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1. Introduction

The New Keynesian Phillips Curves (NKPC) are generally estimated un-

der the assumption that inflation is a stationary process. However, one can-

not rule out the possibility that inflation has a unit root. For example, dating

back to at least Nelson and Schwert (1977), there is substantial empirical ev-

idence that U.S. inflation has a unit root (Ireland, 1999; Bai and Ng, 2004;

Henry and Shields, 2004).

Recently, authors have incorporated the possibility of a stochastic trend

in their models of inflation. For example, Cogley and Sbordone (2008) derive

a version of the NKPC that incorporates a time-varying inflation trend and

examine whether it explains the dynamics of inflation. Within a VAR frame-

work with drifting coefficients, Cogley and Sargent (2005) investigate the

nature of inflation dynamics and the time-varying long-run trend component

of inflation. Based on unobserved component trend-cycle models of inflation

with heteroscedastic shocks, Stock and Watson (2007) and Kang et al. (2009)

investigate the evolving nature of inflation dynamics. Harvey (2008) specifies

a bivariate unobserved components model for inflation and real output based

on a reduced form Phillips curve, with the lagged inflation terms replaced by

a random walk. Lee and Nelson (2007), in particular, derive an unobserved

components trend-cycle model for inflation and unemployment, as implied

by the NKPC. They show that the slope of the implied Phillips curve will

depend critically on the horizon of the forward-looking inflation expectation.

In this paper, we investigate the nature of structural breaks in the dy-
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namics of U.S. inflation, in the presence of a unit root. This is done by

using the unobserved components trend-cycle models of inflation as implied

by the NKPC. We first derive the transitory component of inflation to be a

function of real economic activity and a potentially serially correlated unob-

served component, which signifies the importance of the backward-looking

component in the NKPC. We then incorporate the possibility that the autore-

gressive coefficients in the transitory component as well as the variances of

the shocks to inflation may evolve over time. Within the framework outlined

above, we hope to re-evaluate the significance or the temporal significance of

the backward-looking component in the NKPC characterizing the dynamics

of U.S. inflation. The forecasting performances of the proposed models are

also evaluated.

The contents of this paper are organized as follows. Section 2 outlines

the model specifications. Section 3 presents and discusses the estimation of

the proposed models. The forecasting performances of the proposed models

are presented in Section 4. Section 5 provides a summary and conclusion.

2. Model Specification

Consider the following New Keynesian Phillips curve:

πt = (1− α)Et(πt+1) + kxt + απt−1, (1)

0 ≤ α ≤ 1
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where Et(.) refers to expectation formed conditional on information up to t,

and xt is the output gap. By rewriting equation (1), we have:

πt = Et(πt+1) + kxt + z∗t , (2)

where z∗t = α(πt−1 − Et(πt+1)). By iterating equation (2) in the forward

direction, we have:

πt = Et(π∞) + k
∞∑
j=0

Et(xt+j) + z̃t (3)

where z̃t =
∑∞

j=0Et(z
∗
t+j). Note that, with α = 0, we have a purely forward-

looking Phillips curve. With α 6= 0, however, we have a hybrid Phillips curve

and the z̃t term in equation (3) would be serially correlated1.

Lee and Nelson (2007) estimate a version of the Phillips curve based on

equation (3) with α = 0, and they show that the slope of the Phillips curve

critically depends on the horizon of the forward-looking expectation given

that the dynamics of xt is persistent. For example, by assuming that xt

follows an AR(1) process with the persistence parameter φ, they consider

the following expectation of πt+J conditional on information up to t:

Et(πt+J) = Et(π∞) + k∗xt, (4)

1See for examples, Fuhrer and Moore (1995) and Gali and Gertler (1999) for analyses
and discussions related to the forward-looking and hybrid versions of the NKPC.
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where k∗ = k × φJ

1−φ . Equation (4), combined with equation (3) results in

the following Phillips curve which depends upon the J-step-ahead forecast

of inflation:

πt = Et(πt+J) + k̃xt + z̃t, (5)

where the slope of the Phillips curve k̃ = k 1−φJ
1−φ depends upon the forecasting

horizon J .

In this paper, we focus on the nature of structural breaks in the New

Keynesian Phillips curve that characterizes the U.S. inflation dynamics. Our

focus is on the stability of the α coefficient that describes the importance of

the backward-looking component in equation (1). We note again that the

serial correlation in the z̃t term in equation (3) implies a non-zero value for

the α coefficient. We thus allow for the possibility that the dynamics of the z̃t

term may be time-dependent2. Furthermore, we consider the heteroscedastic

nature of the shocks to the permanent and transitory components of inflation.

In the presence of a unit root in inflation, we note that the Et(π∞) term,

the limiting forecast of inflation as the forecast horizon goes to infinity, can

be interpreted as a the random walk stochastic trend component of inflation.

This is in the spirit of Beveridge and Nelson (1981). Furthermore, for an

2In the presence of a stochastic trend rate of inflation, we may not be able to estimate
the α coefficient. This is why we propose and estimate unobserved components models
that are consistent with the NKPC and investigate the importance of the α coefficient by
allowing the persistence of zt to vary over time.
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empirical estimation of the model given above, we replace the Et(xt+j) term

in equation (3) by Et−1(xt+j) to obtain the following representation of the

basic NKPC in the absence of structural breaks:

πt = π∗t + k
∞∑
j=0

Et−1(xt+j) + zt, (6)

π∗t = π∗t−1 + vt, (7)

where zt = k(
∑∞

j=0Et(xt+j) −
∑∞

j=0Et−1(xt+j)) + z̃t. Note that the first

element of zt is a function of economic agents’ revision on the present value

of future output gaps and thus may be correlated with xt. Furthermore, the

zt term can be potentially serially correlated. However, if z̃t in equation (3) is

serially uncorrelated, the zt term in equation (6) is also serially uncorrelated,

which implies a purely forward-looking NKPC.

Depending upon whether we assume the output gap (xt) to be observed or

not, we have different model specifications. In what follows, we first consider

a model specification in which the output gap is assumed to be observed. We

then extend the model to the case of an unobserved output gap, which can

be extracted from an unobserved components model of real output.

2.1. A Benchmark Model with Observed Output Gap: Model 1

πt = π∗t + k

∞∑
j=0

Et−1(xt+j) + zt, (8)

π∗t = π∗t−1 + vt, vt ∼ i.i.d.N(0, σ2
v), (9)
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zt = ψzt−1 + εt, εt ∼ i.i.d.N(0, σ2
ε ), (10)

xt = φ1xt−1 + φ2xt−2 + ut, ut ∼ i.i.d.N(0, σ2
u). (11)

In the specification above, we allow zt to be correlated with the output gap

xt with correlation coefficient ρε,u.

A state-space representation of the model is given by:

Measurement equation

 πt

xt

 =

 1 1 0 0

0 0 1 0




π∗t

zt

x∗t

x∗t−1


+

 k
∑∞

j=0Et−1(x
∗
t+j)

0

 (12)

(
Πt = Hβt + Z̃t

)
Transition equation



π∗t

zt

x∗t

x∗t−1


=



1 0 0 0

0 ψ 0 0

0 0 φ1 φ2

0 0 1 0





π∗t−1

zt−1

x∗t−1

x∗t−2


+



1 0 0

0 1 0

0 0 1

0 0 0




vt

εt

ut

 , (13)
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
vt

εt

ut

 ∼ i.i.d.N




0

0

0

 ,

σ2
v 0 0

0 σ2
ε ρε,uσεσu

0 ρε,uσεσu σ2
u




(βt = Fβt−1 + Ut, Ut ∼ i.i.d.N(0, Q))

Note that the
∑∞

j=0Et−1(xt+j) term in the measurement equation can be

calculated as:

∞∑
j=0

Et−1(xt+j) = e′3(I4 − F )−1βt|t−1, (14)

where e′3 =

[
0 0 1 0

]
and βt|t−1 = E(βt|It−1).

2.2. A Benchmark Model with Unobserved Output Gap: Model 2

When the output gap xt is unobserved, we can extract it from the follow-

ing unobserved components model of real output:

yt = τt + xt, (15)

xt = φ1xt−1 + φ2xt−2 + ut, ut ∼ i.i.d.N(0, σ2
u), (16)

τt = µ+ τt−1 + ηt, ηt ∼ i.i.d.N(0, σ2
η), (17)

where real output yt is decomposed into a stochastic trend component τt and

a cyclical component xt. This unobserved components model for real output

is combined with that for inflation, given below:
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πt = π∗t + k

∞∑
j=0

Et−1(xt+j) + zt, (18)

π∗t = π∗t−1 + vt, vt ∼ i.i.d.N(0, σ2
v), (19)

zt = ψzt−1 + εt, εt ∼ i.i.d.N(0, σ2
ε ). (20)

As before, we allow the shocks to zt and the output gap xt to be correlated

through a non-zero correlation coefficient ρε,u.

A state-space representation of the model is given by:

Measurement equation

 πt

yt

 =

 1 1 0 0 0

0 0 1 0 1





π∗t

zt

xt

xt−1

τt


+

 k
∑∞

j=0Et−1(xt+j)

0

 (21)

(
Πt = Hβt + Z̃t

)
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Transition equation



π∗t

zt

xt

xt−1

τt


=



0

0

0

0

µ


+



1 0 0 0 0

0 ψ 0 0 0

0 0 φ1 φ2 0

0 0 1 0 0

0 0 0 0 1





π∗t−1

zt−1

xt−1

xt−2

τt−1


+



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1





vt

εt

ut

ηt


,

(22)

vt

εt

ut

ηt


∼ i.i.d.N





0

0

0

0


,



σ2
v 0 0 0

0 σ2
ε ρε,uσεσu 0

0 ρε,uσεσu σ2
u 0

0 0 0 ση




(βt = µ̃+ Fβt−1 + Ut, Ut ∼ i.i.d.N(0, Q))

Note that the
∑∞

j=0Et−1(xt+j) term in the measurement equation can be

calculated as:

∞∑
j=0

Et−1(xt+j) = ẽ′3(I4 − F )−1βt|t−1, (23)

where ẽ′3 =

[
0 0 1 0 0

]
and βt|t−1 = E(βt|It−1).

2.3. Incorporating Structural Breaks in the Model

We assume that we know the nature of structural breaks in the output

dynamics. That is, we take the productivity slowdown in 1973Q1 and the
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Great Moderation in 1984Q2 as stylized facts.

(i) Productivity slowdown in 1973Q1 for real output: structural break in

µ for the model with unobserved output gap

µD1t = (1−D1t)µ0 +D1tµ1, µ1 < µ0, D1t = {0, 1} (24)

D1t =


0, if t ≤ 1973Q1,

1, otherwise

(ii) Great Moderation in 1984Q2 for real output: reduction in the variances

of the shocks to real output

σ2
η,D2t

= (1−D2t)σ
2
η,0 +D2tσ

2
η,1, σ2

η,1 < σ2
η,0, D2t = {0, 1} (25)

σ2
u,D2t

= (1−D2t)σ
2
u,0 +D2tσ

2
u,1, σ2

u,1 < σ2
u,0, D2t = {0, 1} (26)

where

D2t =


0, if t ≤ 1984Q2,

1, otherwise

On the contrary, we allow for structural breaks with unknown break

dates for the dynamics of the inflation equation. In particular, as sug-

gested by the existing literature, we allow for two endogenous break

dates in the inflation dynamics. The following summarizes how we
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incorporate structural breaks in the inflation equation:

(iii) Structural breaks for the inflation equation: unknown break dates

θSt = S1tθ1 + S2tθ2 + S3tθ3, (27)

where

Sjt =


1, if St = j,

0, otherwise

where θSt = {ψSt , σ
2
ε,St
, σ2

v,St
}. Unlike D1t and D2t, St is a latent vari-

able. In order to allow for two unknown structural breaks, we assume

that St follows a first-order Markov-switching process with absorbing

states, with the following matrix of transition probabilities:

P̃ =


p11 1− p11 0

0 p22 1− p22

0 0 1

 , (28)

the (j, i)− th element of which is defined as Pr[St = j|St−1 = i].

By incorporating the structural breaks outlined above, the complete empiri-

cal models can be specified as:

Model 1 with Structural Breaks

πt = π∗t + k

∞∑
j=0

Et−1(xt+j) + zt, (29)
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π∗t = π∗t−1 + vt, vt|St ∼ i.i.d.N(0, σ2
v,St

), (30)

zt = ψStzt−1 + εt, εt|St ∼ i.i.d.N(0, σ2
ε,St

), (31)

xt = φ1xt−1 + φ2xt−2 + ut, ut|D2t ∼ i.i.d.N(0, σ2
u,D2t

), (32)

where cov(εt, ut|D2t, St) = ρε,uσu,D2tσε,St . All the other covariance terms are

assumed to be zero.

Model 2 with Structural Breaks

πt = π∗t + k
∞∑
j=0

Et−1(xt+j) + zt, (33)

π∗t = π∗t−1 + vt, vt|St ∼ i.i.d.N(0, σ2
v,St

) (34)

zt = ψStzt−1 + εt, εt|St ∼ i.i.d.N(0, σ2
ε,St

), (35)

yt = τt + xt, (36)

xt = φ1xt−1 + φ2xt−2 + ut, ut|D2t ∼ i.i.d.N(0, σ2
u,D2t

), (37)

τt = µD1t + τt−1 + ηt, ηt|D2t ∼ i.i.d.N(0, σ2
η,D2t

), (38)

where cov(εt, ut|D2t, St) = ρε,uσu,D2tσε,St . All the other covariance terms are

assumed to be zero.

Once cast into state-space form, the two unobserved components models

with structural breaks are estimated with the Kim filter (Kim, 1994) by the

method of maximum likelihood.
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3. Empirical Results

The data set that we use to estimate the unobserved components models

contain quarterly U.S. time series data that span 1952Q1 to 2007Q3. The

beginning of the sample is chosen to avoid large swings in inflation resulting

from the Korean war, and the end of the sample marks the quarter prior

to the 2007 recession. For the inflation series, we use the annualized log-

difference of the quarterly PCE chain-type price index. As measures of the

output gap in Model 1, we use the CBO’s output gap measure. In Model 2,

we extract measures of the output gap from the annualized log RGDP series.

All data is taken primarily from the Federal Reserve Economic Database

(FRED).

3.1. Parameter Estimates and Interpretations

The empirical models that we estimate contain structural breaks in the

variances of the shocks to both the permanent and transitory components

of inflation. We find that the variance of the permanent shock to inflation

is constant throughout the postwar period, and therefore we also estimated

models with constant trend inflation variance. Based on likelihood tests and

diagnostic checks, we select the model in which the variance of the permanent

shock to inflation is constant. The results are discussed below.

Table 1 contains the estimated parameters for Model 1 with structural

breaks. The parameter estimates have magnitudes that fall within the range

reported in the literature, and are estimated with reasonable accuracy. In-
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terpretations of the results are as follows. First, the standard deviation of

the shock to trend inflation (σv) is 0.34, suggesting that permanent shocks to

realized inflation are important and trend inflation exhibits significant time

variation over the postwar period.

Next, we find that the sum of the AR coefficients that describe the CBO

output gap process is 0.92, suggesting that the CBO gap measure is highly

persistent. It is also volatile across periods, as its standard deviation of

shocks (σu) is 1.03 prior to the Great Moderation and 0.46 thereafter. Nev-

ertheless, the output gap turns out to be a small driving force of overall

inflation dynamics as the estimate of the Phillip curve’s slope parameter k

is 0.02, which implies a flat-sloped Phillips curve. As is well known in the

literature, forward-looking specifications often produce slope estimates that

are statistically insignificant or of the wrong sign, especially when the CBO

gap is used as a measure of real economic activity. However, that is not the

case here.

The transition probabilities p11 and p22 suggest that postwar U.S. infla-

tion dynamics underwent two structural changes over the postwar period.

The first structural break is dated 1971Q1, which occurred approximately

around the collapse of the Bretton Woods system and the beginning of the

Great Inflation. The second structural break occurred in 1980Q4, which ap-

proximately marks the end of the Great Inflation that followed the Volcker

disinflation. By estimating a univariate unobserved components model for

inflation with structural breaks, Kang et al. (2009) also find similar break
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dates. These estimated break dates lend support to the traditional view that

the behavior of inflation is closely tied to the monetary policy regime in place.

In each regime, the dynamics of zt, which contains the backward-looking

component of the NKPC, varies substantially. In the first and third regimes,

estimates of its AR coefficient ψ, are close to zero and statistically insignifi-

cant, implying no serial correlation in zt. This finding suggests that in these

periods, the purely forward-looking NKPC with stochastic trend inflation

can provide a good description of U.S. inflation dynamics. In contrast, zt is

highly persistent and volatile throughout the second regime that corresponds

to the Great Inflation. However, the finding of a persistent zt process dur-

ing the Great Inflation period may be due to the occurence of supply shocks.

Therefore, to isolate the effects of persistent supply shocks, we also estimated

the model with core PCE inflation, yet zt remains highly persistent during

the Great Inflation. This finding suggests that the backward-looking compo-

nent in the NKPC is important during the Great Inflation as there remains

considerable persistence that the purely forward-looking Phillips curve fails

to explain. Our empirical results therefore, stand in contrast to those of

Cogley and Sbordone (2008). By estimating a version of the NKPC with

time-varying trend inflation and NKPC parameters, these authors find that

backward-looking elements are redundant in explaining the dynamics of U.S.

inflation throughout the postwar period once time variation in trend inflation

is taken into account.

Next, Table 2 presents the estimation results for Model 2 with structural
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breaks. The estimates of the parameters that describe the dynamics of in-

flation are similar to those of Model 1, thus confirming the results described

above.

Model 2 is an unobserved components model for inflation and real output,

which allows us to examine the characteristics of U.S. output as implied

by the NKPC with stochastic trend inflation. According to our estimation

results, the sum of the output gap’s AR coefficients are as high as 0.94,

implying that the unobserved output gap measure consistent with a NKPC is

highly persistent3. By estimating a bivariate unobserved components model

for inflation and real output that uses inflation expectations survey data

to measure the forward-looking element in the NKPC, Basistha and Nelson

(2007) also find that the implied output gap series consistent with a NKPC

is highly persistent.

Turning to examine the output trend growth rates µ0 and µ1, the annual

growth rate of U.S. real output was 3.72% before the productivity slowdown

in 1973Q1, and 2.99% thereafter. These estimates are roughly in line with

others reported in the literature, such as those obtained from the univariate

unobserved components model for output of Perron and Wada (2009). In

addition, similar to these authors, we find that the standard deviation of

shocks to the output trend function (ση) is not significantly different from

3According to Morley et al. (2003), persistent output cycles may arise due to the zero
correlation restriction for output trend and cycle components. Therefore, we also estimate
Model 2 allowing for correlation between output trend and cycle components. However,
this unrestricted model delivered similar empirical results to the restricted model.
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zero, implying a deterministic trend for equilbrium real output4.

Last, we check the validity of our empirical results by testing for serial

correlation in the unobserved components models’ standardized residuals and

their squares for the inflation series. Serial correlation in the residuals often

signals model misspecification, and serial correlation in their squares implies

remaining ARCH effects that are left unexplained by the model. The p-

values associated with the Q-statistics under the null hypothesis of no serial

correlation up to lag 8 are reported in Table 3 for both unobserved com-

ponents models. The results suggest that there is no evidence of remaining

serial correlation in the models’ standardized residuals and their squares at

the 5% significance level, implying that the unobserved components models

are generally well specified.

3.2. Estimates of Unobserved Components

Both unobserved components models with structural breaks deliver sim-

ilar estimates for the latent state variables. Due to space considerations, we

only present and discuss the results from Model 2, in which the output gap

is treated as an unobserved process.

Figure 1 shows a plot of the smoothed estimates of trend inflation, π∗t|T ,

4Perron and Wada (2009) show that their deterministic trend result follows from al-
lowing for a one-time break in the slope function of U.S. trend output to account for the
productivity slowdown that occured in 1973Q1. To check the robustness of our results,
we estimate Model 2 with two alternative specifications for the output trend function.
However, we find that whether the slope term is specificied as a constant or a random
walk drift process, U.S. trend output is deterministic.
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alongside actual U.S. inflation. It is evident that trend inflation is highly

persistent, and is an important determinant of actual inflation over the post-

war period. As the figure illustrates, trend inflation varies and has the same

general movement as realized inflation. That is, trend inflation was low and

steady in the early 1960s, started to rise in the mid 1960s, fell after the Vol-

cker disinflation of the early 1980s, and remained low and stable around 2%

since the early 1990s.

This general trajectory of trend inflation is similar to those reported else-

where, although the exact estimates differ in some details. For example,

Cogley and Sbordone (2008)’s reduced form VAR with drifting coefficients

and stochastic volatility produces a slightly smoother trend, with trend infla-

tion peaking just above 4% in the mid 1970s and trend inflation well anchored

at 2% since the 1990s. However, the confidence bands associated with their

estimates are relatively wide, and contains our estimates of trend inflation.

By estimating a dynamic stochastic general equilibrium model with a time-

varying inflation target, Ireland (2007) finds that trend inflation during most

of the 1970s was higher, peaking at around 6%. Compared to Figure 1, es-

timates of trend inflation produced by the unobserved components model

of Lee and Nelson (2007) are much more volatile, peaking as high as the

inflation series itself during the Great Inflation.

Figure 2 is a plot of the inflation cycle along with the inflation gap. We

define the inflation cycle as the second term in equation (6), which can be

interpreted as the transitory component of inflation that is driven by agents’
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forecasts of current and future output gaps. As for the inflation gap, we

follow the recent literature and define it as the deviation of actual inflation

from its latent trend, thus being the sum of the inflation cycle and the zt

component. The inflation gap is a widely used measure of short-run inflation

dynamics, and we can observe from Figure 2 that the U.S. inflation gap

was significantly more volatile and persistent during the Great inflation. By

estimating VARs with drifting coefficients and stochastic volatility, Cogley et

al. (2010) arrives at a similar conclusion about U.S. inflation gap dynamics.

As for the implications that we can draw from our estimates of the inflation

cycle, we observe from Figure 2 that the inflation cycle generally moves in

the same direction as the inflation gap, suggesting that the output gap is an

important driver of inflation dynamics in the short run.

3.3. A Comparison of the Output Gaps

The two output gap measures that enter the two unobserved components

models are obtained from quite disparate methods. The CBO output gap in

Model 1 is estimated from a large-scale multisector growth model, whereas

the unobserved output gap in Model 2 is a byproduct of estimating a bivariate

unobserved components model in inflation and real output that is consistent

with the NKPC. Furthermore, the CBO output gap is a two-sided estimate,

as it is constantly revised after new information about the macroeconomy

becomes available in the data. On the other hand, estimates of the output

gap obtained from Model 2 is a one-sided measure that only relies on (revised)
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data up until date t. Yet, from the empirical results reported in Tables 1

and 2, the sum of the AR coefficients and the standard deviation estimates

of the shocks to both output gap measures are remarkably similar.

Just how similar are these two output gap measures? Figure 3 presents

a plot of the two output gaps series. Upon a quick glance, both output gaps

contain movements that are generally similar. To better quantify the differ-

ences between the two, in Figure 4 we plot the CBO output gap alongside the

95% confidence interval associated with Model 2’s estimates of the output

gap. As shown, the CBO output gap is well contained within the 95% confi-

dence set. In other words, the differences between the two output gap series

are not statistically significant at the 5% significance level. Furthermore, we

observe that the output gap associated with the bivariate unobserved compo-

nents model has relatively narrow confidence bands when compared to other

measures in the literature. These findings strengthens Kuttner (1994)’s case

of using the bivariate unobserved components modeling approach as an ef-

fective shortcut method to obtain estimates of the output gap in place of a

comprehensive supply-side analysis.

4. Inflation Forecasting

The forecasting performance of a model is often viewed as a useful met-

ric for evaluating its empirical relevance. In this section, we conduct in-

sample and out-of-sample inflation forecasting exercises with our proposed

models to evaluate their ability to explain the data, as well as to evalu-
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ate the role of the output gap in producing inflation forecasts. We focus

on forecasting h−period average inflation (at an annual rate), defined as

πht = h−1
∑h−1

i=0 πt−i. We use the notation πht+h|t to denote h−period-ahead

forecasts of πht made using data through time t.

We compare the forecasting performances of Models 1 and 2 with struc-

tural breaks against three univariate inflation forecasting models as described

below.

Model 3: Atkeson and Ohanian (2001)’s inflation forecasting model:

π4
t+4|t = π4

t =
1

4
(πt + ...+ πt−3). (39)

The specification above, often referred to as the AO model, is well known

in the literature for its ability to forecast inflation. It is a simple model

that predicts the average four-quarter rate of inflation to be the same as

the average rate of inflation over the previous four quarters5. Atkeson and

Ohanian (2001) were the first to formally point out that since the mid- 1980s,

four-quarter-ahead out-of-sample inflation forecasts obtained from such a

specification has been more accurate than those implied by Phillips curve

models. Based on more comprehensive analyses, Fisher et al. (2002), Stock

and Watson (2003, 2007), and others confirm the AO result.

The AO finding implies that since the mid- 1980s, information contained

5In Atkeson and Ohanian (2001)’s paper, they define π4
t as the percentage change in

the inflation rate between quarters t− 4 and t.
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in measures of real economic activity has limited predictive content for infla-

tion. Therefore, we also consider the following univariate unobserved com-

ponents model, which is a restricted version of our proposed models with

k = 0.

Model 4: A univariate unobserved components model without output gap

(k = 0):

πt = π∗t + zt, (40)

π∗t = π∗t−1 + vt, (41)

zt = ψStzt−1 + εt, (42) vt

εt

 ∼ i.i.d.N


 0

0

 ,
 σ2

v 0

0 σ2
ε,St


 . (43)

Note that with k = 0 in Model 1 or Model 2, inflation is no longer influenced

by movements in the output gap. Thus, by comparing the performance of

the above specification to Models 1 and 2, we will be able to evaluate the

role of the output gap in our inflation forecasts.

In our forecasting exercise, all four competing models are used to fore-

cast three inflation series: the chain-weighted GDP deflator, CPI inflation,

and the chain-weighted PCE inflation. We compute both one-quarter-ahead

in-sample inflation forecasts based on the full sample period 1952Q1-2007Q3,

and four-quarter-ahead out-of-sample inflation forecasts for the sample 1994Q1-

2007Q3 and the most recent period 2001Q1-2007Q3. For out-of-sample fore-
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casting, a recursive procedure is followed. This means that for a forecast

made at date t for date t + 4, all estimation is made with data beginning

in 1952Q1 through date t. Then, the procedure is repeated again with the

same starting date but an expanding data window.

Table 4 reports the root mean squared errors (RMSEs) associated with

the in-sample and out-of-sample inflation forecasts calculated from all four

models. For the in-sample inflation forecasts, our proposed models, Models

1 and 2, outperform Models 3 and 4 for all inflation measures. Similarly,

for the out-of-sample case, our proposed models have lower RMSEs than the

two competing univariate models.

To assess whether the differences in the out-of-sample predictive accura-

cies of our proposed models and the two univariate models are statistically

significant, we analyze the out-of-sample inflation forecasting results using

the modified Diebold-Mariano test statistic. The original Diebold-Mariano

test statistic is a t-statistic associated with the null hypothesis that the mean

squared errors of the two forecasts being compared is zero (Diebold and Mari-

ano, 1995). The modified version as derived by Harvey et al. (1997) attempts

to correct for the poor size property of the original test statistic in small sam-

ples.

The modified Diebold-Mariano test statistic are reported in Table 5 with

their corresponding p-values in parentheses. From the evidence shown in the

first three rows of Table 5, neither our proposed models nor the compet-

ing univariate models have superior forecasting power for the out-of-sample
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period 1994Q1-2007Q3. Two exceptions are that the RMSEs from our pro-

posed models are lower than the AO model at the 10% level of significance

when forecasting the PCE and CPI inflation series. Focusing on the more

recent period 2001Q1-2007Q3, however, our proposed models outperforms

the competing univariate models.

In sum, the results presented in this section provide evidence that leading

inflation forecasting model in the literature, namely the AO model, may be

inferior to the models we propose in this paper in terms of both in-sample

and out-of-sample forecasting. Note again that the main differences between

our models and theirs is that our proposed models are based on a NKPC,

thus allowing innovations of the output gap to influence inflation. Thus,

in contrast to the generally accepted view in the literature, we provide evi-

dence that from the mid-1980s onwards, real economic activity still contains

predictive content for inflation, and Phillips curve models remain useful for

forecasting inflation.

5. Summary and Conclusion

We estimate unobserved components models of inflation that are consis-

tent with the New Keynesian Phillips curve in the presence of a stochastic

trend in inflation. The models we present can also be considered as extensions

of Stock and Watson (2007), who show that the univariate inflation process is

well described by an unobserved component trend-cycle model with stochas-

tic volatility. While Stock and Watson (2007) assume a serially uncorrelated
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transitory component of inflation, we derive the transitory component to

be a function of real economic activity and a potentially serially correlated

component, as implied by the hybrid New Keynesian Phillips curve.

The empirical results suggest that a forward-looking Phillips curve can

provide a good fit to postwar U.S. inflation data, except for the period of

the Great Inflation in the 1970s. The backward-looking component plays

an important role in explaining the dynamics of inflation in the 1970s, as

captured by the serially correlated transitory component in our model. Our

results stand in contrast to those of Cogley and Sbordone (2008), who show

that the backward-looking component redundant in explaining the dynamics

of U.S. inflation throughout the postwar period once time variation in trend

inflation is taken into account.

In explaining why inflation has become harder to forecast since the mid-

1980s, Stock and Watson (2007) suggest that the changing auto-regressive

(AR) coefficients and the deterioration of the low-order AR approximation

accounts for the relatively poor performance of recursive and rolling AR

forecasts. Our models and empirical results suggest that the relatively poor

performance of recursive and rolling AR forecasts of inflation results from a

disappearance of the backward-looking component in the Phillips curve in

the early 1980s.

The model we present also exhibit better in-sample and out-of-sample

inflation forecasts relative to benchmark models in the literature that are

generally known for their good forecasting performance. Furthermore, we
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find that the estimates of the output gap from our model display relatively

narrow confidence bands, and the dynamics of the estimated output gap are

quite close to those of the CBO output gap.
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Table 1: Estimation results for Model 1 with structural breaks [1952Q1-2007Q3]

Parameters Estimates (Standard error)

Phillips curve slope and AR coefficients of the CBO output gap

k 0.019 (0.008)
φ1 1.191 (0.063)
φ2 -0.267 (0.062)

Standard deviations, correlations, and persistence of shocks

σv 0.340 (0.060)
σu,0 1.030 (0.067)
σu,1 0.460 (0.034)
ρε,u -0.077 (0.084)

Regime 1 Regime 2 Regime 3
σε 0.740 (0.089) 1.554 (0.194) 0.843 (0.075)
ψ -0.072 (0.169) 0.902 (0.086) -0.002 (0.102)

Transition probabilities

p11 0.987 (0.013) → break date: 1971Q1
p22 0.974 (0.026) → break date: 1980Q4

Log-likelihood value -362.954
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Table 2: Estimation results for Model 2 with structural breaks [1952Q1-2007Q3]

Parameters Estimates (Standard error)

Phillips curve slope, output trend drifts,
and AR coefficients of the unobserved gap

k 0.017 (0.008)
µ0 0.931 (0.041)
µ1 0.747 (0.018)
φ1 1.208 (0.063)
φ2 -0.271 (0.063)

Standard deviations, correlations, and persistence of shocks

σv 0.340 (0.060)
ση,0 0.000 (0.021)
ση,1 0.000 (0.062)
σu,0 1.025 (0.066)
σu,1 0.468 (0.035)
ρε,u -0.074 (0.090)

Regime 1 Regime 2 Regime 3
σε 0.748 (0.088) 1.556 (0.193) 0.844 (0.073)
ψ -0.056 (0.146) 0.901 (0.102) 0.001(0.044)

Transition probabilities

p11 0.987 (0.013) → break date: 1971Q1
p22 0.974 (0.026) → break date: 1980Q4

Log-likelihood value: -366.043
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Table 3: Tests for serial correlation in the standardized residuals and their
squares [1952Q1-2007Q3]

Lag Model 1 Model 2

Standardized Residuals

1 0.659 0.645
2 0.824 0.817
3 0.417 0.403
4 0.469 0.453
5 0.383 0.367
6 0.153 0.142
7 0.185 0.173
8 0.052 0.050

Squares of
Standardized Residuals

1 0.812 0.931
2 0.966 0.990
3 0.564 0.571
4 0.680 0.679
5 0.783 0.778
6 0.835 0.836
7 0.904 0.904
8 0.947 0.947

Note: Reported are p-values associated with the Q-statistic under the null
of no serial correlation.
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Table 4: RMSEs associated with in-sample and out-of-sample inflation forecasts

Forecasting Models

Inflation Measure Model 1 Model 2 Model 3 Model 4

One-step ahead in-sample forecasts, 1952Q1-2007Q3

GDP Deflator 1.017 1.021 1.173 1.039
CPI 1.558 1.559 1.752 1.588
PCE 1.155 1.157 1.353 1.182

Four-step-ahead out-of-sample forecasts, 1994Q1-2007Q3

GDP Deflator 0.477 0.476 0.488 0.491
CPI 0.858 0.891 0.922 0.910
PCE 0.665 0.669 0.690 0.679

Four-step-ahead out-of-sample forecasts, 2001Q1-2007Q3

GDP Deflator 0.536 0.547 0.561 0.583
CPI 0.981 0.988 1.086 1.109
PCE 0.657 0.673 0.700 0.719

Note 1: Reported are the RMSEs from inflation forecasts. The RMSE
statistic for the time period t1 to t2 is calculated as RMSEt1,t2 =√

1
T

∑t2
t=t1

(πht+h − πht+h|t)2, with T = t2 − t1 − 1. Note that h = 1 for in-

sample one-quarter-ahead inflation forecasts, and h = 4 for out-of-sample
four-quarter-ahead inflation forecasts.

Note 2: Model 1 is the unobserved components model with observed CBO
output gap; Model 2 is the unobserved components model with unobserved
output gap; Model 3 is Atkeson and Ohanian (2001)’s inflation forecasting
model; Model 4 is a univariate unobserved components model similar to
Models 1 and 2 but with k = 0. 34



Table 5: Evaluation of out-of-sample inflation forecasting performances

Competing Models

Model 1 Model 2 Model 1 Model 2
Inflation Measure vs. Model 3 vs. Model 3 vs. Model 4 vs. Model 4

Four-step-ahead out-of-sample forecasts, 1994Q1-2007Q3

GDP Deflator -0.387 -0.418 -0.276 -0.298
(0.350) (0.339) (0.392) (0.384)

CPI -1.581 -0.603 -0.657 -0.236
(0.059) (0.274) (0.257) (0.407)

PCE -1.314 -0.979 -0.223 -0.162
(0.097) (0.166) (0.412) (0.436)

Four-step-ahead out-of-sample forecasts, 2001Q1-2007Q3

GDP Deflator -0.583 -0.362 -1.487 -1.267
(0.283) (0.360) (0.074) (0.108)

CPI -1.797 -1.339 -3.302 -2.357
(0.042) (0.096) (0.001) (0.013)

PCE -2.072 -1.133 -1.732 -1.349
(0.024) (0.134) (0.048) (0.094)

Note 1: Reported are the modified Diebold-Mariano test statistics. In
parentheses are their corresponding p-values under the null of equal pre-
dictive accuracy.

Note 2:Model 1 is the unobserved components model with observed CBO
output gap; Model 2 is the unobserved components model with unobserved
output gap; Model 3 is Atkeson and Ohanian (2001)’s inflation forecasting
model; Model 4 is a univariate unobserved components model similar to
Models 1 and 2 but with k = 0.
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Figure 1: Actual Inflation and Smoothed Estimates of Trend Inflation
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Figure 2: Inflation Cycle and Inflation Gap
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Figure 3: Model 2 Output Gap Estimates and the CBO Output Gap
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Figure 4: CBO Output Gap and 95 Percent Confidence Bands for Model 2
Output Gap Estimates
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