
overlapping observations. b is the slope coefficient from the OLS regressions. avg. is the average slope
coefficient. Z(b) is the asymptotic Z-statistics computed using the GMM standard errors with Newey-
West correction. These standard errors correct for the autocorrelation in regressions due to overlapping
observations and for generalized heteroskedasticity. The adj.R2 is obtained from the OLS regression. The
p-values of Z-statistics and the average slope coefficient are obtained by comparing the test statistics with
their empirical distribution generated under the null of no predictability from 5,000 trials of a Monte Carlo
simulation. The artificial data for the simulation are generated under the null using the VAR approach
described in Appendix B.

Panel A: Bivariate Regression Involving IRP and FY/P

IRP FY/P

Horizon b Z(b) pval c Z(c) pval adj.R2

1 2.189 1.745 0.068 -0.339 -0.302 0.689 0.004

12 1.570 1.681 0.173 0.734 0.749 0.374 0.070

24 1.623 1.979 0.155 0.778 1.714 0.194 0.178

36 1.869 2.940 0.082 0.527 1.407 0.274 0.289

48 1.565 4.013 0.043 0.598 2.121 0.194 0.361

60 1.168 2.885 0.120 0.690 2.744 0.153 0.378

avg. 1.664 0.087 0.498 0.457

Panel B: Bivariate Regression Involving IRP and E/P

IRP E/P

Horizon b Z(b) pval c Z(c) pval adj.R2

1 2.039 1.646 0.103 0.149 0.108 0.551 0.004

12 1.536 1.648 0.199 0.867 0.798 0.377 0.071

24 1.687 2.032 0.161 0.783 1.484 0.257 0.171

36 1.932 3.032 0.073 0.496 1.077 0.364 0.282

48 1.604 4.058 0.038 0.650 1.838 0.253 0.356

60 1.217 2.896 0.125 0.735 2.322 0.209 0.366

avg. 1.669 0.063 0.613 0.458
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Panel C: Bivariate Regression Involving IRP and D/P

IRP D/P

Horizon b Z(b) pval c Z(c) pval adj.R2

1 1.902 1.449 0.134 1.277 0.397 0.518 0.004

12 1.348 1.338 0.266 2.878 1.051 0.380 0.082

24 1.492 1.892 0.197 2.430 1.668 0.268 0.187

36 1.794 2.870 0.101 1.480 1.445 0.339 0.290

48 1.441 3.785 0.061 1.896 2.347 0.226 0.375

60 1.042 2.622 0.164 2.136 2.981 0.192 0.400

avg. 1.503 0.104 2.016 0.483

Panel D: Bivariate Regression Involving IRP and B/M

IRP B/M

Horizon b Z(b) pval c Z(c) pval adj.R2

1 2.049 1.585 0.111 0.013 0.072 0.626 0.004

12 1.503 1.579 0.197 0.115 0.762 0.448 0.070

24 1.648 2.062 0.146 0.094 1.174 0.376 0.165

36 1.920 3.081 0.072 0.052 0.816 0.475 0.275

48 1.580 3.842 0.051 0.071 1.360 0.386 0.340

60 1.157 2.501 0.168 0.091 1.816 0.336 0.348

avg. 1.643 0.072 0.073 0.557

Panel E: Bivariate Regression Involving Log(IRP) and Log(P/Y )

Log(IRP) Log(P/Y )

Horizon b Z(b) pval c Z(c) pval adj.R2

1 0.202 0.317 0.435 0.958 0.922 0.206 0.000

12 0.742 1.881 0.124 0.814 1.235 0.208 0.132

24 0.638 2.380 0.084 0.826 1.874 0.124 0.305

36 0.703 3.069 0.051 0.386 2.209 0.106 0.311

48 0.672 3.437 0.045 0.200 1.419 0.243 0.346

60 0.631 2.913 0.084 0.094 0.611 0.421 0.380

avg. 0.598 0.106 0.546 0.261
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Table V
Univariate Regressions for Other Forecasting Variables

This table summarizes the monthly univariate regression results for the term spread (Term) and the default
spread (Default) in Panel A (1981.01 to 2010.12), for the long-term yield (lty), the net equity expansion
(ntis), inflation (infl), stock variance (svar), and lagged excess market return (vwretd) in Panel B (1981.01
to 2008.12), and for the two sentiment measures (senti1 and senti2 ) in Panel C (1981.01 to 2008.12). Panel
D provides the quarterly univariate regression results for the implied risk premium (IRP), the consumption-
to-wealth ratio (cay), and investment-to-capital ratio (i/k) (1981.Q1 to 2008.Q4). The dependent variable in
these regressions is continuously compounded excess return per month (per quarter) defined as the difference
between the monthly (quarterly) continuously compounded return on the value-weighted market return
including dividends from WRDS and the monthly (quarterly) continuously compounded one-month T-bill
rate. In Panels A-C, we are predicting monthly excess returns in percentages. In Panels A-B, we obtain the
corresponding monthly values for Term, Default, lty, ntis, infl, svar, and vwretd measured in percentages. In
Panel C, sentiment measures are monthly values not in percentages. In Panel D, we are predicting quarterly
excess market returns in percentages, and we obtain the corresponding quarterly values for IRP, cay, and
i/k measured in percentages. The rescaling of data does not affect the significance of slopes. Horizon
is in months in Panels A-C and in quarters in Panel D. In forecasting horizons beyond one-month (one-
quarter), the regressions use overlapping observations. b is the slope coefficient from the OLS regressions.
avg. is the average slope coefficient. Z(b) is the asymptotic Z-statistics computed using the GMM standard
errors with Newey-West correction. These standard errors correct for the autocorrelation in regressions due
to overlapping observations and for generalized heteroskedasticity. The adj.R2 is obtained from the OLS
regression. The p-values of Z-statistics and the average slope coefficient are obtained by comparing the test
statistics with their empirical distribution generated under the null of no predictability from 5,000 trials of
a Monte Carlo simulation. The artificial data for the simulation are generated under the null using the VAR
approach described in Appendix B.

Panel A: Univariate Regressions for Business Cycle Variables

Term Default

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 0.640 0.321 0.403 0.000 -4.216 -0.491 0.761 0.001

12 2.529 1.916 0.087 0.043 4.236 0.920 0.327 0.014

24 2.578 2.141 0.076 0.105 2.361 0.698 0.428 0.010

36 2.532 2.717 0.047 0.160 1.969 0.485 0.505 0.008

48 2.055 3.162 0.033 0.156 2.999 0.825 0.434 0.031

60 1.361 1.866 0.142 0.089 3.514 1.129 0.388 0.062

avg. b 1.949 0.070 1.810 0.507
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Panel B: Univariate Regressions for lty, ntis, infl, svar, and vwretd

lty ntis infl

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 0.113 0.092 0.506 0.000 0.089 0.655 0.748 0.002 -1.182 -1.497 0.076 0.007

12 0.620 0.581 0.373 0.009 0.055 0.543 0.657 0.006 -0.505 -1.098 0.183 0.011

24 0.819 1.318 0.220 0.042 0.081 1.241 0.805 0.030 0.051 0.289 0.610 0.000

36 0.605 1.033 0.303 0.034 0.047 1.057 0.749 0.016 0.013 0.083 0.542 0.000

48 0.676 1.319 0.279 0.059 0.044 0.864 0.703 0.020 0.078 0.544 0.680 0.001

60 0.724 1.742 0.240 0.092 0.052 1.149 0.738 0.041 0.202 1.604 0.902 0.012

avg. b 0.593 0.370 0.062 0.729 -0.224 0.174

Panel B (continued)

svar vwretd

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 -1.228 -2.704 0.014 0.024 0.121 1.849 0.028 0.015

12 -0.033 -0.199 0.379 0.000 0.006 0.362 0.265 0.000

24 -0.050 -0.291 0.336 0.001 -0.008 -0.598 0.526 0.002

36 -0.189 -1.238 0.144 0.015 -0.003 -0.544 0.469 0.000

48 -0.130 -0.788 0.206 0.011 -0.006 -1.555 0.669 0.002

60 -0.099 -0.768 0.206 0.009 -0.010 -3.344 0.897 0.009

avg. b -0.288 0.008 0.017 0.057

Panel C: Univariate Regressions for Sentiment Measures

senti1 senti2

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 -0.669 -1.809 0.035 0.010 -0.584 -1.483 0.047 0.007

12 -0.472 -1.493 0.138 0.059 -0.393 -1.253 0.138 0.036

24 -0.270 -1.055 0.244 0.051 -0.211 -0.794 0.232 0.028

36 -0.137 -0.808 0.311 0.020 -0.081 -0.475 0.307 0.006

48 -0.114 -0.819 0.315 0.021 -0.111 -0.876 0.241 0.018

60 -0.073 -0.557 0.383 0.012 -0.066 -0.518 0.321 0.009

avg. b -0.289 0.184 -0.241 0.191

Panel D: Univariate Regressions for Quarterly IRP, cay and i/k

IRP cay i/k

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 4.496 0.919 0.254 0.009 0.694 2.446 0.019 0.027 -1.772 -0.689 0.342 0.005

4 6.182 1.801 0.141 0.069 0.589 2.184 0.102 0.081 -1.653 -0.817 0.365 0.017

8 5.940 1.801 0.166 0.172 0.564 2.289 0.126 0.181 -2.219 -1.096 0.330 0.086

12 5.642 2.235 0.143 0.235 0.621 2.376 0.157 0.293 -2.714 -1.944 0.198 0.202

16 5.215 3.361 0.072 0.313 0.581 2.841 0.140 0.339 -2.731 -3.228 0.096 0.320

avg. b 5.495 0.108 0.610 0.129 -2.218 0.340
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Table VI
Multivariate Regressions Involving IRP and Other Forecasting Variables

This table summarizes the multivariate regression results of IRP with forecasting variables other than valuation
ratios. Panel A reports the bivariate regressions involving IRP and the term spread (Term), and IRP and the
default spread (Default) (1981.01-2010.12), Panel B reports the multivariate regression involving IRP, the long-term
yield (lty), net equity expansion (ntis), inflation (infl), stock variance (svar), and lagged market returns (vwretd)
(1981.01-2008.12), and Panel C reports the bivariate regressions involving IRP with one sentiment measure (senti1 ),
and IRP with the other sentiment measure (senti2 ) (1981.01-2010.12). Panel D reports the quarterly multivariate
regression involving IRP, the consumption-to-wealth ratio (cay), and investment-to-capital ratio (i/k) (1981.Q1 to
2008.Q4). The dependent variable in these regressions is continuously compounded excess return per month (quarter)
defined as the difference between the monthly (quarterly) continuously compounded return on the value-weighted
market return including dividends from WRDS and the monthly (quarterly) continuously compounded one-month
T-bill rate. In Panels A-C, we are predicting monthly excess returns in percentages, and we obtain the corresponding
monthly values for IRP, Term, Default, lty, ntis, infl, svar, and vwretd measured in percentages; in Panel C, sentiment
measures are monthly values not in percentages. In Panel D, we are predicting quarterly excess market returns in
percentages, and we obtain the corresponding quarterly values for IRP, cay, and i/k measured in percentages. The
rescaling of data does not affect the significance of slopes. Horizon is in months in Panels A-C and in quarters in
Panel D. In forecasting horizons beyond one-month (one-quarter), the regressions use overlapping observations. b
is the slope coefficient from the OLS regressions. avg. is the average slope coefficient. Z(b) is the asymptotic Z-
statistics computed using the GMM standard errors with Newey-West correction. These standard errors correct for
the autocorrelation in regressions due to overlapping observations and for generalized heteroskedasticity. The adj.R2

is obtained from the OLS regression. The p-values of Z-statistics and the average slope coefficient are obtained by
comparing the test statistics with their empirical distribution generated under the null of no predictability from 5,000
trials of a Monte Carlo simulation. The artificial data for the simulation are generated under the null using the VAR
approach described in Appendix B.

Panel A: Bivariate Regressions Involving IRP and Business Cycle Variables

IRP Term

Horizon b Z(b) pval c Z(c) pval adj.R2

1 5.454 2.526 0.015 -7.258 -2.109 0.977 0.016

12 1.843 1.006 0.313 -0.033 -0.012 0.476 0.060

24 1.873 1.039 0.336 0.162 0.066 0.450 0.148

36 2.258 1.802 0.207 -0.314 -0.172 0.512 0.268

48 2.234 3.345 0.067 -0.827 -0.909 0.692 0.324

60 2.251 3.787 0.061 -1.650 -2.647 0.939 0.336

avg. 2.652 0.029 -1.653 0.806

IRP Default

Horizon b Z(b) pval c Z(c) pval adj.R2

1 3.211 2.641 0.009 -12.273 -1.423 0.930 0.013

12 1.875 2.046 0.120 -0.469 -0.104 0.546 0.060

24 2.214 2.297 0.115 -2.672 -0.868 0.743 0.158

36 2.367 3.358 0.048 -3.384 -1.053 0.768 0.287

48 1.927 3.819 0.046 -1.286 -0.408 0.625 0.320

60 1.435 2.454 0.166 0.407 0.129 0.509 0.289

avg. 2.172 0.018 -3.280 0.759
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Panel B: Multivariate Regression Involving IRP, lty, ntis, infl, svar, and vwretd

IRP lty ntis

Horizon b Z(b) pval c Z(c) pval d Z(d) pval

1 1.477 0.993 0.274 0.142 0.120 0.436 0.017 0.132 0.491

12 1.879 1.602 0.215 0.331 0.337 0.392 0.009 0.077 0.467

24 1.585 1.503 0.273 0.481 1.186 0.232 0.049 0.763 0.628

36 1.759 2.099 0.196 0.172 0.640 0.350 0.011 0.202 0.494

48 1.640 3.142 0.102 0.247 1.015 0.311 0.012 0.302 0.511

60 1.473 3.391 0.103 0.239 1.277 0.288 0.024 0.908 0.616

avg. 1.636 0.078 0.269 0.395 0.020 0.087

Panel B (continued)

infl svar vwretd

Horizon e Z(e) pval f Z(f) pval g Z(g) pval adj.R2

1 -1.722 -2.357 0.012 -1.403 -2.874 0.006 0.037 0.565 0.235 0.028

12 -0.489 -1.381 0.143 -0.080 -0.575 0.295 -0.001 -0.057 0.315 0.074

24 -0.012 -0.062 0.521 -0.111 -0.874 0.225 -0.008 -0.730 0.457 0.173

36 0.033 0.245 0.620 -0.258 -2.328 0.045 -0.012 -1.476 0.606 0.254

48 0.085 1.025 0.802 -0.190 -1.526 0.123 -0.012 -2.511 0.789 0.346

60 0.207 2.999 0.984 -0.162 -1.626 0.121 -0.013 -3.681 0.912 0.435

avg. -0.316 0.518 -0.367 0.003 -0.001 0.341

Panel C: Bivariate Regressions Involving IRP and Sentiment Measures

IRP senti1

Horizon b Z(b) pval c Z(c) pval adj.R2

1 1.174 0.814 0.289 -0.676 -1.852 0.050 0.007

12 2.113 2.311 0.090 -0.489 -1.970 0.118 0.139

24 1.865 2.005 0.158 -0.283 -1.482 0.225 0.218

36 1.803 2.418 0.141 -0.142 -1.517 0.252 0.256

48 1.699 3.486 0.074 -0.115 -1.481 0.290 0.339

60 1.549 3.612 0.080 -0.080 -0.865 0.423 0.387

avg. 1.700 0.058 -0.298 0.246

IRP senti2

Horizon b Z(b) pval c Z(c) pval adj.R2

1 1.168 0.809 0.290 -0.593 -1.512 0.091 0.003

12 2.117 2.267 0.096 -0.417 -1.645 0.156 0.116

24 1.871 1.915 0.182 -0.233 -1.137 0.284 0.195

36 1.806 2.349 0.150 -0.094 -0.906 0.359 0.242

48 1.706 3.505 0.070 -0.119 -1.521 0.267 0.338

60 1.554 3.602 0.083 -0.081 -0.846 0.396 0.385

avg. 1.704 0.060 -0.256 0.288

Panel D: Multivariate Regression Involving Quarterly IRP, cay and i/k

IRP cay i/k

Horizon b Z(b) pval c Z(c) pval d Z(d) pval adj.R2

1 3.805 0.546 0.388 0.651 2.126 0.059 0.509 0.143 0.412 0.004

4 7.049 1.878 0.144 0.518 1.906 0.187 1.634 0.809 0.251 0.107

8 5.718 3.410 0.037 0.490 2.257 0.182 0.584 0.364 0.375 0.279

12 4.722 5.429 0.008 0.553 2.591 0.177 -0.133 -0.115 0.486 0.450

16 4.374 6.785 0.006 0.513 3.544 0.121 -0.222 -0.260 0.509 0.575

avg. 5.134 0.165 0.545 0.184 0.475 0.408
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Table VII
Predictability Analysis on Alternative Measures of IRP

This table provides the univariate return predictability analysis for three alternative measures of IRP :
IRP equ, IRP yield, and IRP dj, where IRP equ is calculated based on equally-weighting firm-level IRP for
firms in the S&P 500 index; IRP yield calculated based on value-weighting firm-level IRP for firms in the
S&P 500 index, but the firm-level IRP is calculated by subtracting the 30-year government bond yield from
the firm-level ICC; IRP dj is calculated by value-weighting the firm-level IRP for firms in the Dow Jones
Industrial Moving Average. The dependent variable in these regressions is continuously compounded excess
return per month defined as the difference between the monthly continuously compounded return on the
value-weighted market return including dividends from WRDS and the monthly continuously compounded
one-month T-bill rate. All regressions use monthly data from 1981.01 to 2010.12. In all regressions, we are
predicting monthly excess market returns in percentages, so we obtain the corresponding monthly percent-
age values for IRP equal, IRP yield, and IRP dj. The rescaling of data does not affect the significance of
slopes. Horizon is in months. In forecasting horizons beyond one-month, the regressions use overlapping
observations. b is the slope coefficient from the OLS regressions. avg. is the average slope coefficient. Z(b) is
the asymptotic Z-statistics computed using the GMM standard errors with Newey-West correction. These
standard errors correct for the autocorrelation in regressions due to overlapping observations and for gener-
alized heteroskedasticity. The adj.R2 is obtained from the OLS regression. The p-values of Z-statistics and
the average slope coefficient are obtained by comparing the test statistics with their empirical distribution
generated under the null of no predictability from 5,000 trials of a Monte Carlo simulation. The artificial
data for the simulation are generated under the null using the VAR approach described in Appendix B.

IRP equal IRP yield IRP dj

Horizon b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 1.994 1.632 0.083 0.008 3.315 1.529 0.095 0.009 1.290 0.915 0.237 0.004

12 1.569 1.892 0.131 0.045 1.780 1.032 0.298 0.023 1.169 0.890 0.337 0.022

24 1.563 1.844 0.178 0.101 1.828 1.039 0.317 0.046 2.197 2.194 0.120 0.161

36 1.711 2.501 0.117 0.191 2.441 1.704 0.207 0.121 1.930 2.433 0.115 0.209

48 1.526 3.147 0.078 0.229 2.549 2.798 0.096 0.209 1.788 3.245 0.072 0.280

60 1.310 3.175 0.099 0.227 2.479 2.864 0.116 0.290 1.446 2.826 0.122 0.266

avg. b 1.612 0.052 2.399 0.043 1.637 0.030
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Table VIII
Analysis Involving Analyst Forecast Bias

This table provides the univariate return predictability analysis on the aggregate analyst forecast optimism
(AE ) in Panel A, and provides the bivariate return predictability analysis involving IRP and AE in Panel
B. Both regressions use monthly data from 1981.01 to 2010.12. We compute the forecast optimism bias
for each firm and month as the ratio of the difference between the consensus 1-year-ahead analyst forecast
of earnings per share (EPS) and the corresponding actual EPS to the 1-year-ahead forecast. We value-
weight the forecast optimism biases across firms in each month to compute the aggregate analyst forecast
optimism bias. The dependent variable in these regressions is continuously compounded excess return per
month defined as the difference between the monthly continuously compounded return on the value-weighted
market return including dividends from WRDS and the monthly continuously compounded one-month T-bill
rate. For both regressions in Panels A-B, we are predicting monthly excess market returns in percentages,
and we obtain monthly percentage values for both IRP and AE. The rescaling of data does not affect the
significance of slopes. Horizon is in months. In forecasting horizons beyond one-month, the regressions use
overlapping observations. b is the slope coefficient from the OLS regressions. avg. is the average slope
coefficient. Z(b) is the asymptotic Z-statistics computed using the GMM standard errors with Newey-
West correction. These standard errors correct for the autocorrelation in regressions due to overlapping
observations and for generalized heteroskedasticity. The adj.R2 is obtained from the OLS regression. The
p-values of Z-statistics and the average slope coefficient are obtained by comparing the test statistics with
their empirical distribution generated under the null of no predictability from 5,000 trials of a Monte Carlo
simulation. The artificial data for the simulation are generated under the null using the VAR approach
described in Appendix B.

Panel A: Univariate Regression for AE

Horizon b Z(b) pval adj.R2

1 0.095 0.803 0.316 0.001

12 -0.138 -1.780 0.869 0.025

24 -0.015 -0.417 0.618 0.001

36 0.070 0.625 0.375 0.007

48 0.105 1.132 0.275 0.025

60 0.122 1.596 0.200 0.049

avg. b 0.040 0.143

Panel B: Bivariate Regression Involving IRP and AE

Horizon b Z(b) pval c Z(c) pval adj.R2

1 2.052 1.640 0.084 0.082 0.742 0.332 0.005

12 1.947 2.369 0.081 -0.160 -2.444 0.922 0.093

24 2.050 2.165 0.133 -0.058 -2.316 0.907 0.159

36 2.120 3.104 0.071 -0.021 -0.267 0.563 0.268

48 1.796 4.035 0.043 0.027 0.344 0.420 0.316

60 1.404 3.148 0.112 0.068 0.833 0.324 0.303

avg. 1.895 0.027 -0.010 0.624
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Table IX
Out-of-Sample Test

This table summarizes the out-of-sample test of forecasting models using different forecasting variables. The
dependent variable in these regressions is continuously compounded excess return per month defined as
the difference between the monthly continuously compounded return on the value-weighted market return
including dividends from WRDS and the monthly continuously compounded one-month T-bill rate. In these
tests, we perform a 3-year moving average for IRP, FY/P, E/P, D/P, and B/M. Two forecasting periods
are examined, with the first one from 1998.01 to 2010.12, and the second from 2003.01 to 2010.12. R2

os is
the Campbell and Thompson (2008) out-of-sample R2 statistic. Statistical significance of R2

os is obtained
based on the p-value for the Clark and West (2007) out-of-sample adjusted-MSPE statistic; the statistic
corresponds to a one-sided test of the null hypothesis that the competing forecasting model using a specific
forecasting variable has equal expected squared prediction error relative to the historical average forecasting
model against the alternative that the competing model has a lower expected squared prediction error than
the historical average benchmark model. Utility gain (Ugain) is the portfolio management fee (in annualized
percentage return) that an investor with mean-variance preferences and risk aversion coefficient of three would
be willing to pay to have access to the forecasting model using a particular forecasting variable relative to the
historical average benchmark forecasting model; the weight on stocks in the investor’s portfolio is constrained
to lie between zero and 1.5 (inclusive).

Forecast Period Forecast Period

1998.01-2010.12 2003.01-2010.12

R2
os pval Ugain R2

os pval Ugain

IRP 0.017 0.034 7.366 0.029 0.037 7.252

FY/P -0.002 1.427 -0.005 -1.342

E/P -0.003 0.995 -0.002 -1.142

D/P -0.005 1.890 -0.005 -0.828

B/M -0.004 1.099 -0.002 -0.482

Term -0.009 0.285 -0.009 0.074

Default -0.014 1.564 -0.024 3.217
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Table X
Forecast Encompassing Test Results

This table reports p-values for the Harvey, Leybourne, and Newbold (1998) HLN statistic for the two
forecasting periods, 1998.01-2010.12 and 2003.01-2010.12, in Panels A and B, respectively. In these tests,
we perform a 3-year moving average for IRP, FY/P, E/P, D/P, and B/M. The statistic corresponds to a
one-sided (upper-tail) test of the null hypothesis that the forecast given in the column heading encompasses
the forecast given in the row heading against the alternative hypothesis that the forecast given in the column
heading does not encompass the forecast given in the row heading.

Forecast Period: 1998.01-2010.12

IRP FY/P E/P D/P B/M Term Default

IRP 0.865 0.899 0.865 0.882 0.863 0.469

FY/P 0.013 0.608 0.769 0.739 0.718 0.342

E/P 0.010 0.340 0.668 0.696 0.674 0.332

D/P 0.009 0.167 0.240 0.306 0.527 0.311

B/M 0.011 0.209 0.263 0.602 0.671 0.330

Term 0.012 0.132 0.162 0.213 0.172 0.326

Default 0.086 0.190 0.193 0.203 0.203 0.250

Forecast Period: 2003.01-2010.12

IRP FY/P E/P D/P B/M Term Default

IRP 0.838 0.854 0.809 0.814 0.792 0.440

FY/P 0.017 0.177 0.509 0.023 0.534 0.332

E/P 0.018 0.794 0.633 0.413 0.585 0.339

D/P 0.018 0.445 0.292 0.155 0.515 0.336

B/M 0.025 0.971 0.546 0.791 0.657 0.351

Term 0.027 0.294 0.250 0.258 0.209 0.352

Default 0.108 0.212 0.204 0.214 0.205 0.238
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Table A.I
Phillips-Perron Unit Root Tests

This table summarizes the results of Phillips-Perron unit root tests on three sets of variables: Panel A
provides test results for IRP, FY/P, E/P, D/P, B/M, Term, and Default, using monthly data from 1981.01
to 2010.12. Panel B provides test results for IRP, P/Y, ntis, infl, svar, and vwretd, senti1, and senti2, using
monthly data from 1981.01 to 2008.12. Panel C provides test results for IRP, cay, and i/k using quarterly
data from 1981.01 to 2008.04. Two types of unit root tests specified in equation (15) are performed. T is the
number of observations. The Phillips-Perron test allows for regression errors to be serially correlated and
heteroskedastic. The test statistics are computed using serial correlation up to twelve lags in the regression
residuals. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A: Phillips-Perron Unit Root Tests (1981.01-2010.12)

Test Statistics

Variables without trend with time trend T

IRP -19.48** -19.44* 360

FY/P -6.83 -9.55 360

D/P -7.95 -9.80 360

E/P -4.80 -9.53 360

B/M -4.91 -6.64 360

Term -30.95*** -30.98*** 360

Default -18.03** -18.38* 360

Panel B: Phillips-Perron Unit Root Tests (1981.01-2008.12)

Test Statistics

Variables without trend with time trend T

IRP -24.18*** -26.45** 336

P/Y -9.91 -15.12 336

lty -2.84 -21.30* 336

ntis -12.88* -13.01 336

infl -121.46*** -120.84*** 336

svar -216.96*** -220.48*** 336

vwretd -298.98*** -297.23*** 336

senti1 -11.85* -13.99 336

senti2 -13.70* -16.40 336

Panel C: Phillips-Perron Unit Root Tests (1981.01-2008.04)

Test Statistics

Variables without trend with time trend T

IRP -17.57** -18.41* 112

cay -7.92 -11.38 112

i/k -8.18 -8.22 112
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Figure 1. Implied risk premium (IRP). This figure depicts the value-weighted implied risk premium

constructed based on prevailing S&P 500 companies from January 1981 to December 2010. IRP is expressed

in annualized percentages. The three horizontal dashed curves correspond to the rolling mean and the

two-standard-deviation bands calculated using all historic data starting from January 1986. Dotted vertical

lines mark some interesting market periods, namely, 1987.10, 1998-1999, and 2007.07-2009.03.
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Figure 2. Other predictive variables. This figure depicts the forecasted earnings-to-price ratio (FY/P),

trailing earnings-to-price ratio (E/P), dividend-to-price ratio (D/P) and book-to-market ratio (B/M ) from

January 1981 to December 2010, and the payout yield (P/Y ) from January 1981 to December 2008. All

panels share identical x-axis.
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Figure 3. Cumulative squared prediction error for the historical average benchmark forecasting model minus

the cumulative squared prediction error for the forecasting model using the implied risk premium (IRP),

the forecasted earnings-to-price ratio (FY/P), trailing earnings-to-price ratio (E/P), dividend-to-price ratio

(D/P), book-to-market ratio (B/M ), term spread (Term) and default spread (Default) during the forecast

period of 2003.01-2010.12. All panels share identical x-axis and y-axis. The dotted line in each panel goes

through zero. The points for 2008.11, 2009.01, 2009.02 and 2009.03 of Default are 1.020, 1.023, 1.687 and

0.773, respectively. All four points are out of range.
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