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Abstract 
 
Using credit default swap data, we propose a novel empirical framework to identify the structure 
of credit risk networks across international major financial institutions around the recent global 
credit crisis. The findings shed light on the credit risk transmission process and helps identify 
key financial institutions. Specifically, we identify three groups of players including prime 
senders, exchange centers and prime receivers of credit risk information. Leverage ratios and 
particularly the short-term debt ratio appear to be significant determinants of the roles of 
financial institutions in credit risk transfer, while corporate governance indexes, size, liquidity 
and asset write-downs are not significant. 
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Credit Risk Spillovers among Financial Institutions  

around the Global Credit Crisis: Firm-Level Evidence 

 

1. Introduction 

During the 2007-2008 global credit crisis, the comovement of financial institutions’ 

assets and liabilities increased dramatically. Increased comovement heightens the risk that 

financial distress originating in a handful institutions can spread to many others and distort the 

supply of credit and capital to the real economy. Understanding the nature of this systemic risk is 

the key to understanding the occurrence and propagation of financial crises.1 The recent crisis 

underscores the importance of systemic risk and exposes critical weakness in the financial 

regulatory system. As a result, top-down system-wide marco-prudential approaches have been 

proposed to supplement the traditional bottom-up micro-prudential approach focusing on the 

soundness of individual banks.  

While the literature (Jarrow and Yu, 2001; Allen, Babus, and Carletti, 2009; Cossin and 

Schellhorn, 2007; Elsinger, Lehar, and Summer, 2006) theoretically demonstrates credit risk 

transfer in a network structure due to tangible connections (such as interbank lending) between 

individual firms, other types of systemic risk can also be reflected by the comovement of credit 

risk or other asset prices of financial institutions.  For example, Elsinger, Lehar, and Summer 

(2006) provide evidence that correlation in banks’ asset portfolios dominates contagion as the 

main source of systemic risk, while contagion is rare but can nonetheless wipe out a major part 

of the banking system, which is consistent with Jorion and Zhang (2007, 2009) and Longstaff 
                                                 
1 According to Allen, Babus, and Carletti (2009), there are at least three types of systemic risk. The first is a 
common asset shock such as a fall in real estate or stock market prices. The second is the danger of contagion where 
the failure of one financial institution leads to the failure of another due to investor panics or other psychological 
factors. A third type of systemic risk is the failure of one financial institution which likely coincides with the failure 
of many others due to the more correlated portfolios and enhanced financial connections of individual financial 
institutions resulting from their individual original incentive to diversify.   
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(2010). As a first step towards understanding of systemic risk, it is worthy to identify the 

structure of international risk transmission across major financial institutions before we 

investigate different causes or channels that generate systemic risk.      

This paper uses a dataset of international credit default swaps to identify the structure of 

credit risk transmission across major financial institutions on the eve of Lehman Brothers’ failure. 

The paper contributes to the literature in the following aspects. First, this study is perhaps the 

first study to provide a data-determined identification of the structure of credit risk transmission. 

Such an investigation is important itself, as it is directly motivated by earlier theoretical work on 

credit risk in a network economy (e.g., Jarrow and Yu, 2001; Allen, Babus, and Carletti, 2009; 

Cossin and Schellhorn, 2007; Elsinger, Lehar, and Summer, 2006) and furthers our 

understanding of credit risk transfer (e.g., Allen and Carletti, 2006).2 It is also informative to 

investors for their decisions about international equity and credit markets. Equally important, our 

work enhances recent efforts to identify systemically important financial institutions (SIFIs) and 

to design and deploy macro-prudential regulation (e.g., Adrian and Brunnermeier, 2009). More 

specifically, we focus on a particular major criterion for identifying SIFIs, their connectedness 

with other financial institutions. Interconnectedness describes situations when financial distress 

in one institution materially raises the likelihood of financial distress in other institutions. 3 In 

this context, SIFIs arguably can be those financial institutions which are prime senders or 

                                                 
2 For example, the identification of prime senders and prime receivers of credit information in our empirical 
framework corresponds to primary and secondary firms in the theoretical model of Jarrow and Yu (2001).  We thank 
Fan Yu for pointing this out. Our empirical framework also corresponds to the theoretical discussion on (clustered 
and unclustered) credit risk network in the literature (e.g., Allen, Babus, and Carletti, 2009; Cossin and Schellhorn, 
2007). 
3 From the perspective of  interconnectedness, financial institutions which are prime senders of credit risk 
information might well be identified as the SIFIs, as they would influence credit risk of other financial institutions. 
The institutions which are the exchange center of credit risk information could also be systemically important. By 
contrast, those institutions which are prime receivers of credit risk information might less likely be systemically 
important, as they simply respond to new information about credit risk from others. 
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exchange centers, but not prime receivers of credit risk information.4 Meanwhile, our work 

extends the literature on international asset return spillover (e.g., Eun and Shim, 1989; Gagnon 

and Karolyi, 2009) to the credit market (rather than the stock market) and at the firm level (rather 

than the country level).5  

Second, we propose an innovative empirical framework of combining cluster analysis, 

principal component analysis (PCA), a relatively new causal modeling technique (i.e., the direct 

acyclic graph (DAG))6, and structural vector autoregression (VAR) analysis to identify the credit 

risk transmission network. Specifically, we classify international financial institutions into 

several clusters, extract the major driving force behind the changes of CDS spreads in each 

cluster using principal components, and apply DAG-based structural VAR analysis to identify 

the structure of credit risk spillover within each cluster while controlling for the influence of the 

other clusters.  Our empirical work is directly motivated by much theoretical work on credit risk 

transfer, but also extends existing empirical work using VAR and causality analysis (e.g., 

Longstaff, 2010). In particular, DAG analysis naturally provides a structure of causality between 

credit risk shocks to financial institutions and allows us to uncover the financial network of 

credit risk in the contemporaneous time. The DAG is further crucial in subsequent structural 

VAR analysis, which yields insights on the economic significance of financial connections in the 

credit risk network and also allows for lagged transmission of credit risk.  In this context, we also 

                                                 
4 There are alternative systemic importance measures, such as CoVAR by Adrian and Brunnermeier (2009) or MES 
by Acharya, Pederson, Philippon, and Richardson (2010), which address how an institution contributes to the 
financial system's overall risk contemporaneously. The perspective of interconnectedness in this study is different 
from these studies and the empirical framework also allows for the transmission of credit risk with time lags. 
5 As mentioned earlier, the structure of credit risk spillover could be due to either contagion or the link by 
fundamentals.  It is beyond the scope of this paper to distinguish these different channels.  See Forbes and Rigobon 
(2002) and Bae, Karolyi, and Stulz (2003) for recent works on financial contagion.   
6 Causality is a fundamental and yet a controversial concept. DAG analysis (Pearl, 2000; Spirtes et al., 2000) 
represents a recent advance in probabilistic approaches to model causality, with the main focus on obtaining causal 
conclusions from observational data rather than experimental data. As discussed in more details below, probabilistic 
conditional independences are the key concept in such analysis. 



4 
 

extend the data-determined structural vector autoregression (VAR) analysis first proposed in 

Swanson and Granger (1997) to a setting of a high-dimensional system, which may have wide 

applications.7 

Third, we explore the credit default swap (CDS) data of international financial 

institutions, which has been little studied. The CDS market came to prominence during the recent 

global credit crisis (Stulz, 2010).  Compared to the corporate bond market, CDS spreads are 

found to have a number of advantages in representing credit risk, including more accurate and 

efficient measurement of default risk, higher liquidity, and no cofounding tax issues (Longstaff, 

Mithdal, and Nies, 2005; Blanco et al., 2005; Ericsson, Jacobs, and Oviedo, 2009; Zhang, Zhou, 

and Zhu, 2009; Li, Zhang, and Kim, 2011).  Nevertheless, despite the growing interest in the 

CDS market, there are relatively few empirical studies using firm-level CDS data and even fewer 

using international firm-level CDS data. Recently, Huang, Zhou, and Zhu (2009) use US CDS 

spreads to assess the systemic risk of US major financial institutions. Another work more closely 

related to ours is Eichengreen, Mody, Nedljkovic, and Sarno (2009), who use international CDS 

spreads to study whether contagion rather than economic fundamental linkages led the subprime 

crisis to propagate internationally. However, their paper does not aim to identify credit risk 

networks at the firm level.  

The rest of this paper is organized as follows. Section 2 describes the data. Section 3 

discusses the empirical methodology. Section 4 presents empirical findings and Section 5 offers 

robustness checks and further analysis. Finally, Section 6 concludes. 

                                                 
7 The VAR analysis of Sims (1980) has been a workhorse in macroeconomics and financial economics.  As 
discussed in more details below, the meaningfulness of its structural/economic interpretation, however, critically 
depends on the appropriate decomposition of (typically significantly cross-correlated) VAR residuals.  Swanson and 
Granger (1997) propose to uncover contemporaneous causal orderings of VAR residuals in a data-determined and, 
thus, less ad hoc manner. 
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2. Data  

Following Eichengreen et al. (2009), we select the 43 largest financial institutions across 

the US, the UK, Germany, Switzerland, France, Italy, Netherlands, Spain, and Portugal.8  All 

these institutions can be considered to “too big to fail.” After controlling for size, we want to 

search for the SIFIs among these big institutions. From Bloomberg, the raw data are end-of-day 

CMA9  mid-quotes as well as bid and ask prices for 5-year CDS spreads, the most widely traded 

maturity. 10 A CDS contract offers protection against default losses of an underlying entity. CDS 

payments are denominated in either US dollar or Euro while the spreads are in basis points. 

Following Forbes and Rigobon (2002), we compute rolling-average, two-day changes of CDS 

spreads to control for the fact that CDS markets for financial institutions from different countries 

may not operate during the same trading hours.11 Such practice is also helpful to smooth out 

sharp daily movements and irregular trading (Eichengreen et al., 2009). We also compute the 

difference between ask and bid prices and normalize it by dividing the corresponding mid-quote. 

The sample runs from January 2007 to early September 2008 before the Lehman’s failure. This 

period has seen the unfolding of the crisis until it infected the entire U.S. and global financial 

system (Brunnermeier, 2009).12 It is ideal for investigating how the crisis spread and which SIFIs 

played an important role.  

[Table 1 here] 

                                                 
8 The two exceptions are Munchner Hypoth and  LCL for which we can’t find the data from the Bloomberg any 
more.  
9 The CMA is a credit information specialist headquartered in London with offices in New York and Singapore. It is 
a wholly owned subsidiary of CME Group, the largest and most diverse derivatives exchange in the world. 
10 Missing data are less than 1% of the total observations during the sample period and thus negligible. We fill 
missing data with the mid-quotes for spreads of the previous trading day. 
11 Similarly, Forbes and Rigobon (2002) use the two-day average stock returns to address nonsynchronous trading of 
international stock markets due to different time zones. 
12 The first trigger for the crisis was an increase in subprime mortgage default, which was first noted in February 
2007.  
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Table 1 reports summary statistics on spreads for 43 financial institutions. The CDS 

spreads over the sample period have significant cross-section and time series variation. Among 

them, the average mid-quotes for CDS spreads for US investment-banks are the highest, above 

100 basis points except for Goldman Sachs. For each CDS, the spread is also volatile with its 

standard deviation close to its mean. The minimum and maximum values of the mid-quotes 

further highlight the considerable change over time. For example, the spread for Bear Sterns 

ranges from 21 to 727 points and for HBOS from 5 to 253 points.13 The bid-ask- differences are 

about 4.56 points and, in normalized terms, an average about 0.15.  

3. Empirical Methodology  

We combine cluster analysis, principal component analysis (PCA), DAG analysis and 

VAR models. Cluster analysis and PCA reduce the dimension of VAR analysis. For SIFIs from 

different clusters, we apply the DAG technique again to explore their interdependent structure.  

3.1. Cluster Analysis and Principle Component Analysis  

Cluster analysis refers to statistical methods which search for distinct groups or clusters 

of variables (or observations). The most commonly used clustering methods lead to a series of 

hierarchical (or nested) classifications of variables (or observations), beginning at the stage 

where each variable (or observation) is considered a separate group, and ending with one group 

containing all variables (or observations). Similar to Leuz, Nanda, and Wysocki (2003), to form 

clusters using a hierarchical cluster analysis, one must select: (1) A criterion for determining 

similarity or distance between two cases; (2) a criterion for determining which clusters are 

merged at successive steps; and (3) a criterion for determining the number of clusters.  

 
                                                 
13 Similar to Blanco et al. (2005), there is evidence of nonstionarity of CDS spreads. Focusing on the level of CDS 
spreads during the crisis period might thus suffer from well-known the spurious regression/correlation problem. 
Accordingly, similar to Eichengreen et al. (2009), we use the change of CDS spreads to ensure stationarity.  
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First, hierarchical clustering methods use a distance matrix as their starting point. The 

most common distance measure is Euclidean which is calculated as ∑
=

−=
T

t
jtitij xxd

1

2)( where 

itx  and jtx  are the variable values for individuals i and j at time t.  

Second, there are a variety of ways to measure how different two clusters are. This 

depends on the distance between cluster pairs: (1) single linkage defines intergroup distance as 

the distance between their closest members; (2) complete linkage uses the distance between the 

most remote pair of observations, one from each group; and (3) average linkage considers the 

average of the distances between all pairs of observations where members of a pair are in 

different groups. It uses information about all pairs of distances, not just the nearest or the 

furthest. For this reason, it is usually preferred to the single and complete linkage methods.  

Third, an index that can be used for choosing the number of clusters is the cubic 

clustering criterion (CCC).  This is a comparative measure of the deviation of the clusters from 

the distribution expected if data points were obtained from a uniform (no clusters) distribution. 

The criterion is calculated as  

K
R
RECCC ×⎥

⎦

⎤
⎢
⎣

⎡
−

−
= 2

2

1
)(1ln  

where E(R2) is the expected R-squared14 and K is the variance-stabilizing transformation.15 

Larger positive values of the CCC indicate a better solution, as it shows a larger difference from 

a uniform (no clusters) distribution. 

                                                 
14 R2=Between-cluster sum-of-squares / total-sample sum-of-squares, which has the usual interpretation of the 
proportion of variance accounted for by the clusters.   
15 K is an empirical parameter adopted to stabilize the variance across different numbers of observations, variables 
and clusters. 
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 Principal component analysis (PCA) (e.g., Ludvigson and Ng, 2009), is an orthogonal 

linear transformation for dimensionality reduction. Given a set of data, the first component (the 

eigenvector with the largest eigenvalue) corresponds to a line that passes through the mean and 

minimizes sum squared error with these points. The second principal component corresponds to 

the same concept after all correlation with the first principal component has been subtracted out 

from the points. Essentially, PCA rotates the set of points around their mean in order to align 

with the first few principal components, which can explain a majority of the total variation of the 

data. The cumulative fraction of the total variation explained by the first few principal 

components is computed as the ratio between the sum of the first few largest eigenvalues divided 

by the sum of all eigenvalues.  

 
3.2. VAR Models and Innovation Accounting 

Let tX  denote a vector of stationary changes in CDS spreads, which can be modeled in a 

vector autoregressive model (VAR) following Sims (1980): 

(1) ∑
−

=
− =++Γ=

1

1
),...,1(

k

i
titit TteXX µ . 

Because the individual dynamic coefficients of Γ do not have a straightforward 

interpretation, we use the innovation accounting method to summarize the dynamic structure and 

provide appropriate economic interpretation.  Specifically, we can rewrite  equation (1) as an 

infinite moving average process: 

(2) ∑
∞

=
−=

0i
itit AX ε ,   t = 1,2, …,T. 

The error from the forecast of tX  at the n-step-ahead horizon, conditional on information 

available at t-1, 1−Ω t , is as follows: 
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(3) ∑
=

−+=
n

l
lntlnt A

0
, εξ . 

Therefore, the variance-covariance matrix of the total forecasting error is computed as 

(4) ∑
=

Σ=
n

l
llnt AACov

0

'
, )(ξ , 

where Σ is the variance-covariance matrix of the error term in equation (1), te . The remaining 

basic problem is how to orthogonalize the VAR residuals. Sims (1980) proposes the Cholesky 

factorization to achieve a just-identified system in contemporaneous time, which leads to the 

following variance decomposition for the forecasting error: 

∑

∑

=

=

Σ

Σ
= n

l
illi

n

l
jli

c
ij

eAAe

PeAe
n

0

''

0

2'

)(

)(
)(θ , 

where P is the Cholesky factor of the residual variance-covariance matrix Σ,  and ie  is a selection 

vector, with the ith cohort equal to 1 and all the other cohorts equal to 0. Therefore, )(nc
ijθ  

measures the contribution of the jth-orthogonalized innovation to the variance of the total n-step-

ahead forecasting error for the variable itX . 

Note, however, that we assume that there exists a particular recursive contemporaneous 

causal structure in the Cholesky decomposition. The assumption obviously is restrictive and 

often unrealistic (Swanson and Granger, 1997). More fundamentally, economic theories rarely 

provide guidance for contemporaneous causal orderings, and VAR practitioners usually need to 

rely on various stories to determine them arbitrarily. As pointed out in Hoover (2005), it is 

probably (more or less) ironic that the VAR method that originated as a way of getting away 

from incredible identifying restrictions on large scale macroeconomic models has to rely heavily 
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on hardly more-credible arguments to identify contemporaneous causal orderings. However, as 

advocated by Swanson and Granger (1997), the directed acyclic graphs (DAG) can be used to 

uncover contemporaneous causal orderings in a data-determined and, thus, less ad hoc manner. 

3.3. Directed Acyclic Graphs Analysis 

The DAG technique (Pearl, 2000; Spirtes et al., 2000), which is also termed Bayesian 

Network, is a recent advance in causality analysis. The basic idea of DAG builds on the insight 

of a non-time sequence asymmetry in causal relations, which contrasts with the well-known 

Granger causality, exploiting the time sequence asymmetry that a cause precedes its associated 

effect (and thus an effect does not precede its cause).  In this subsection, we briefly describe how 

we conduct the DAG analysis using the variance-covariance matrix of the VAR residuals in 

equation (1).See, for example, Hoover (2005) for more related discussion. 

A directed graph is essentially an assignment of the contemporaneous causal flow (or 

lack thereof) among a set of variables (or vertices) based on observed correlations and partial 

correlations. The “edge” relation characterizing each pair of variables represents the causal 

relation (or lack thereof) between these variables. Relevant to this study, possible edge 

relationships in DAG analysis are: (1) No edge (X   Y) indicates (conditional) independence 

between two variables. (2) Directed edge (Y → X) suggests that a variation in Y, with all other 

variables held constant, produces a (linear) variation in X that is not mediated by any other 

variable in the system. Alternatively, for this paper’s purpose, a DAG may represent a recursive 

linear structural system with observables at the nodes, and edges encoding directional causality 

correspond to nonzero structural coefficients, with jointly independent unobservables are not 

represented in the DAG (see, e.g., Swanson and Granger, 1997).   
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Although correlation does not necessarily imply causation, under some circumstances 

DAG analysis can derive causality from correlation.  As an illustration of the basic idea (Pearl, 

2000), consider a causally sufficient set of three variables X, Y, and Z.  A causal fork that X 

causes Y and Z can be illustrated as Y ← X → Z. Here the unconditional association/correlation 

between Y and Z is nonzero (as both Y and Z have a common cause in X), but the conditional 

association/correlation between Y and Z, given knowledge of the common cause X, is zero. In 

other words, common causes screen-off associations or correlation between their joint effects.  

Now consider the so-called inverted causal fork, that X and Z cause Y, as X→ Y ← Z. Here the 

unconditional association or correlation between X and Z is zero, but the conditional association 

or correlation between X and Z, given the common effect Y, is not zero. Thus, common effects 

do not screen-off association between their joint causes. The reader is referred to Pearl (2000) 

and Spirtes et al. (2000) for more discussion on DAG. 

Assuming that the information set, 1−Ω t , is causally sufficient, Spirtes et al. (2000) 

provide a powerful directed graph algorithm (i.e., PC algorithm) for removing edges between 

variables and directing causal flows of information between variables. 16  The PC algorithm 

begins with an undirected graph in which each variable is connected with all the other variables. 

It then proceeds in two stages: elimination and orientation.  In the elimination stage, the 

algorithm removes edges from the undirected graph, based on unconditional correlations 

between pairs of variables: Edges are removed if they connect variables that have zero 

correlation. The remaining edges are then checked for whether the first-order partial correlation 

                                                 
16 The causal sufficiency may to a large extent apply in this study. Longstaff, Mithdal, and Nies (2005) do not find 
any clear lead of the stock market with respect to the CDS market or vice versa. More relevantly,  Acharya and 
Johnson (2007) document that the information flow from the CDS market to the US stock market is greater for 
subsamples  when firms experience credit deterioration and they have high CDS levels, which certainly characterize 
the sample period of the crisis as used in this study. At the minimum, such a finding on prima facie causality is 
interesting in itself as the initial effort to detect credit risk transfer network.   
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(correlation between two variables conditional on a third variable) is equal to zero. If it is zero, 

the edges connecting the two variables are removed. The remaining edges are then checked 

against zero second-order conditional correlation and so on. The algorithm continues to check up 

to (N – 2)th-order conditional correlation for N variables. Fisher’s z statistic is applied to test 

whether conditional correlations are significantly different from zero.  

Once the elimination stage is completed, the algorithm proceeds to the orientation stage, 

where the notion of sepset is used to assign the direction of contemporaneous causal flow 

between variables remaining connected after we check for all possible conditional correlations. 

The sepset of a pair of variables whose edge has been removed is the conditioning variable(s) on 

the removed edge between two variables. For vanishing zero-order conditioning (unconditional 

correlation), the sepset is an empty set. Edges remaining connected are directed by considering 

triples X ⎯ Y ⎯ Z, in which the pair X and Y and the pair Y and Z are adjacent but X and Z are 

not. Edges are directed between triples X ⎯ Y ⎯ Z as X → Y ← Z if Y is not in the sepset of X 

and Z. If (1) X →Y, (2) Y and Z are adjacent, (3) X and Z are not adjacent, and (4) there is no 

arrowhead at Y, then Y ⎯ Z should be positioned as Y → Z. If there is a directed path from X to 

Y and an edge between X and Y, then X ⎯ Y should be positioned as X →Y. The PC algorithm 

discussed above is popular and has been programmed in the software Tetrad III 

(http://www.phil.cmu.edu/projects/tetrad/tet3/master.htm), which is also used for the DAG 

analysis in this paper.  

4. Empirical Results 

4.1. Cluster Analysis and PCA Results 

We apply hierarchical cluster analysis to the 2-day average changes of CDS spreads for 

all 43 largest financial institutions in our sample. With the average linkage clustering, CCC takes 



13 
 

its highest value when there are four clusters. The dendrogram also tends to suggest a four-group 

solution. As shown in Table 2, all European financial institutions belong to one group (“EU 

Financial Institutions”) while US financial institutions form the other three clusters. Interestingly, 

US commercial banks and investment banks are in one group (“US Banks”), insurance 

companies and American express in another (“US Insurance”), and Fannie Mae and Freddie Mac 

fall in the last group (“US GSEs”). The classification for US financial institutions is meaningful 

because different groups have different business operation models and is confirmed by the 

subsequent analysis below. 

[Table 2 here] 

Next, we use PCA to extract the common factors underlying variations in the 2-day 

average changes of CDS spreads for each cluster. Table 3 reports the cumulative fractions of the 

total variations explained by the first 5 principal components. The first component in each cluster 

can explain more than 60% of the total variations. Although the cumulative fractions vary across 

clusters, it is clear that the first component is the major driving force. Additional analysis is also 

conducted below to ensure the robustness of the main findings.  

[Table 3 here] 

4.2. DAG and Structural VAR Results  

  The optimal lag in Equation (1) is selected by minimizing the Schwarz's Bayesian 

Criterion (SBC) and the maximum lag is set at 15 days (three trading weeks).  The SBC suggests 

the optimal lag of k=3 for all the model specifications under consideration, which is consistent 

with somewhat slow changes in CDS spreads across countries.17  Lagrangian multiplier tests on 

                                                 
17 We selected this lag initially based on a parsimonious VAR system only including the four first principal 
components from each cluster, which are proxies (albeit imperfect) for the common credit risk information for each 
group of financial institutions. Additional analysis shows that alternative lags do not appear to affect the main 
findings.  
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autocorrelation of the residuals cannot reject the null of white noise residuals at any conventional 

significance levels. In the analysis below, we investigate contemporaneous casual patterns 

among individual financial institutions within each of the clusters (while controlling the 

influence of the other clusters) to uncover the structure of credit risk network at the firm level. 

The investigation can also be motivated by the evidence that the common CDS spread variation 

in each cluster is explained predominately by its own earlier shocks.18  

Firstly, the 5-varaible VAR with the lag of 3 is estimated and used to summarize dynamic 

interactions among Fannie Mae, Freddie Mac, and the first components of the three other clusters.  

Equation (5) gives the lower triangular elements of the VAR residual correlation matrix with the 

following order: Fannie Mae, Freddie Mac, US banks, US insurance companies, and EU 

financial Institutions.  

(5)  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

105.18.017.016.0
124.029.022.0

126.025.0
173.0

1

V       

The matrix provides the starting point for the analysis of the contemporaneous causal pattern.  

The analysis is conducted using Tetrad III and the resulting graph at the 10% significance level is 

shown in Figure 1.19 We see contemporaneous causality from US insurance companies to US 

banks, from US banks to Fannie Mae, from Fannie Mae to Freddie Mac, from US insurance 

companies to Freddie Mac and from EU financial institutions to US banks.  

[Figure 1] 

                                                 
18 The evidence is based on additional analysis focusing on only the four first principal components from each 
cluster, which is to be discussed briefly as a robustness check.   
19 Due to somewhat low power of the PC algorithm and rather limited number of observations used in the DAG 
analysis, the conventional significance level of 10% seems to be the most appropriate for the sample size in this 
study (Spirtes, Glymour, and Scheines, 2000). 
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As vigorously argued in Swanson and Granger (1997), the contemporaneous casual 

pattern as identified through the DAG analysis of the correlation matrix provides a data-

determined solution to the basic problem of orthogonalization of VAR residuals and thus is 

critical to forecast error variance decomposition of a VAR. There are two major advantages of 

employing the forecast error variance decomposition: (1) allowance for time-lagged information 

transmission in addition to contemporaneous information transmission; (2) description of 

economic significance of dynamic causal linkages.  

Based on the directed graph result in Figure 1, forecast error variance decompositions are 

shown in Table 4. Entries in Table 4 give percentage of forecast error variance (standard 

deviation in the table) at horizon k, which is attributable to earlier shocks (surprises) from each 

other series (including itself).  We list steps or horizons of 0 (contemporaneous time), 1 and 2 

days (short horizon), and 10 and 30 days ahead (longer horizon).  The shock to Fannie Mae very 

substantially explain about 44-48% of the CDS spread variation in Freddie Mac at all horizons, 

while the reverse is much weaker (about 11% at the longer horizon). Also, shocks to Fannie Mae 

and Freddie Mac together can explain little of the common CDS spread variation of any other 

groups, even at the longer horizon. European financial institutions have noticeable influence (6-

11%) on the credit risk of the two GSEs.   

It is also interesting to note that the first principal component of the other three clusters is 

explained primarily by itself both in contemporaneous time and at short horizons, with the 

possible exception of the US banks, where about 10-13% of its common credit risk variations 

can be explained by US insurance companies and European financial institutions. At the longer 

horizon of 30 days ahead, the US insurance companies and European financial institutions 

exhibit more pronounced influences on common credit risk variations of the US banks (about 8% 
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each). The European financial institutions stand out to explain about 12% of the common 

variation in the CDS spreads of US insurance companies at the 30-day horizon. By contrast, 

about 8% of the common credit risk variations of the European financial institutions at the 30-

day horizon can be explained by US financial institutions and particularly US banks (about 4%).  

This suggests an interesting role of the European financial institutions before the global credit 

crisis worsened because of the collapse of Lehman Brothers, which probably has not received 

much attention. The evidence also implies that regional (or country) factors might have played 

an more important role than conventionally perceived during this stage of the crisis development, 

which is in line with the fact many European financial institutions had much exposure to Eastern 

European economies while US  financial institutions were primarily exposed to the US subprime 

loan problem. In addition, different market-based assessments of probability of government 

bailout for financial institutions in different countries might also factor in the change of CDS 

spreads.  

 [Table 4] 

Secondly, the 12-varaible VAR with the lag of 3 is estimated and used to summarize 

dynamic interactions among 9 US banks as well as the first components of the three other 

clusters.  Equation (7) gives the lower triangular elements of the innovation correlation matrix 

with the following order: US GSEs, US insurance companies, EU financial Institutions, Lehman 

Brothers, Bear Sterns, Goldman Sachs, Merrill Lynch, Morgan Stanley, Wachovia, Citigroup, 

JPMorgan, and Bank of America.  

The resulting directed graph at the 10% significance level is shown in Figure 2.  While no 

contemporaneous relation is identified between individual US banks and the common CDS 
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spread variation of European financial institutions as a group, the interaction is channeled 

through lagged credit risk transmission, as shown below in Table 5.  
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From Figure 2, we can see that the individual US banks are intensively connected to one 

another. Among them, Lehman Brothers appear to be a prime sender of credit risk information in 

contemporaneous time, as it affects Goldman Sachs, Bear Stearns, Merrill Lynch, Citigroup, and 

Wachovia, while it only receives credit risk information from Morgan Stanley (and US Insurance 

as a group). Similarly, Morgan Stanley is a prime sender of credit risk information in 

contemporaneous time to other banks, such as Lehman Brothers, Bank of America, and 

JPMorgan, but apparently it does not receive credit risk information from any other banks (with  

an undirected edge between Merrill Lynch and itself). By comparison, consistent with the role as 

the exchange center of credit risk information, Goldman Sachs receive credit risk  shocks in 

contemporaneous time from several other investment banks, such as Lehman Brothers, Bear 

Sterns, and Merrill Lynch, and also spreads out the credit risk information to GSEs and an equal 
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number of other commercial banks (i.e., Citigroup, Wachovia, and JPMorgan). Similarly, Bank 

of America and Bear Sterns also appear to be the exchange center of credit risk information.  

In contrast, some other commercial banks appear to be prime receivers of credit risk 

information in contemporaneous time. For example, Citigroup receives credit risk information 

from Lehman Brothers, Goldman Sachs, Bank of America, and Wachovia and spreads it out to 

JPMorgan only. Similarly, influenced by Bear Sterns, Lehman Brothers, and Goldman Sachs, 

Wachovia affects Citigroup only. The most endogenous case is JPMorgan, which is affected by 

Bank of America, Citigroup, Goldman Sachs, and Morgan Stanley but has no impact on any 

others in contemporaneous time. 

[Figure 2 here] 

The information about Goldman Sachs in Figure 2 provides more details for the edge 

running from the US Banks to the US GSEs in Figure 1. Also enriching our understanding for 

the edge running from US insurance companies to US banks in Figure 1, it is shown that US 

insurance companies spread their common credit risk information to many other banks directly 

through Lehman Brothers. Such a unique information role of Lehman Brothers would be further 

collaborated and most clearly revealed in Table 5. Moreover, consistent with Figure 1, US GSEs 

receive shocks from US insurance companies in the contemporaneous time, which is further 

validated in the subsequent analysis (Figure 3).  

Based on the directed graph result of Figure 2, forecast error variance decomposition is 

also conducted and reported in Table 5. The most striking firm-level evidence is that, even with 

allowance for the influence of US insurance companies and other banks, Lehman Brothers exerts 

strong effects on Bear Sterns (29-33%), Goldman Sachs (35-42%), Merrill Lynch (21-26%), 

Wachovia (22-27%), Citigroup (9-12%), and JPMorgan (about 10%) at all horizons. No other 
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US financial institutions under consideration have exhibited such an extensive and significant 

role of credit risk information spillover, which suggests that the decision not to bail out Lehman 

Brothers was probably a serious mistake and certainly worsened the global credit crisis.  

Similarly, Morgan Stanley, as another prime sender of credit risk information, indeed exerts 

nontrivial influence on other banks at all horizons, including Lehman Brothers (7-8%), Goldman 

Sachs (5-7%), Merrill Lynch (5-8%), Citigroup (6-11%), JPMorgan (10-13%), and Bank of 

America (11-12%).  As an exchange center, Goldman Sachs is influenced by other four major 

investment banks in contemporaneous time as 42%, 7%, 4% and 5% of its CDS spread variations 

are explained by shocks to Lehman Brothers, Bear Sterns, Merrill Lynch, Morgan Stanley, 

respectively. As the horizon increases, while the contributions of other investment banks largely 

remain similar, shocks to two US commercial banks (i.e., JP Morgan and Bank of America) 

together explain about 8% of the variation in Goldman Sachs. On the other hand, Goldman Sachs 

exhibits noticeable influence and its role as the exchange center of credit risk information is 

more significant at the longer horizon of 30 days ahead, explaining about 5%, 10%, and 9% of 

US GSEs, Wachovia, and JPMorgan CDS variations, respectively. Consistent with the earlier 

observation that JPMorgan is the most endogenous in the contemporaneous time, at a longer 30-

day horizon, it has the lowest percentage of CDS spread variations explained by its own shocks. 

Lastly, consistent with Figure 1 and Table 4, US insurance companies do exert noticeable 

influence on some banks. Nevertheless, even at the longer horizon, the influence of European 

financial institutions on individual banks is smaller, compared to its influence on US banks as a 

group in Table 4, perhaps because that the proxy used earlier only represents about 63% of the 

common credit risk variation for the cluster.  

[Table 5 here] 
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Thirdly, the 9-varaible VAR with the lag of 3 is estimated and used to summarize 

dynamic interactions among 6 US insurance companies as well as the first components of the 

other three clusters.  Equation (8) gives the lower triangular elements of the innovation 

correlation matrix with the following order: US GSEs, US banks, EU financial Institutions, 

American Express, AIG, Chubb, Met Life, Hartford, and Safeco.  

(8) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

174.048.064.024.029.008.20.024.0
170.078.040.037.003.35.029.0

170.050.034.011.050.026.0
148.034.001.040.041.0

136.020.051.031.0
119.035.026.0

117.012.0
119.0

1

V  

The DAG analysis results in a directed graph at the 10% significance level, as shown in 

Figure 3. Among US insurance companies, Safeco is a prime sender of credit risk information, 

which only affects but is not affected by any other insurance companies in contemporaneous 

time.  A similar point can also be made for Chubb, as it receives the information only from 

Safeco but send it out directly to several other insurance companies, including AIG, Met Life, 

and Hartford, as well as US GSEs. AIG might also appear to be a prime sender of credit risk 

information in contemporaneous time, as it affects US GSEs, US Banks, American Express, and 

Met Life. Receiving the information directly from two firms (Chubb and AIG) and also sending 

it out directly to US banks and Hartford, Met Life appears to be the exchange center of credit 

risk information, which may also apply to American Express. By comparison, Hartford is a 

prime receiver of credit risk information, as it receives the information from three other firms but 

only sends it out to one firm in the contemporaneous time.  
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In Figure 3, it is revealed now that such contemporaneous causality is channeled directly 

through Chubb, AIG, and American Express, which extends the finding of the edge running from 

US insurance companies to US GSEs in Figure 3, Also enriching our understanding for the edge 

running from US insurance companies to US banks in Figures 1-2, it is shown that US insurance 

companies contemporaneously spread the common credit risk information to US banks directly 

through AIG, American Express, and Met Life.  European financial institutions are also 

exogenous in the sense that its credit risk information directly flows to US GSEs and American 

Express without inflow from others.    

 [Figure 4 here] 

Table 6 presents results on forecast error variance decomposition based on the directed 

graph result of Figure 3. Noteworthy, Chubb and Safeco are confirmed to be the prime senders of 

credit risk information even at the longer horizon. Safeco has persistent and significant effect on 

all other five firms in the cluster at all horizons, i.e., American Express (6-8%), AIG (8-10%), 

Chubb (34-41%), Met Life (19-24%), and Hartford (41-54%), in addition to US GSEs (7-8%) 

and US banks (7-10%). Chubb also exerts noticeable impacts on most of the other firms at all 

horizons, including American Express (4-6%), AIG (14-15%), Met Life (22-29%), and Hartford 

(16-17%), as well as US GSEs (8-9%) and US banks (9-10%).  The evidence for AIG as a prime 

sender of credit risk information however is weaker. Nevertheless, it still has nontrivial effects 

on American Express (5%), Met Life (6%) and US banks (14%), at the longer horizon. Hartford 

as a prime receiver of credit risk information is also easily confirmed as within the group it has 

the lowest percentage of CDS spread variations explained by its own shocks at a longer 30-day 

horizon. There is also some evidence for Met Life as the exchange center of credit risk 

information, while such is more mixed for American Express. Specifically, at the short and 
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longer horizons, Met Life receives credit shocks from AIG (6%), Chubb (22-26%), and Safeco 

(about 19-24%) and its shock affects Hartford (about 6-7%) and US banks (about 5%).  

Moreover, consistent with the findings discussed above, European financial institutions 

exhibit noticeable effects at the longer 30-day horizon. The shock to European financial 

institutions as a group explains about 14%, 16%, 14%, 15%, 12%, and 6% of CDS spread 

variations of American Express, AIG, Chubb, Met Life, Hartford, and Safeco, respectively. 

[Table 7 here] 

Finally, we estimate a 29-variable VAR with the lag of 3 for 26 European financial 

institutions together with the first components of the three US clusters. Figure 4 shows 

contemporaneous causal patterns based on the VAR residuals. 20  The European financial 

institutions are well connected to each other and the edges are all directed (with the exception of 

the edges related to the three US clusters).  Noteworthy, UBS only affects but is not affected by 

other institutions in the contemporaneous time, suggesting its role as a prime sender of credit risk 

information. Similarly, BNP Paribs has the contemporaneous causal effects on six other 

institutions (ING, Rabobank, Credit Agricole, Societe Generale, Banco Santader, and HVB) 

while it is only affected by UBS. A similar point may be made for Dresdner and to a lesser extent 

for Lloyds TSB. By comparison, ABN AMRO, ING, Rabobank, and Deutsche Bank may be 

considered as the prime receivers of credit risk information as they only directly receive but not 

send out credit risk shocks. Barclays, Commerzbank, RBS, and HVB appear to be the exchange 

center of credit risk information, as they receive credit risk shocks from some firms and send out 

the shock to an equal number of other firms. It is also interesting to note that Standard Chartered 

                                                 
20 Note that the result for this part of the analysis should be interpreted with some caution, as we are not aware of 
any simulation evidence on the performance of the PC algorithm applied to such a high dimensional system. Due to 
the same reason and further constrained by the programming capacity of the algorithm (up to 32 variables), we do 
not explore the potentially interesting case where all 43 financial institutions are included in one large system.  
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is the only European financial institution connected with US banks in the contemporaneous time, 

although the casual relationship is undirected.  Obviously, future research is needed to further 

investigate the issue. 

[Figure 5 here] 

We also conduct the forecast error variance decomposition analysis using the estimated 

VAR parameters and the orthognalized shocks based on Figure 4. To conserve the space, the 

detailed decompositions are not tabulated here but are available upon request. Briefly, in the 

short terms, none of the three groups of US financial institution have a significant impact on the 

26 European financial institutions, consistent with the observations in Tables 4-6. At the 30-day 

horizon, US GSEs explain 2.5%-7.5% of credit risk variations in some of the individual 26 

institutions. By contrast, the explanatory power of US banks is typically negligible (less than 

1%).  The effect of US insurances on some individual European financial institutions is more 

mixed and largely falls in the range of 1% and 3.5%. 

5. Robustness Checks and Further Analysis 

5.1. Robustness checks 

We conduct many robustness checks on the main results as follows. First, the four-

variable VAR with the lag of 3 is estimated to summarize dynamic interactions among four first 

principal components. It should be noted that in some cases such results based on (somewhat 

imperfect) proxies of the common credit risk variation of each cluster (group) may be somewhat 

different from firm-level results, which is based on richer and firm-specific information.    

Nevertheless, the results based on the four first principal components (available on request), 

apparently an oversimplified empirical model, is generally in line with the main findings based 

on larger models using firm-level data (as reported above) (although no information on the firm-
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level network is revealed by such an analysis). Regarding the contemporaneous causality pattern, 

all directed edges are consistent with Figure 1 where the group of GSEs is the focus.  One 

possible exception may be the only undirected edge between US GSEs and US insurance 

companies, which should be assumed to run from US insurance companies to US GSEs and 

consistent with the directed edge from US insurance companies to Freddie Mac in Figure 1.  

Also, the common credit risk variations of the European financial institutions as a group are 

highly exogenous in the contemporaneous time, which is generally consistent with Figures 1, 3, 

and 4. 

The resulting error variance decomposition results confirms that every first principal 

component of the four clusters is explained primarily by itself both in contemporaneous time and 

at short and longer horizons, with some proportions explained by innovations in other clusters, 

particularly at the longer horizon. The result generally confirms the appropriateness of the cluster 

analysis result of classifying the financial institutions into 4 groups and the result in Table 4. At 

30 days ahead, US banks and US insurance companies together explain about 6 percent of the 

common CDS spread variation of the European financial institutions, while the European 

financial institutions also have a noticeable (about 8-10%) impact on the common credit risk 

variations of other groups at the longer horizon within the four clusters.  The evidence is again 

generally in line with Tables 4, 5, and 6, particularly in light of the fact that the first principal 

component alone is an imperfect proxy even for the common variation in credit risk. 

Second, we also re-estimate all the models related to US banks, US insurances and EU 

financial institutions by including second principal components of each cluster (the first principal 

component alone already explain 90% of the US GSEs cluster).  In the main analysis above, for 

the purpose of the model parsimony, we have only included the first principal component in the 
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VAR model specifications, which explains more than 60% variations for each cluster. With one 

principal component for each cluster in the models, it is straightforward to interpret the results of 

DAG and variance decompositions.  With more than one principal component for the same 

cluster included in the models, the interpretation of the empirical results is a little more 

complicated. For the consideration of the simplicity, we add up the decompositions of both 

principal components of the same cluster of financial institutions as the influence of the 

particular cluster. The result (not reported here but available upon request) confirms that the 

above finding based on the first principal components alone generally hold.   

Third, we conduct a small scale simulation to assess the effectiveness of the PC algorithm 

in DAG analysis in this study.  Specifically, based on the estimated 12-variable VAR model of 

US Banks with the lag of 3, we bootstrap a set of pseudo residuals of the same length as the 

realized sample. These residuals are then used to sequentially generate a pseudo sample of CDS 

spread changes for the 12 financial institutions using the estimated autoregressive parameters. 

We generate a total of 100 such pseudo samples. For each sample, a VAR model with a lag 

length of three is estimated. The estimated VAR residuals are retained and Tetrad III is run for 

each realization using the PC algorithm and assuming causal sufficiency. Again, the chosen 

significance level for DAG analysis is 10%.  When there is no edge between two variables in the 

true data generating process (DGPs), the PC algorithm is very successful in excluding the edge in 

the simulated data, with an average success rate of 96.0%.  When there is an edge, the algorithm 

can both detect the existence of the edge and direct it correctly up to 60% of times. Furthermore, 

it can on average correctly identify the existence of all edges in the true DGPs (i.e., the skeleton 

of the causal graph) 76.3% of times (with the median success rate is 86.0%).  
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Finally, we also consider an alternative sample period. In particular, the sample contains 

an unusual episode of the fall of Bear Sterns. To examine whether the inclusion of the data after 

the fall of Bear Sterns has had a significant effect of the main results we have obtained, we also 

re-estimate the 12-vcaraible VAR(3) for the US banks using the subsample of January 1, 2007 

through –March 14, 2008 when the Bear Sterns was rescued.  While the untabulated result shows 

less strong evidence of credit risk network for the group of US banks due to the use of much 

fewer data points, most of the main results, such as Lehman Brothers, Morgan Stanley and 

Goldman Sachs as either prime senders or exchange center of credit risk information, remain 

unchanged.   

5.2. Driving Forces of Credit Risk Transfer 

We have investigated how CDS spread changes as a proxy of credit risk transmitted 

among 43 individual financial institutions. A natural question is the economic intuition for why 

we would expect the spillovers to be more intense in one direction than another.  Note also that 

such analysis can serve as further robustness check on the above main result of the credit risk 

transfer pattern, as random errors possibly introduced in the multi-step procedure (despite many 

robustness checks above), if substantial, should be biased toward no significant relationship 

between credit risk transfer and potential economic factors.   

Toward this end, we conduct the following preliminary analysis. First, based on the 

identified contemporaneous causal patterns among financial institutions, we construct an index 

(called as I-index) to measure the importance of financial institutions from the perspective of 

interconnectedness as follows.21 (1) Being assigned to be 3, the prime senders of credit risk 

                                                 
21 As discussed earlier, prime senders, exchange centers and prime receivers identified based on contemporaneous 
causal patterns are generally confirmed in the forecast error variance decompositions. We also conduct additional 
analysis to confirm the robustness of the result below. For example, when Fannie Mae is classified as a prime sender 
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information are those who send out at least two more shocks than their receipts. Specifically, 

Lehman Brothers, Morgan Stanley, Sefeco, Chubb, and possibly AIG in the US and BNP Paribs, 

Dresdner bank, and UBS in the Europe belong to this category. (2) The exchange centers of 

credit risk information are assigned to be 2. Goldman Sachs, Bear Sterns, Bank of America, and 

Metlife in the US and Barclays, RBS, Commerzbank, and HVB in the Europe play the role of the 

exchange center on the credit market by intensively receiving from at least 2 financial 

institutions and then transferring credit risk information to at least 2 others.  (3) The prime 

receivers of credit risk information are assigned to be 0, such as Citigroup, Wachovia, JPMorgan 

and Hartford in the US, and ABN AMRO, ING, Rabobank, and Deutsche Bank in the Europe. 

These institutions receive at least two more shocks than what they spread out. (4) The institutions 

other than the above three categories are assigned to be 1. Table 8 shows the value of I-index for 

each individual institution. The higher the value, the more likely an institution transfers credit 

risk information to others and thus plays a more active role in the interconnected financial 

network.  

Second, we analyze the relationship between our I-index and various factors. Given a 

small sample size with (at most) 43 observations, it is probably most appropriate to focus on the 

simple regressions and 10 percent significance level (or lower). Table 9 summarizes the simple 

regression results of I-index on various variables, with White’s (1980) robust standard errors. 

The first factor under consideration is the size, the coefficient of which is however not 

statistically significant at any conventional significance levels, regardless of using the values in 

any year of 2006-08. Actually, these (insignificant) coefficient estimates are all negative. As the 

financial institutions under study are all among the largest in the world, the result thus does not 

                                                                                                                                                             
instead, the results hold even better.  Also, as mentioned earlier, our identification of “senders” and “receivers” of 
credit information is similar to primary and secondary firms in Jarrow and Fu’s (2001) model, respectively.   
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mean that the size does not matter in affecting the roles of credit risk transfer.  Nevertheless, it 

does imply that among the largest financial institutions, their roles of credit risk transfer may not 

be related to their further somewhat differences in their sizes. Hence, from the perspective of 

interconnectedness, the evidence suggests a caveat for the conventional argument of “too big to 

fail.”  

In contrast to size, the leverage and particularly short-term leverage ratios show their 

importance in credit risk spillovers. Collin-Dufresne and Goldstein (2001) argue that a firm’s 

leverage ratios have a significant impact on credit spread predictions. More relevant to this study, 

both Diamond and Rajan (2009) and Acharya and Viswanathan (2011) emphasize the role of 

short-term debt in affecting asset market liquidity under the crisis scenario. We employ several 

leverage ratios including the ratios of total debt to total asset, short-term debt to total debt, total 

debt to common equity, and short-term debt to common equity. The regression results are all 

significantly positive for both debt to common equity ratios at (at least) the 10% levels across 

three years of 2006-08, with short-term debt to equity ratios in 2006 and 2007 particularly 

significant in predicting the cross-sectional differences in importance of credit risk transfer.  The 

ratio of short-term debt to total asset is also generally significant, while the ratio of total debt to 

total asset is not significant in any case, perhaps because it is a noisier and less relevant measure 

of the leverage to financial institutions.  Thus, consistent with Collin-Dufresne and Goldstein 

(2001) and particularly Diamond and Rajan (2009) and Acharya and Viswanathan (2011), the 

result suggests that an institution with a higher leverage ratio and particularly a short-term 

leverage ratio is more likely to transfer credit risk information to others and thus is more 

important in the credit risk network from the perspective of interconnectedness. Arguably, a 

financial institution with a higher leverage ratio might have more incentive to collect private 
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information about credit risk, or other financial institutions including its counterparties might 

simply be more sensitive to the new information about credit risk of the more highly leverage 

financial institution around the global credit crisis.  

We further examine whether the roles of credit risk transfer is related to corporate 

governance, as it is well documented that corporate governance may affect many aspects of 

corporate performance including credit spreads (e.g., Qiu and Yu, 2009) and thus possibly credit 

risk spillover. Various corporate governance measures are considered as follows: G-index is 

Gompers, Ishii and Metrick’s (2003) measure of shareholders rights and E-index is Bebchuk, 

Cohen and Ferrell’s (2009) measure of entrenchment, both of which are only available for US 

firms. There are other corporate governance measures as follows:  the board size is the total 

number of directors in the firm; % independent director is the percentage of outside directors 

who have no significant connection with the firm. None of these corporate governance indicators 

are significant even at the 10% significant level. The result should be interpreted with caution, as 

the data are only available for some firms and the sample is very small.  

Another dimension of the driving forces of CDS spread change spillover might be 

(il)liquidity as part of CDS spread change (albeit small) might be related to expected liquidity 

premiuem (see, e.g., Bongaerts, de Jong, and Driessen, 2011). Given the data availability, we 

construct two measures for illiquidity: one is the average difference between ask and bid prices 

and the other is average percentage ask-bid spread normalized by the corresponding mid-quote. 

The average ask-bid spread increased from 3.27 points in 2007 to 6.48 points in 2008 while the 

average normalized ask-bid decreased from 20.5% in 2007 to 6.9% in 2008. However, both 

measures are not statistically significant in predicting cross sectional variations of our I-index, 

indicating that illiquidity might be not a major driving force of credit risk transfer among largest 
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financial institutions. Certainly, the result does not mean that the liquidity premium does not 

exist on the CDS market. Nevertheless, it might not be substantial for these largest financial 

institutions, which is generally consistent with the findings that the effect of liquidity is either 

statistically insignificant for most widely traded CDS spreads (Acharya and Johnson, 2007) or 

statistically significant but economically small even for a large cross-section of CDS spreads 

(Bongaerts, de Jong, and Driessen, 2011). 

Finally, we conduct the analysis on how asset write-downs by financial institutions might 

affect the roles of credit risk transfer. From the Bloomberg, the absolute values of write-down 22 

and the percentage values normalized by total asset and/or market value are potentially direct 

measures of how hard an institution was hit in the credit crunch and could be to some extent 

proxies for counter party risk as discussed in Jorion and Zhang (2009). However, as shown in 

Table 9, the results are all insignificant. The result, while it could be due to the relatively small 

sample, may be consistent with the observation that write-down more likely reflects 

opportunistic reporting by managers rather than the provision of their private information (Riedl, 

2004) or that financial contagion was not propagated through a correlated-information channel 

(Longstaff, 2010). The above analysis is obviously preliminary, and further research is needed to 

examine the issue in more depth. 

6. Conclusions  

This study uses credit default spreads to sort out the structure of credit risk spillovers 

among the 43 largest international financial institutions around the recent global credit crisis. We 

propose and apply a relatively novel empirical framework that combines cluster analysis, 

principle component analysis, and DAG-based VAR analysis. Using hierarchical cluster analysis, 
                                                 
22 The total magnitude of losses in all firms covered by Bloomberg is about US $1,000 billion for our sample period. 
Bloomberg collects write downs by quarter and also classifies them into various groups based on company 
disclosure. For simplicity, we aggregate write downs by year for each financial institution. 
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we classify financial institutions into four clusters based on their credit risk: US GSEs, US banks, 

US insurance companies, and European financial institutions. The first component in each cluster 

is also found to be the major driving force, explaining more than 60% of total variation.  

To investigate the structure of credit risk spillover at the firm level, we consider 

interactions among individual financial institutions within a particular cluster while controlling 

for the influence of the other clusters. We are able to identify three groups of players including 

prime senders, exchange centers and prime receivers of credit risk information. Noticeably, 

before its collapse, Lehman Brothers already surpassed all other US banks under consideration to 

exert a pervasive impact on credit risk of US banks.  Credit risk shocks to European financial 

institutions as a group often has a noticeable impact on individual US GSEs and US insurance 

companies, but not on individual US banks, even at the longer horizon. The main findings are 

quite reliable based on the simulation evidence and generally robust against alternative model 

specifications and sample periods. Further analysis shows that consistent with the literature (e.g., 

Acharya and Viswanathan, 2011; Collin-Dufresne and Goldstein, 2001; Diamond and Rajan, 

2009), leverage ratios and particularly short-term debt ratios appear to be significant 

determinants of identified different roles of financial institutions in credit risk transfer.  There is 

little preliminary evidence that other factors including corporate governance indexes, size, 

liquidity and write-downs can explain the cross-sectional differences of the credit risk transfer 

roles among these financial institutions, which  is also consistent with many earlier works (e.g., 

Acharya and Johnson, 2007; Bongaerts, de Jong, and Driessen, 2011; Riedl, 2004).   

The findings of this study provide considerable information to policymakers, as they shed 

light on the structure of the credit risk network among financial institutions and the identification 

of SIFIs from the perspective of interconnectedness with the focus on credit risk. The current key 
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policy initiative to address the SIFIs is to use a basket of measures to identify these SIFIs and 

impose additional capital surcharge of 1% to 2.5% of risk-weighted assets. Our findings also 

offer more specific implications for regulation, suggesting that capital surcharge should be 

particularly based on short-term debt ratio.  Further research may be fruitful to more thoroughly 

examine different firm characteristics and different channels affecting the role of individual 

financial institutions in credit risk transfer (e.g., Beltratti and Stulz, 2010).  
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Table 1:   Summary statistics of CDS Spreads  

 
This table reports summary statistics on CDS spreads for 43 financial institutions from January 
1, 2007 to September 9, 2008. The means, standard deviations, minimum and maximum values 
are based on mid-quotes. The ask-bid are differences between ask and bid prices and the 
normalized ask-bid is the ask-bid divided by the corresponding mid-quote.  
 

Country Name Mean Std. 
Dev. Min Max Average  

Ask-bid 

Average 
normalized 

 ask-bid 
US Fannie Mae 32.22 21.83 6.40 87.58 2.53 0.11 
US Freddie Mac 32.09 22.06 5.25 88.15 2.74 0.12 
US Lehman Brothers 139.16 103.80 20.81 425.14 6.01 0.06 
US Bearn Sterns 114.66 96.36 20.83 727.14 5.54 0.06 
US Goldman Sachs 77.69 47.16 20.90 244.44 4.25 0.07 
US Merrill Lynch 123.28 94.52 15.63 342.19 5.47 0.07 
US Morgan Stanley 103.52 73.09 17.83 297.30 5.31 0.07 
US Bank of America 54.60 39.33 8.68 147.25 4.17 0.13 
US Wachovia 97.94 90.68 11.10 358.51 4.35 0.14 
US Citigroup 70.45 57.51 7.44 226.60 4.58 0.14 
US JP Morgan 55.72 35.23 14.49 163.83 3.73 0.09 
US Met Life 66.11 60.01 11.00 240.59 4.34 0.11 
US Safeco 43.33 26.64 17.90 135.03 4.41 0.13 
US American express 86.26 75.36 8.91 250.67 5.94 0.13 
US AIG 96.04 96.93 8.93 446.24 5.63 0.14 
US Chubb 38.72 27.42 9.86 125.92 3.65 0.13 
US Hartford 62.14 61.54 10.72 293.26 4.47 0.12 
UK Abbey 44.75 35.84 4.33 155.56 4.17 0.21 
UK Barclays 52.83 43.50 5.45 173.00 4.31 0.17 
UK HBOS 70.83 66.28 4.77 253.10 6.95 0.15 
UK HSBC 39.01 30.67 4.94 155.00 4.18 0.22 
UK Lloyds TSB 37.46 31.62 3.67 135.81 3.82 0.26 
UK RBS 52.95 43.56 4.06 204.94 4.20 0.17 
UK Standard Chartered 43.79 31.96 5.63 139.88 5.44 0.25 
France AXA 56.50 43.55 9.10 197.75 4.94 0.15 
France BNP Paribas 33.59 25.00 5.7 119.59 3.68 0.18 
France Credit Agricole 45.11 37.19 5.84 161.82 4.64 0.17 
France Societe Generale 42.53 34.73 6.01 148.60 4.28 0.20 
Germany Allianz 41.10 29.25 6.04 133.02 4.33 0.18 
Germany Commerzbank 49.39 34.58 8.16 164.50 4.69 0.15 
Germany HVB 42.62 30.69 6.17 144.81 4.53 0.19 
Germany Deutsche Bank 47.49 32.20 9.82 155.13 4.54 0.14 
Germany Dresdner Bank 49.83 39.84 5.48 167.85 4.77 0.20 
Germany Hannover Rueckversicherung 41.64 29.57 8.50 143.93 4.34 0.16 
Italy Banco Monte Dei Paschi 44.31 32.69 6.13 158.07 7.37 0.17 
Italy UniCredit SpA 43.03 29.26 7.48 151.42 4.07 0.14 
Netherlands ABN AMRO 48.39 39.32 5.53 189.22 4.18 0.16 
Netherlands ING 44.84 39.80 4.62 177.49 4.22 0.21 
Netherlands Rabobank 28.86 24.47 3.00 99.83 3.52 0.26 
Switzerland Credit Suisse 52.24 37.72 9.86 186.26 4.42 0.12 
Switzerland UBS 53.97 48.12 4.55 225.25 4.73 0.2 
Spain Banco Santader 45.39 33.66 7.62 152.39 4.34 0.16 
Portugal Banco Commercial Portugues 48.58 34.99 8.15 157.21 4.48 0.15 
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Table 2: Cluster Analysis  
 
This table reports 4 clusters of 43 largest financial institutions based on a hierarchical cluster 
analysis. The average linkage method is used to measure the distance between cluster pairs and 
the cubic cluster criterion (CCC) is used to choose the number of clusters. 
 
Cluster 1 
(US GSEs) 

Cluster 2 
(US Banks) 

Cluster 3 
(US Insurances) 

Cluster 4 
(EU Financial Institutions) 

Fannie Mae Lehman Brothers Met Life Abbey  
Freddie Mac Bearn Sterns Safeco Barclays 
 Goldman Sachs American express HBOS 
 Merrill Lynch AIG HSBC 
 Morgan Stanley Chubb Lloyds TSB 
 Bank of America Hartford RBS 
 Wachovia  Standard Chartered 
 Citigroup  AXA  
 JP Morgan  BNP Paribas 
   Credit Agricole 
   Societe Generale 
   Allianz 
   Commerzbank 
   HVB 
   Deutsche Bank 
   Dresdner Bank 
   Hannover Rueckversicherung 
   Banco Monte Dei Paschi  
   UniCredit SpA  
   ABN AMRO 
   ING 
   Rabobank 
   Credit Suisse 
   UBS 
   Banco Santader 
   Banco Commercial Portugues 
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Table 3: Principal Component Analysis 
 

This table reports the cumulative fractions of the total variation explained by the first few 
principal components in each cluster. The clusters are defined as in Table 2. The cumulative 
fractions are computed as the ratio between the sum of the first few largest eigenvalues divided 
by the sum of all eigenvalues. 
 
 Cluster 1 

(US GSEs) 
Cluster 2 
(US Banks)

Cluster 3 
(US Insurances)

Cluster 4 
(EU Financial Institutions)

1st factor 90.04% 62.56% 66.13% 70.82% 
First 2 factors 100% 72.32% 80.23% 80.17% 
First 3 factors  79.24% 89.44% 82.50% 
First 4 factors  85.27% 94.14% 84.52% 
First 5 factors  89.54% 97.49% 86.49% 
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Table 4: Forecast error variance decomposition results (percentage) 
among US GSEs and the other three clusters 

  

Day Fannie Mae Freddie Mac US 
Banks 

US 
Insurances 

EU financial 
institution 

Variance of Fannie Mae explained by shocks to the five CDS spreads 
0 93.7 0.0 5.7 0.4 0.2 
1 84.7 8.1 5.1 0.7 1.4 
2 81.0 10.9 4.9 1.0 2.2 
10 76.2 11.0 5.1 1.7 6.1 
30 76.1 11.0 5.1 1.7 6.1 

Variance of Freddie Mac explained by shocks to the five CDS spreads 
0 47.7 45.9 2.9 3.4 0.1 
1 48.9 44.2 3.3 2.6 0.9 
2 47.0 41.5 3.8 3.6 4.1 
10 43.9 38.0 3.9 3.9 10.3 
30 43.9 38.0 4.0 3.9 10.3 

Variance of US banks explained by shocks to the five CDS spreads 
0 0.0 0.0 90.1 6.3 3.7 
1 0.0 0.4 86.3 8.3 5.0 
2 0.3 0.3 84.4 8.1 6.9 
10 0.9 0.8 81.4 8.9 8.0 
30 0.9 0.8 81.3 8.9 8.1 

Variance of US insurances explained by shocks to the five CDS spreads 
0 0.0 0.0 0.0 100.0 0.0 
1 0.0 0.6 0.0 99.4 0.0 
2 0.0 0.9 0.2 97.6 1.2 
10 0.2 1.0 1.1 86.3 11.5 
30 0.2 1.0 1.1 86.2 11.5 

Variance of EU financial institutions explained by shocks to the five CDS spreads 
0 0.0 0.0 0.0 0.0 100.0 
1 0.1 0.1 0.5 0.9 98.3 
2 0.3 0.4 2.3 1.8 95.4 
10 1.3 0.5 3.9 1.9 92.4 
30 1.3 0.5 3.9 1.9 92.4 

 
Note: The variance decomposition is based on the directed graph on innovations given in Figure 
1. 
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Table 5: Forecast error variance decomposition results (percentage) 
  for US banks and first principle components of other groups  

 

Days US 
GSEs 

US 
Insurances 

EU 
financial 

Institutions

Lehman
Brothers

Bear 
Sterns

Goldman
Sachs 

Merrill 
Lynch 

Morgan
Stanley Wachovia Citi-

group
JP 

Morgan
Bank of 
America

Variance of US GSEs explained by the shocks of the 12 CDS spreads 
0 90.1 4.6 0.0 2.4 0.4 2.1 0.2 0.3 0.0 0.0 0.0 0.0 
1 83.6 4.5 0.0 3.0 0.5 3.5 0.2 1.9 0.7 1.9 0.2 0.1 
2 76.2 4.3 1.7 3.8 1.3 4.6 0.6 2.7 0.6 3.3 1.0 0.1 
30 67.6 4.1 5.7 3.6 1.9 5.3 0.9 4.1 2.0 3.1 1.2 0.4 

Variance of US insurances explained by the shocks of the 12 CDS spreads 
0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.3 96.8 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.5 1.8 0.0 
2 0.4 91.3 0.4 0.1 2.6 0.0 0.5 0.3 0.5 0.6 3.4 0.1 
30 0.5 77.3 7.0 0.5 4.2 1.5 1.0 1.1 2.1 0.9 3.3 0.8 

Variance of EU financial institutions explained by the shocks of the 12 CDS spreads 
0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.0 0.8 94.5 0.1 0.1 1.1 0.2 1.6 0.1 0.5 0.7 0.4 
2 0.1 1.4 85.8 0.6 0.1 3.6 0.2 5.0 0.2 0.7 0.8 1.5 
30 0.3 1.9 77.1 1.8 0.9 7.0 0.9 5.9 0.4 0.7 1.0 2.3 

Variance of Lehman Brothers explained by the shocks of the 12 CDS spreads 
0 0.0 10.7 0.0 80.9 0.7 0.0 0.1 7.8 0.0 0.0 0.0 0.0 
1 0.5 10.1 0.0 77.2 0.7 0.2 0.4 8.0 0.2 0.2 1.3 1.5 
2 0.9 9.9 1.1 71.8 0.6 1.2 0.9 7.5 0.3 0.3 2.3 3.4 
30 0.9 9.0 3.5 67.6 0.7 2.6 1.4 7.5 0.3 0.4 2.5 3.8 

Variance of Bear Sterns explained by the shocks of the 12 CDS spreads 
0 0.0 4.1 0.0 31.1 61.8 0.0 0.1 2.9 0.0 0.0 0.0 0.0 
1 0.4 6.2 0.6 32.6 54.2 0.0 0.1 2.4 0.4 0.0 1.7 1.5 
2 0.4 6.3 2.9 30.9 50.7 0.2 0.1 2.4 0.6 0.1 2.9 2.6 
30 0.6 6.3 4.5 28.7 46.4 2.4 1.2 3.2 0.6 0.6 2.7 3.0 
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Table 5 (Continued)  
 

Days US 
GSEs 

US 
Insurances 

EU 
financial 

Institutions

Lehman
Brothers

Bear 
Sterns

Goldman
Sachs 

Merrill 
Lynch 

Morgan
Stanley Wachovia Citi-

group
JP 

Morgan
Bank of 
America

Variance of Goldman Sachs explained by the shocks of the 12 CDS spreads 
0 0.0 5.6 0.0 42.2 7.0 37.2 3.5 4.6 0.0 0.0 0.0 0.0 
1 0.3 6.6 0.0 39.5 6.7 33.1 2.2 6.5 0.2 1.1 1.2 2.8 
2 0.4 6.3 0.5 36.7 6.2 31.3 3.0 6.5 0.2 1.6 2.5 4.8 
30 0.5 6.2 1.6 35.4 5.9 30.7 3.1 6.7 0.4 1.7 3.3 4.8 

Variance of Merrill Lynch explained by the shocks of the 12 CDS spreads 
0 0.0 2.8 0.0 20.8 0.4 0.0 76.5 4.7 0.0 0.0 0.0 0.0 
1 0.0 4.0 0.5 25.7 0.3 0.8 54.8 8.2 0.0 1.0 1.9 2.8 
2 0.1 3.6 1.0 21.6 0.3 2.5 52.7 7.5 0.0 1.8 3.7 5.3 
30 0.2 3.8 1.3 20.5 0.7 3.6 51.0 7.4 0.3 2.0 4.0 5.5 

Variance of Morgan Stanley explained by the shocks of the 12 CDS spreads 
0 0.0 0.7 0.0 4.8 7.0 0.0 0.7 86.9 0.0 0.0 0.0 0.0 
1 0.7 3.7 0.2 7.0 7.5 0.1 1.0 76.6 0.9 0.0 2.0 0.1 
2 1.0 4.9 1.7 7.5 6.9 0.3 0.9 70.8 0.9 0.1 4.4 0.9 
30 1.0 5.6 2.3 7.5 6.7 0.9 1.6 67.5 0.9 0.2 4.5 1.4 

Variance of Wachovia explained by the shocks of the 12 CDS spreads 
0 0.0 3.5 0.0 26.4 3.8 1.9 0.2 2.6 61.7 0.0 0.0 0.0 
1 0.3 2.3 0.0 26.8 6.0 6.5 0.2 4.1 50.7 0.1 0.3 2.9 
2 1.1 2.3 0.1 24.6 5.8 6.9 0.8 3.8 45.9 0.2 0.6 8.2 
30 1.4 2.1 0.5 22.4 5.4 9.8 1.0 3.9 43.7 0.5 1.1 8.4 

Variance of Citigroup explained by the shocks of the 12 CDS spreads 
0 1.4 1.6 0.0 8.5 1.0 0.0 0.1 6.4 3.1 54.2 0.0 23.9 
1 2.8 1.2 1.7 11.1 0.8 0.2 0.4 11.7 2.7 42.5 0.3 24.8 
2 3.4 2.9 3.0 11.8 1.1 0.3 0.8 11.3 2.6 38.3 1.1 23.6 
30 3.5 4.6 3.5 11.8 1.1 0.8 1.2 10.9 3.1 35.8 1.4 22.3 
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Table 5 (Continued) 
 

Days US 
GSEs 

US 
Insurances 

EU 
financial 

Institutions

Lehman
Brothers

Bear 
Sterns

Goldman
Sachs 

Merrill 
Lynch 

Morgan
Stanley Wachovia Citi-

group
JP 

Morgan
Bank of 
America

Variance of J.P. Morgan explained by the shocks of the 12 CDS spreads 
0 1.0 1.8 0.0 10.3 2.7 4.6 0.7 9.7 0.1 1.6 50.3 17.4 
1 1.4 2.4 2.9 9.7 2.5 3.4 0.5 12.9 0.1 1.9 34.8 27.8 
2 2.0 2.5 4.5 10.5 2.9 4.3 0.8 12.5 0.1 1.7 32.3 25.9 
30 2.4 3.4 4.7 10.0 3.2 8.5 1.5 12.2 0.1 1.6 28.9 23.8 

Variance of Bank of America explained by the shocks of the 12 CDS spreads 
0 4.8 0.6 0.0 1.3 1.1 0.1 0.2 11.1 0.0 0.0 0.0 80.9 
1 4.9 0.7 0.9 5.0 1.4 0.1 0.8 12.4 0.0 0.3 0.5 73.3 
2 4.7 3.0 1.9 6.9 2.2 0.2 1.7 11.1 0.0 0.6 2.5 65.2 
30 5.0 4.2 2.8 7.1 2.2 1.9 1.9 10.8 0.5 0.7 3.1 60.1 

 

Note: The variance decomposition is based on the directed graph on innovations given in Figure 2. The values are the averages of two 
different assumed edges for the only undirected edge between Morgan Stanley and Merrill Lynch. 
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Table 6: Forecast error variance decomposition results (percentage) 

 for US insurance companies and first principle components of other groups 
 

Days US 
GSEs 

US 
Banks

EU financial
Institutions

American
Express AIG Chubb Met Life Hartford Safeco

Variance of US GSEs explained by shocks to the nine CDS spreads 
0 80.6 0.0 0.9 0.7 1.3 9.4 0.0 0.0 7.0 
1 76.3 0.2 2.1 2.6 2.2 8.4 0.1 0.0 8.0 
2 71.3 1.1 5.0 3.1 2.8 8.0 0.2 0.9 7.6 
30 64.3 1.3 8.5 3.5 4.1 7.9 0.5 2.7 7.1 

Variance of US Banks explained by shocks to the nine CDS spreads 
0 0.0 65.4 0.0 1.4 12.6 9.0 4.5 0.0 7.0 
1 0.4 59.1 0.3 1.6 14.3 9.6 5.1 0.0 9.5 
2 0.5 57.6 2.7 1.8 13.9 9.3 4.9 0.1 9.2 
30 0.8 52.3 5.2 2.9 13.5 10.1 4.9 0.3 9.9 

Variance of EU financial institutions explained by shocks to the nine CDS spreads 
0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.1 0.1 96.9 0.0 2.0 0.1 0.2 0.3 0.3 
2 0.4 0.9 93.8 0.0 2.9 0.2 0.3 0.7 0.9 
30 1.2 2.4 87.9 0.3 3.1 1.3 0.9 2.2 0.8 

Variance of American Express explained by shocks to the nine CDS spreads 
0 0.0 0.0 2.4 79.3 4.1 3.9 0.3 2.2 7.7 
1 0.0 0.3 8.1 72.6 5.3 5.6 0.5 1.5 6.0 
2 0.0 0.3 12.9 68.9 4.9 5.1 0.5 1.4 6.1 
30 1.0 0.7 14.3 64.6 4.9 6.0 0.8 1.5 6.3 

Variance of AIG explained by shocks to the nine CDS spreads 
0 0.0 0.0 0.0 0.0 76.7 13.8 0.0 0.0 9.5 
1 0.0 0.0 2.5 1.2 71.6 14.9 0.6 0.1 9.1 
2 0.1 0.2 10.7 2.5 63.2 14.1 0.8 0.2 8.1 
30 1.6 0.8 16.4 2.4 54.7 15.0 1.0 0.3 7.8 
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Table 6 (Continued) 
 

Days US 
GSEs 

US 
Banks

EU financial
Institutions

American
Express AIG Chubb Met Life Hartford Safeco

Variance of Chubb explained by shocks to the nine CDS spreads 
0 0.0 0.0 0.0 0.0 0.0 59.4 0.0 0.0 40.6 
1 0.4 0.2 0.2 0.9 0.6 55.0 0.4 0.0 42.3 
2 0.6 0.2 3.3 1.2 1.4 52.7 0.4 0.2 40.1 
30 0.8 0.5 13.6 1.4 1.9 46.7 1.0 0.5 33.5 

Variance of Met Life explained by shocks to the nine CDS spreads 
0 0.0 0.0 0.0 0.0 3.5 28.9 47.8 0.0 19.8 
1 0.0 0.2 0.4 0.2 6.4 26.4 41.8 0.3 24.4 
2 0.0 0.2 6.3 0.4 6.7 24.0 38.4 1.4 22.6 
30 0.4 1.0 14.9 0.6 6.4 21.9 34.1 1.9 18.9 

Variance of Hartford explained by shocks to the nine CDS spreads 
0 0.0 0.0 0.0 0.0 0.3 16.7 3.6 25.9 53.6 
1 0.4 0.0 0.3 0.8 1.7 16.9 5.9 21.7 52.3 
2 0.4 0.0 3.1 0.8 3.4 16.1 5.7 20.6 49.9 
30 0.8 0.3 12.1 1.4 3.3 15.8 6.8 18.1 41.3 

Variance of Safeco explained by shocks to the nine CDS spreads 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 
1 1.4 0.1 0.0 0.1 0.5 0.3 0.7 0.2 96.7 
2 1.8 0.1 0.6 0.7 1.3 0.7 0.9 0.8 93.1 
30 1.8 0.4 5.8 2.0 1.4 1.7 2.1 2.0 82.8 

 
Note: The variance decomposition is based on the directed graph on innovations given in Figure 3. 
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Table 7:   I-index 
This table reports I-index (importance index from the perspective of interconnectedness) for 43 
financial institutions based on their contemporaneous causal patterns. Assigned to be 3, the 
prime senders of credit risk information are those who send out at least two more shocks than 
what their receive.  Assigned to be 0, the prime receivers of credit risk information are 
institutions which receive at least two more shocks than what they spread out. The exchange 
centers of credit risk information are assigned to be 2. They intensively receive from at least 2 
financial institutions and then transfer credit risk information to at least 2 others. The 
institutions other than the above three categories are assigned to be 1.  
 

Country Name I-index
US Fannie Mae 1 
US Freddie Mac 1 
US Lehman Brothers 3 
US Bearn Sterns 2 
US Goldman Sachs 2 
US Merrill Lynch 1 
US Morgan Stanley 3 
US Bank of America 2 
US Wachovia 0 
US Citigroup 0 
US JP Morgan 0 
US Met Life 2 
US Safeco 3 
US American express 1 
US AIG 3 
US Chubb 3 
US Hartford 0 
UK Abbey 1 
UK Barclays 2 
UK HBOS 1 
UK HSBC 1 
UK Lloyds TSB 1 
UK RBS 2 
UK Standard Chartered 1 
France AXA 1 
France BNP Paribas 3 
France Credit Agricole 1 
France Societe Generale 1 
Germany Allianz 1 
Germany Commerzbank 2 
Germany HVB 2 
Germany Deutsche Bank 0 
Germany Dresdner Bank 3 
Germany Hannover Rueckversicherung 1 
Italy Banco Monte Dei Paschi 1 
Italy UniCredit SpA 1 
Netherlands ABN AMRO 0 
Netherlands ING 0 
Netherlands Rabobank 0 
Switzerland Credit Suisse 1 
Switzerland UBS 3 
Spain Banco Santader 1 
Portugal Banco Commercial Portugues 1 
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Table 8:  Estimation results of the OLS regressions with a single instrument  
 
This table reports results from OLS regressions where dependent variables are out I-index in 
Table 8 on a single instrument. G-index is the Gompers-Ishii-Metrick (2003) measure of 
managerial entrenchment. E-index is the Bebchuk, Cohen and Ferrell (2009) measure of 
entrenchment. Board size is the total number of directors in the firm. % independent director is 
the percentage of out directors who have no significant connection with the firm. The coefficient 
estimates in each simple regression are reported with *, **, *** denoting significance at 10%, 
5%, and 1% respectively. The t-statistics reported in parentheses below are based on robust 
errors adjusted for heteroskedasticity.  “Nobs” is the numbers of observations used in each 
simple regression. Adjusted R-squares are also reported for each simple regression.  
 

 2006 2007 2008 
 estimate nobs Adj-R2 estimate nobs Adj-R2 estimate nobs Adj-R2

Log market value 
(million USD) 

-0.47 
(-1.11) 39 0.5% -0.50 

(-1.25) 39 1.2% -0.10 
(-0.25) 35 -2.8%

Total debt/ 
Total asset 

0.01 
(1.58) 39 4.6% 0.01 

(0.92) 39 -0.2% 0.01 
(0.77) 36 -1.4%

Short-term debt/ 
Total asset 

2.00** 
(2.29) 39 10.8% 1.87* 

(1.89) 39 7.1% 1.09 
(1.02) 36 0.4% 

Total debt/ 
common equity 

0.05** 
(2.43) 39 12.9% 0.04* 

(1.78) 39 6.7% 0.03* 
(1.91) 35 8.1%

Short-term debt/ 
common equity 

0.08*** 
(3.32) 39 19.8% 0.06***

(2.61) 39 14.4% 0.04* 
(1.80) 35 6.1%

G-index 0.11 
(1.10) 17 -1.4%       

E-index 0.000 
(0.00) 15 -7.7% 0.10 

(0.54) 16 -5.4%    

Board  
size 

-0.07 
(-1.23) 17 0.6%       

% independent  
director 

-0.48 
(-0.85) 17 -5%       

Average 
Ask-bid    0.28 

(1.09) 43 -0.5% 0.11 
(1.21) 43 1.3% 

Average 
normalized 

Ask-bid 
   -2.27 

(-1.31) 43 0.9% -7.76 
(-0.64) 43 -1.2%

Write-down 
(billion USD)    0.02 

(0.82) 32 -1.2% -0.004 
(-0.46) 32 -2.6%

% of write down 
/ total asset    0.23 

(0.71) 29 -1.9% 0.08 
(0.77) 29 -1.6%

% of write down 
/market value    0.01 

(0.68) 29 -1.7% 0.001 
(1.05) 28 -2.7%
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Figure 1   Contemporaneous causal flow patterns among US GSEs and other clusters 
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Figure 2   Contemporaneous causal flow patterns among US banks as well as other clusters 
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Figure 3   Contemporaneous causal flow patterns  
among US insurance companies as well as other clusters 
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Figure 4 Contemporaneous casual flow patterns  
among European financial institutions as well as other clusters 
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