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Abstract

How does stock market volatility relate to the business cycle? We develop, and estimate, a
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unobservable factor cannot explain the ups and downs stock volatility experiences over time�
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cycle. Finally, volatility risk-premiums are strongly countercyclical, even more so than stock
volatility, and are partially responsible for the large swings in the VIX index occurred during
the 2007-2009 subprime crisis, which our model does capture in out-of-sample experiments.
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1 Introduction

Understanding the origins of stock market volatility has long been a topic of considerable interest

to both policy makers and market practitioners. Policy makers are interested in the main deter-

minants of volatility and in its spillover e¤ects on real activity. Market practitioners are mainly

interested in the direct e¤ects time-varying volatility exerts on the pricing and hedging of plain

vanilla options and more exotic derivatives. In both cases, forecasting stock market volatility

constitutes a formidable challenge but also a fundamental instrument to manage the risks faced

by these institutions.

Many available models use latent factors to explain the dynamics of stock market volatility.

For example, in the celebrated Heston�s (1993) model, stock volatility is exogenously driven by

some unobservable factor correlated with the asset returns. Yet such an unobservable factor does

not bear an economic interpretation. Moreover, the model implies, by assumption, that volatility

cannot be forecast by macroeconomic factors such as industrial production or in�ation. This

circumstance is counterfactual. Indeed, there is strong evidence that stock market volatility has

a very pronounced business cycle pattern, being higher during recessions than during expansions;

see, e.g., Schwert (1989a,b), Hamilton and Lin (1996), or Brandt and Kang (2004).

In this paper, we develop a no-arbitrage model where stock market volatility is explicitly

related to a number of macroeconomic and unobservable factors. The distinctive feature of this

model is that stock volatility is linked to these factors by no-arbitrage restrictions. The model is

also analytically convenient: under fairly standard conditions on the dynamics of the factors and

risk-aversion corrections, our model is solved in closed-form, and is amenable to empirical work.

We use the model to quantitatively assess how aggregate stock market volatility and volatility-

related risk-premiums change in response to business cycle conditions. Our model fully captures

the procyclical nature of aggregate returns and the countercyclical behavior of stock volatility that

we have been seeing in the data for a long time. We show a fundamental result: stock volatility

could not be explained by macroeconomic factors only. Our model, rigorously estimated through

simulation-based inference methods, shows that the presence of some unobservable and persistent

factor is needed to sustain the level of stock volatility that matches its empirical counterpart. At

the same time, our model reveals that the presence of macroeconomic factors is needed to explain

the variability of stock volatility around its level� the volatility of aggregate stock volatility. That

such a �vol-vol�might be related to the business cycle is indeed a plausible hypothesis, although

clearly, the ups and downs stock volatility experiences over the business cycle are a prediction

of the model in line with the data, not a restriction imposed while estimating the model. Such

a new property we uncover, and model, brings new and practical implications. For example,

business cycle forecasters might learn that not only does stock market volatility have predicting

power, as discussed below; �vol-vol�is also a potential predictor of the business cycle.
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The second set of empirical results relates to the estimation of volatility-related risk-premiums.

In broad terms, the volatility risk-premium is de�ned as the di¤erence between the expectation

of future stock market volatility under the risk-neutral and the true probability. It quanti�es

how much a representative agent is willing to pay to ensure that volatility will not raise beyond

his own expectations. Thus, it is a very intuitive and general measure of risk-aversion. We �nd

that this volatility risk-premium is strongly countercyclical, even more so than stock volatility.

Precisely, volatility risk-premiums are typically not very volatile, although in bad times, they may

increase to extremely high levels, and quite quickly. We undertake a stress test of the model over

a particularly uncertain period, which includes the 2007-2009 subprime turmoil. Ours is a stress

test, as (i) we estimate the model using post-war data up to 2006, and (ii) feed the previously

estimated model with macroeconomic data related to the subprime crisis. We compare the

model�s predictions for the crisis with the actual behavior of both stock volatility and the risk-

adjusted expectation of future volatility, which is the new VIX index. The model successfully

captures the dramatic movements in the VIX index, and predicts that countercyclical volatility

risk-premiums are largely responsible for the large swings in the VIX occurred during the crisis.

In fact, we show that over this crisis, as well as in previous recessions, movements in the VIX

index are determined by changes in such countercyclical risk-premiums, not by changes in the

expected future volatility.

Related literature

Stock volatility and volatility risk-premiums The cyclical properties of aggregate stock

market volatility have been the focus of recent empirical research, although early work relating

stock volatility to macroeconomic variables dates back to King, Sentana and Wadhwani (1994),

who rely on a no-arbitrage model. In a comprehensive international study, Engle and Rangel

(2008) �nd that high frequency aggregate stock volatility has both a short-run and long-run

component, and suggest that the long-run component is related to the business cycle. Adrian

and Rosenberg (2008) show that the short- and long- run components of aggregate volatility are

both priced, cross-sectionally. They also relate the long-run component of aggregate volatility

to the business cycle. Finally, Campbell, Lettau, Malkiel and Xu (2001), Bloom (2009), Bloom,

Floetotto and Jaimovich (2009) and Fornari and Mele (2010) show that capital markets uncer-

tainty helps explain future �uctuations in real economic activity. Our focus on the volatility

risk-premiums relates, instead, to the seminal work of Dumas (1995), Bakshi and Madan (2000),

Britten-Jones and Neuberger (2000), and Carr and Madan (2001), which has more recently stim-

ulated an increasing interest in the dynamics and determinants of the volatility risk-premium

(see, for example, Bakshi and Madan (2006) and Carr and Wu (2009)). Notably, in seminal

work, Bollerslev, Gibson and Zhou (2004) and Bollerslev and Zhou (2006) unveil, empirically, a

strong relation between this volatility risk-premium and a number of macroeconomic factors.
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Our contribution hinges upon, and expands, over this growing literature, in that we formulate

and estimate a fully-speci�ed no-arbitrage model relating the dynamics of stock volatility and

volatility risk-premiums to business cycle, and additional unobservable, factors. With the excep-

tion of King, Sentana and Wadhwani (1994) and Adrian and Rosenberg (2008), who still have a

focus di¤erent from ours, the predicting relations in the previous papers, while certainly useful,

are still part of reduced-form statistical models. In our out-of-sample experiments of the subprime

crisis, we shall show that our no-arbitrage framework is considerably richer than that based on

predictive linear regressions. We show, for example, that compared to our model�s predictions

about stock volatility and the VIX index, predictions from linear regressions are substantially

�at over the subprime crisis.

The only antecedent to our paper is Bollerslev, Tauchen and Zhou (2008), who develop a

consumption-based rationale for the existence of the volatility risk-premium, although then, the

authors use this rationale only as a guidance to the estimation of reduced-form predictability

regressions conditioned on the volatility risk-premium. In recent independent work discussed

below, Drechsler and Yaron (2008) investigate the properties of the volatility risk-premium, im-

plied by a calibrated consumption-based model with long-run risks. The authors, however, are

not concerned with the cross-equation restrictions relating the volatility risk-premium to state

variables driving low frequency stock market �uctuations which, instead, constitute the central

topic of our paper.

No-arbitrage regressions In recent years, there has been a signi�cant surge of interest in

consumption-based explanations of aggregate stock market volatility (see, for example, Campbell

and Cochrane (1999), Bansal and Yaron (2004), Tauchen (2005), Mele (2007), or the two surveys

in Campbell (2003) and Mehra and Prescott (2003)). These explanations are important because

they highlight the main economic mechanisms through which markets and preferences a¤ect

equilibrium asset prices and, hence, stock volatility. In our framework, cross-equations restrictions

arise through the weaker requirement of absence of arbitrage opportunities. In this respect, our

approach is similar in spirit to the �no-arbitrage�vector autoregressions introduced in the term-

structure literature by Ang and Piazzesi (2003) and Ang, Piazzesi and Wei (2006). Similarly as in

these papers, we specify an analytically convenient pricing kernel a¤ected by some macroeconomic

factors, although we do not directly relate these to, say, markets, preferences or technology.

Our model, then, works quite simply. We exogenously specify the joint dynamics of a number

of macroeconomic and unobservable factors. We assume that the asset payo¤s and the risk-

premiums required by agents to be compensated for the �uctuations of the factors, are essentially

a¢ ne functions of the very same factors, along the lines of Du¤ee (2002). We show that the

resulting no-arbitrage stock price is a¢ ne in the factors.1 Our model does not allow for jumps

1Our model di¤ers from those in Bekaert and Grenadier (2001), Ang and Liu (2004) or Mamaysky (2002). For

4



or other market micro-structure e¤ects, as our main focus is to model low frequency movements

in the aggregate stock volatility and volatility risk-premiums, through the use of macroeconomic

and unobservable factors. Our estimation results, obtained through data sampled at monthly

frequency, are unlikely to be a¤ected by measurement noise or jumps, say. In related work,

Drechsler and Yaron (2008), Carr and Wu (2009), Todorov (2009), and Todorov and Tauchen

(2009) do allow for the presence of jumps, although they do not analyze the relations between

macroeconomic variables and aggregate volatility or volatility risk-premiums, which we do here.

Estimation strategy, and plan of the paper

In standard stochastic volatility models such as that in Heston (1993), volatility is driven by fac-

tors, which are not necessarily the same as those a¤ecting the stock price� volatility is exogenous

in these models. In our no-arbitrage model, volatility is endogenous, and can be understood as

the outcome of two forces, which we need to tell apart from data: (i) the market participants�

risk-aversion, and (ii) the dynamics of the fundamentals. We address this identi�cation issue by

exploiting derivatives data, related to variance swaps. The variance swap rate is, theoretically, the

risk-adjusted expectation of the future integrated volatility within one month, and is calculated

daily since 2003, and re-calculated back to 1990, by the CBOE, as the new VIX index.

We implement a three-step estimation procedure that relies on simulation-based inference

methods. In the �rst step, we estimate the parameters underlying the macroeconomic factors.

In the second step, we use data on a broad stock market index and the macroeconomic factors,

and estimate reduced-form parameters linking the stock market index to the macroeconomic

factors and the third unobservable factor, as well as the parameters underlying the dynamics of

the unobservable factor. We implement this step by matching moments related to ex-post stock

market returns, realized stock market volatility and the macroeconomic factors. In the third

step, we use data on the new VIX index, and the macroeconomic factors, to estimate the risk-

premiums parameters, by matching the impulse response function of the model-based VIX index

to its empirical counterpart. The limiting distribution of our estimators is a¤ected by parameter

estimation error, arising because the estimators as of the last step depend on parameter estimates

computed in previous steps. While we do characterize standard errors, theoretically, the actual

computation of these errors is problematic, in practice. We develop, and utilize, a theory to

consistently estimate the standard errors through block-bootstrap methods.

The remainder of the paper is organized as follows. In Section 2 we develop a no-arbitrage

model for the stock price, stock volatility and volatility-related risk-premiums. Section 3 illus-

example, we consider a continuous-time framework, which avoids theoretical challenges pointed out by Bekaert and

Grenadier (2001). Furthermore, Ang and Liu (2004) consider a discrete-time setting in which expected returns

are exogenous, while in our model, expected returns are endogenous. Finally, our model works di¤erently from

Mamaysky�s because it endogenously determines the price-dividend ratio.
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trates the estimation strategy. Section 4 presents our empirical results. Section 5 concludes, and

a technical appendix provides details omitted from the main text.

2 The model

2.1 The macroeconomic environment

We assume that a number of factors a¤ect the development of aggregate macroeconomic variables.

These factors form a vector-valued process y (t), solution to a n-dimensional a¢ ne di¤usion,

dy (t) = � (�� y (t)) dt+�V (y (t)) dW (t) ; (1)

where W (t) is a d-dimensional Brownian motion (n � d), � is a full rank n� d matrix, and V
is a full rank d� d diagonal matrix with elements,

V (y)(ii) =

q
�i + �

>
i y; i = 1; � � �; d;

for some scalars �i and vectors �i. Appendix A reviews su¢ cient conditions that are known to

ensure that Eq. (1) has a strong solution with V (y (t))(ii) > 0 almost surely for all t.

While we do not necessarily observe every single component of y (t), we do observe dis-

cretely sampled paths of macroeconomic variables such as industrial production, unemployment

or in�ation. Let fMj (t)gt=1;2;��� be the discretely sampled path of the macroeconomic variable
Mj (t) where, for example, Mj (t) can be the industrial production index available at time t, and

j = 1; � � �; NM, where NM is the number of observed macroeconomic factors.

We assume, without loss of generality, that these observed macroeconomic factors are strictly

positive, and that they are related to the state vector process in Eq. (1) by:

ln (Mj (t)/Mj (t� 12)) = fj (y (t)) ; j = 1; � � �; NM; (2)

where the collection of functions ffjg determines how the factors dynamics impinge upon the

observed macroeconomic variables. We now turn to model asset prices.

2.2 Risk-premiums and stock market volatility

We assume that asset prices are related to the vector of factors y (t) in Eq. (1), and that some of

these factors a¤ect developments in macroeconomic conditions, through Eq. (2). We assume that

asset prices respond to movements in the factors a¤ecting macroeconomic conditions.2 Formally,
2For analytical convenience, we rule out that asset prices can feed back the real economy, although we ac-

knowledge that the presence of frictions can make capital markets and the macroeconomy intimately related, as

in the �nancial accelerator hypothesis reviewed by Bernanke, Gertler and Gilchrist (1999), or in the static model

analyzed by Angeletos, Lorenzoni and Pavan (2008), where feedbacks arise due to asymmetric information and

learning between agents acting within the real and the �nancial sphere of the economy.
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we assume that there exists a rational pricing function s (y (t)) such that the real stock price at

time t, s (t) say, is s (t) � s (y (t)). We let this price function be twice continuously di¤erentiable
in y. By Itô�s lemma, s (t) satis�es,

ds (t)

s (t)
= m (y (t) ; s (t)) dt+

sy (y (t))
>�V (y (t))

s (y (t))
dW (t) ; (3)

where sy (y) = [ @@y1 s (y) ; � � �;
@
@yn
s (y)]> and m is a function we shall determine below by no-

arbitrage conditions. By Eq. (3), the instantaneous variance of stock returns is

�2 (t) �
sy (y (t))>�V (y (t))s (y (t))


2

: (4)

Next, we model the pricing kernel, or the Arrow-Debreu price density, in the economy. Let

F (T ) be the sigma-algebra generated by the Brownian motion W (t), t � T , and P be the

physical probability under which W (t) is de�ned. The Radon-Nikodym derivative of the risk-

neutral probability Q with respect to P on F (T ) is,

�(T ) � dQ

dP
= exp

�
�
Z T

0
� (t)> dW (t)� 1

2

Z T

0
k� (t)k2 dt

�
; (5)

for some adapted risk-premium process � (t). We assume that each component of the risk-

premium process �i (t) satis�es,

�i (t) = �i (y (t)) ; i = 1; � � �; d;

for some function �i. We also assume that the safe asset is elastically supplied such that the

short-term rate r (say) is constant.3

Under the equivalent martingale measure, the stock price is solution to,

ds (y (t))

s (y (t))
=

�
r � � (y (t))

s (y (t))

�
dt+

sy (y (t))
>�V (y (t))

s (y (t))
dŴ (t) ; (6)

where � (y) is the instantaneous dividend rate, and Ŵ is a Brownian motion de�ned under the

risk-neutral probability Q.

2.3 No-arbitrage restrictions

There is obviously no freedom in modeling risk-premiums and stochastic volatility separately.

Given a dividend process, volatility is uniquely determined, once we specify the risk-premiums.

3This assumption can be replaced with a weaker condition that the short-term rate is an a¢ ne function of the

underlying state vector. In this case, Proposition 1 below would not hold, which might considerably hinder the

actual estimation of the model.
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Consider, then, the following �essentially a¢ ne�speci�cation for the dynamics of the factors in

Eq. (1), and the risk-premiums. Let V � (y) be a d� d diagonal matrix with elements

V � (y)(ii) =

(
1

V (y)(ii)
if PrfV (y (t))(ii) > 0 all tg = 1

0 otherwise

and set,

� (y) = V (y)�1 + V
� (y)�2y; (7)

for some d-dimensional vector �1 and some d�nmatrix �2. The functional form for � is the same
as that suggested by Du¤ee (2002) in the term-structure literature. If the matrix �2 = 0d�n,

then, � collapses to the standard �completely a¢ ne�speci�cation introduced by Du¢ e and Kan

(1996), in which the risk-premiums � are tied up to the volatility of the fundamentals, V (y).

While it is reasonable to assume that risk-premiums are related to the volatility of fundamentals,

the speci�cation in Eq. (7) is more general, as it allows risk-premiums to be related to the level

of the fundamentals, through the additional term �2y.

Finally, we determine the no-arbitrage stock price. Under regularity conditions (see Appendix

A), and in the absence of bubbles, Eq. (6) implies that the stock price is,

s (y) = E
�Z 1

0
e�rt� (y (t)) dt

����y (0) = y� ; (8)

where E is the expectation taken under the risk-neutral probability Q. We are only left with
specifying how the instantaneous dividend process relates to the state vector y. As it turns out,

the previous assumption on the pricing kernel and the assumption that � (�) is a¢ ne in y implies
that the stock price is also a¢ ne in y. Precisely, let

� (y) = �0 + �
>y; (9)

for some scalar �0 and some vector �.4 We have:

Proposition 1: Let the risk-premiums and the instantaneous dividend rate be as in Eqs. (7)
and (9). Then, under a technical regularity condition in Appendix A (condition (A2)), we have

that: (i) Eq. (8) holds; and (ii) the rational stock price function s (y) is linear in the state vector

y, viz

s (y) =
�0 + �

> (D + rIn�n)
�1 c

r
+ �> (D + rIn�n)

�1 y; (10)

4Eq. (9) makes the dividend stationary as soon as y (t) is stationary. Alternatively, we might assume that the

dividend as of time t is egt� (y (t)), for some constant g, where � (�) is as in Eq. (9). In this case, the price function
is given by egts (y), where s (�) is the price function in Proposition 1, with r replaced by r�g. Such a more general
formulation with a deterministic trend for the real stock price, would not alter our results in the empirical section,

as our estimators do not rely on the assumption of absence of such a trend.
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where

c = ����
�
�1�1(1) � � � �d�1(d)

�>
(11)

D = �+�

��
�1(1)�

>
1 � � � �1(d)�

>
d

�>
+ I��2

�
; (12)

I� is a d � d diagonal matrix with elements I�(ii) = 1 if PrfV (y (t))(ii) > 0 all tg = 1 and 0

otherwise; and, �nally f�1(j)gdj=1 are the components of �1.

Proposition 1 allows us to single out the no-arbitrage restrictions between stochastic volatility

and risk-premiums. By Eq. (4), and the expression for the stock price in Eq. (10), we have:

� (y (t)) � � (t) =

r�> (D + rIn�n)
�1�V (y (t))

2
�0+�

>(D+rIn�n)
�1c

r + �> (D + rIn�n)
�1 y (t)

: (13)

This expression for the stock volatility clari�es why our approach is distinct from that in the

standard stochastic volatility literature. In this literature, the asset price and, hence, its volatility,

is taken as given, and volatility and volatility risk-premiums are modeled independently of each

other. For example, in the celebrated Heston�s (1993) model, the stock price is solution to,8><>:
ds (t)

s (t)
= mH (t) dt+ v (t) dW1 (t)

dv2 (t) = �v
�
�v � v2 (t)

�
dt+ �vv (t)

�
�dW1 (t) +

p
1� �2dW2 (t)

� (14)

for some adapted process mH (t) and some constants �v; �v; �v; �. In this model, the volatility

risk-premium is speci�ed separately from the volatility process. Many empirical studies have

followed the lead of this model (e.g., Chernov and Ghysels (2000), Corradi and Distaso (2006),

Garcia, Lewis, Pastorello and Renault (2007)). Moreover, a recent focus in this empirical litera-

ture is to examine how the risk-compensation for stochastic volatility is related to the business

cycle (e.g., Bollerslev, Gibson and Zhou (2004)). While the empirical results in these papers

are ground breaking, the Heston�s model does not predict that there is any relation between

stochastic volatility, volatility risk-premiums and the business cycle.

Our model works di¤erently, as it places restrictions on the asset price process directly, through

our assumptions about the fundamentals of the economy, i.e. the dividend process in Eq. (9)

and the risk-premiums in Eq. (7). In our model, it is the asset price process that determines,

endogenously, the volatility dynamics. For this reason, the model predicts that stock volatility

embeds information about risk-corrections that agents require to invest in the stock market, as

Eq. (13) makes clear. We shall make use of this observation in the empirical part of the paper.

We now turn to describe which measure of stock volatility we use to proceed with such a critical

step of our analysis.
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2.4 Arrow-Debreu adjusted volatility

In September 2003, the Chicago Board Option Exchange (CBOE) changed its volatility index

VIX to approximate the variance swap rate of the S&P 500 Compounded index. The new index

re�ects recent advances in the option pricing literature. Given an asset price process s (t) that is

continuous in time (as for the asset price of our model in Eq. (10)), and all available information

F (t) at time t, consider the economic value of the future integrated variance on a given interval
[t; T ], which is, approximately, the sum of the future variance weighted with the Arrow-Debreu

state prices:

IVt;T =

Z T

t
E
��

d

d�
var [ ln s (�)jF (u)]

����
�=u

�����F (t)�du: (15)

The new VIX index relies on the work of Dumas (1995), Bakshi and Madan (2000), Britten-Jones

and Neuberger (2000), and Carr and Madan (2001), who showed that the risk-neutral expectation

of the future integrated variance is a functional of put and call options written on the asset:

E [IVt;T jF (t)] = 2e�r(T�t)
"Z F (t)

0

P (t; T;K)

K2
dK +

Z 1

F (t)

C (t; T;K)

K2
dK

#
; (16)

where F (t) = er(T�t)s (t) is the forward price, and C (t; T;K) and P (t; T;K) are the prices as of

time t of a call and a put option expiring at T and struck at K. A variance swap is a contract

with payo¤ proportional to the di¤erence between the realized integrated variance, (15), and

some strike price, the variance swap rate. In the absence of arbitrage opportunities, the variance

swap rate is given by Eq. (16).

In contrast, our model, which relies on the Arrow-Debreu state prices in Eq. (5), predicts

that the risk-neutral expectation of the integrated variance is:

E [IVt;T jy (t) = y] =
Z T

t
E
�
�2 (u)

��y (t) = y�du; (17)

where �2 (t) is given in Eq. (13). An important task of this paper is to estimate the model so

that it predicts a theoretical pattern of the VIX index that matches its empirical counterpart,

computed by the CBOE through Eq. (16). Finally, note that our model makes predictions

about future expected volatility under both the risk-neutral and the physical probability, P . Let,

then, E denote the expectation taken under P . Our model allows to trace how the volatility

risk-premium, de�ned as,

VRP (y (t)) �
r

1

T � t

�q
E [IVt;T jy (t) = y]�

q
E [IVt;T jy (t) = y]

�
;

changes with changes in the factors y (t) in Eq. (1).
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2.5 The leading model

We formulate a few speci�c assumptions to make the model amenable to empirical work. First,

we assume that two macroeconomic aggregates, in�ation and industrial production growth, are

the only observable factors (say y1 and y2) a¤ecting stock market developments. We de�ne these

factors as follows, ln (Mj (t)/Mj (t� 12)) = ln yj (t), j = 1; 2, where M1 (t) is the consumer

price index as of month t and M2 (t) is the industrial production as of month t. Hence, in

terms of Eq. (2), the functions fj (y) � ln yj . In Section 4.1, we discuss further the role these two
macroeconomic factors have played in asset pricing. Second, we assume that a third unobservable

factor y3 a¤ects the stock price, but not the two macroeconomic aggregatesM1 andM2. Third, we

consider a model in which the two macroeconomic factors y1 and y2 do not a¤ect the unobservable

factor y3, although we allow for simultaneous feedback e¤ects between in�ation and industrial

production growth. Therefore, we set, in Eq. (1),

� =

264 �1 ��1 0

��2 �2 0

0 0 �3

375 ;
where �1 and �2 are the speed of adjustment of in�ation and industrial production growth towards

their long run means, �1 and �2, and ��1 and ��2 are the feedback parameters. Moreover, we take

� = I3�3 and the vectors �i so as to make yj solution to,

dyj (t) =
�
�j
�
�j � yj (t)

�
+ ��j

�
��j � �yj (t)

��
dt+

q
�j + �jyj (t)dWj (t) ; j = 1; 2; 3; (18)

where, for brevity, we have set ��1 � �2, �y1 (t) � y2 (t), ��2 � �1, �y2 (t) = y1 (t), ��3 � ��3 � �y3 (t) �
0 and, �nally, �j � �jj . We assume that, for each i, PrfV (y (t))(ii) > 0 all tg = 1, which it does
under the conditions reviewed in Appendix A.

We assume that the risk-premium process � satis�es the �essentially a¢ ne�speci�cation in

Eq. (7), where we take the matrix �2 to be diagonal with diagonal elements equal to �2(j) � �2(jj),
j = 1; 2; 3. The implication is that the total risk-premiums process de�ned as,

� (y) � �V (y)� (y) =

0B@ �1�1(1) +
�
�1�1(1) + �2(1)

�
y1

�2�1(2) +
�
�2�1(2) + �2(2)

�
y2

�3�1(3) +
�
�3�1(3) + �2(3)

�
y3

1CA (19)

depends on the factor yj not only through the channel of the volatility of these factors (i.e.

through the parameters �jj), but also through the additional risk-premiums parameters �2(j).

Finally, the instantaneous dividend process � (t) in Eq. (9) satis�es,

� (y) = �0 + �1y1 + �2y2 + �3y3: (20)
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Under these conditions, the asset price in Proposition 1 is given by,

s (y) = s0 +
3X
j=1

sjyj ; (21)

where

s0 =
1

r

24�0 + 3X
j=1

sj
�
�j�j + ��j��j � �j�1(j)

�35 ; (22)

sj =
�j
�
r + �i + �1(i)�i + �2(i)

�
� �i��iQ2

h=1

�
r + �h + �1(h)�h + �2(h)

�
� ��1��2

; for j; i 2 f1; 2g and i 6= j; (23)

s3 =
�3

r + �3 + �1(3)�3 + �2(3)
; (24)

and where ��j and ��j are as in Eq. (18).

Note, then, an important feature of the model. The parameters �(1)i and �(2)i and �i cannot be

identi�ed from data on the asset price and the macroeconomic factors. Intuitively, the parameters

�(1)i and �(2)i determine how sensitive the total risk-premium in Eq. (19) is to changes in the state

process y. Instead, the parameters �i determine how sensitive the dividend process in Eq. (20) is

to changes in y. Two price processes might be made observationally equivalent through judicious

choices of the risk-compensation required to bear the asset or the payo¤ process promised by

this asset (the dividend). The next section explains how to exploit the Arrow-Debreu adjusted

volatility introduced in Section 2.4 to identify these parameters.

3 Statistical inference

We rely on a three-step procedure. In the �rst step, we estimate the parameters of the process

underlying the dynamics of the two macroeconomic factors, �> =
�
�j ; �j ; �j ; �j ; ��j ; j = 1; 2

�
.

In the second step, we estimate the reduced-form parameters that link the equilibrium stock

price to the three factors in Eq. (21), and the parameters of the process for the unobserved

factor, �> = (�3; �3; �3; �3; s0; sj ; j = 1; 2; 3), while imposing the identi�ability condition that

�3 = 1, as explained below. In the third step, we estimate the risk-premiums parameters �
> =�

�1(1); �2(1); �1(2); �2(2); �1(3); �2(3)
�
, relying on a simulation-based approximation of the model-

implied VIX, which we match to the time series behavior of the VIX index. At each of these

steps, we do not have a closed form expression of either the likelihood function or selected sets

of moment conditions. For this reason, we need to rely on a simulation-based approach. Our

estimation strategy, then, relies on an hybrid of Indirect Inference (Gouriéroux, Monfort and

Renault, 1993) and the Simulated Generalized Method of Moments (Du¢ e and Singleton, 1993).5

5The estimators we develop are not as e¢ cient as Maximum Likelihood. Under some conditions, the methods

put forward by Gallant and Tauchen (1996), Fermanian and Salanié (2004), Carrasco, Chernov, Florens and Ghysels
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3.1 Moment conditions for the macroeconomic factors

To simulate the factor dynamics in Eq. (18), we rely on a Milstein approximation scheme, with

discrete interval �, say. We simulate H paths of length T of the two observable factors, and

sample them at the same frequency as the available data, obtaining y�1;t;�;h and y
�
2;t;�;h, where

y�j;t;�;h is the value at time t taken by the j-th factor, at the h-th simulation performed with the

parameter vector �. Then, we estimate the following autoregressive models on both historical

and simulated data, for i = 1; 2,

yi;t = a
y
i +

X
j2f12;24g

byi;1;jy1;t�j +
X

j2f12;24g
byi;2;jy2;t�j + �

y
i;t; (25)

and

y�i;t;�;h = a
y
i;h +

X
j2f12;24g

byi;1;j;hy
�
1;t�j;�;h +

X
j2f12;24g

byi;2;j;hy
�
2;t�j;�;h + �

y
i;t;h: (26)

Next, let ~'T =
�
~'1;T ; ~'2;T ; �y1; �y2; �̂1; �̂2

�> where ~'1;T and ~'2;T denote the ordinary least squares
estimators of the parameters in Eq. (25) for i = 1; 2, and �yi and �̂i are the sample mean

and standard deviation of the macroeconomic factors. Likewise, de�ne '̂T;�;h (�) to be the

simulated counterpart to ~'T at simulation h, including the ordinary least squares estimator of

the parameters in Eq. (26), and the sample means and standard deviations of the macroeconomic

factors.

The estimator of �, the parameters of the process underlying the macroeconomic factors, is:

�̂T � arg min
�2�0

 1H
HX
h=1

'̂T;�;h (�)� ~'T


2

; (27)

where �0 is a compact set of �, a parameter set de�ned in Appendix B.1. Naturally, this

estimator of �, analyzed in Proposition 2 below (as well as those of � and � in Propositions

3 and 4), depends on the discretization interval, �, although we do not make this dependence

explicit, to alleviate notation.

We have:

Proposition 2: Under regularity conditions (Assumption B1(i)-(iii) in Appendix B), as T !1
and �

p
T ! 0;

p
T
�
�̂T � �0

�
d�! N(0;V 1) ; V 1 =

�
1 +

1

H

��
D>
1D1

��1
D>
1 J1D1

�
D>
1D1

��1
;

(2007), Aït-Sahalia (2008), or Altissimo and Mele (2009), are asymptotic equivalent to Maximum Likelihood. In

our context, they deliver asymptotically e¢ cient estimators for the parameters in the �rst step. However, hinging

upon these approaches in the remaining steps would make the two issues of unobservability of volatility and,

especially, parameter estimation error considerably beyond the scope of this paper.
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where the two matrices D1 and J1 are de�ned in Appendix B.1, and �0 is the minimizer of the

moment conditions in Eq. (27) for T !1 and �! 0.

3.2 Moment conditions for realized returns and volatility

Data on macroeconomic factors and stock returns do not allow us to identify all the structural

parameters of the model: the parameters sj in Eq. (21) depend on the structural parameters,

as Eqs. (22)-(24) show. In particular, we cannot identify the parameters related to the dividend

process and the risk-premiums parameters: there are many combinations of � and � giving rise

to the same stock price. In this second step, we estimate the reduced-form parameters, sj , and

the parameters of the process for the unobservable factor y3, (�3; �3; �3; �3). The parameters �

shall be identi�ed, and estimated, in a third and �nal step, described in the next section.

Even proceeding in this way, we are not able to tell apart the loading on the unobservable

factor, s3, from the parameters underlying the dynamics of the very same unobservable process,

(�3; �3; �3; �3), as this factor is independent of the observable ones. To address this issue, we

impose the normalization �3 � 1, and de�ne a new factor Z(t) = s3y3(t), which has dynamics:

dZ(t) = �3 (s3 � Z(t)) dt+
p
B + CZ(t)dW3 (t) ;

where B = �3s23 and C = �3s3. We simulate H paths of length T of the unobservable factor Z (t),

using a Milstein approximation with discrete interval �, and sample it at the same frequency

as the data, obtaining for �u = (�3; �3; �3; s3) and simulation h, the series Z
�u
t;�;h. Likewise, let

s�t;�;h be the simulated series of the stock price, when the parameters are �xed at �:

s�t;�;h = s0 + s1y1;t + s2y2;t + Z
�u
t;�;h; (28)

where we �x the intercept at s0 = �s � s1�y1 � s2�y2 � s3, and where �s, �y1, and �y2 are the sample
means of the observed stock price index, St say, and the two macroeconomic factors y1;t and y2;t.

Note, we simulate the stock price using the observed samples of y1;t and y2;t, a feature of the

estimation strategy that results in improved e¢ ciency, as discussed below.

Following Mele (2007) and Fornari and Mele (2010), we measure the volatility of the monthly

continuously compounded price changes, as:

Volt =
p
6� � 1

12

12X
i=1

����ln�St+1�iSt�i

����� : (29)

Next, de�ne yearly returns as, Rt = ln (St=St�12), and let R�t;�;h and Vol
�
t;�;h be the simulated

counterparts of Rt and Volt.

Our estimator relies on the following two auxiliary models:

Rt = a
R + bR1 y1;t�12 + b

R
2 y2;t�12 + �

R
t ; (30)
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and

Volt = a
V +

X
i2f6;12;18;24;36;48g

bVi Volt�i +
X

i2f12;24;36;48g
bV1;iy1;t�i +

X
i2f12;24;36;48g

bV2;iy2;t�i + �
V
t : (31)

Let ~#T =
�
~#1;T ; ~#2;T ; �R;Vol

�>
, where �R and Vol are the sample means of returns and

volatility, ~#1;T is the ordinary least squares estimate of the parameters in Eq. (30) and ~#2;T is

the ordinary least squares estimate of the parameters in Eq. (31). Let #̂T;�;h (�) be the simulated

counterpart to ~#T at simulation h.

The estimator of �, the vector including the reduced-form parameters sj and the parameters

related to process of the unobservable factor, is:

�̂T = arg min
�2�0

 1H
HX
h=1

#̂T;�;h (�)� ~#T


2

; (32)

where �0 is a compact set of �, a parameter set de�ned in Appendix B.1.

We have:

Proposition 3: Under regularity conditions (Assumption B1(i)-(iv) in Appendix B), as T !
1 and �

p
T ! 0,

p
T
�
�̂T � �0

�
d�! N(0;V 2) ; V 2 =

�
1 +

1

H

��
D>
2D2

��1
D>
2 (J2 �K2)D2

�
D>
2D2

��1
;

where the three matrices D2, J2 and K2 are de�ned in Appendix B.1, and �0 is the minimizer

of the moment conditions in Eq. (32) for T !1 and �! 0.

Note that the structure of the asymptotic covariance matrix is di¤erent from that in Propo-

sition 2. The di¤erence is the presence of the matrix K2, which captures the covariance across

paths at di¤erent simulation replications, as well as the covariance between actual and simulated

paths. Indeed, we are simulating the stock price process, conditionally upon the sample realiza-

tions for the observable factors, thus performing conditional simulated inference. This feature of

the method results in a correlation between the auxiliary parameter estimates obtained over all

the simulations. It is immediate to see that the use of observed values of y1;t and y2;t in (28),

provides an e¢ ciency improvement over unconditional (simulated) inference.

3.3 Estimation of the risk-premium parameters

Sample data on the macroeconomic factors and stock prices do not su¢ ce to identify the risk-

premium parameters, �. We identify, and estimate, � by matching moments and impulse response

functions of the model-based VIX to those of the model free VIX index.
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The VIX, as de�ned in Eq. (16), is available only from 1990. Hence, in this stage, we use a

sample of T observations, with T <T . As for the theoretical counterpart to the VIX, consider
the instantaneous stock volatility predicted by the model, as de�ned in Eq. (13), � (y (t)). The

VIX index predicted by the model is,

VIX (y (t)) �

s
1

T � t

Z T

t
E[�2 (y (u)) j y (t) = y]du; (33)

where T � t equals one month, and E is the expectation under the risk-neutral probability.

Although VIX (y) is not known in closed-form, it can be accurately approximated through sim-

ulations. Appendix B.1 provides details on these simulations, upon which we base the proofs

of Proposition 4 below. Note, also, that in the actual computation of Eq. (33), we replace the

unknown parameters s0; sj ; �j ; �j ; �j j = 1; 2; 3 and ��i; �i; i = 1; 2 with their estimated counter-

parts computed in the previous two steps: �̂T and �̂T . This leads to parameter estimation error,

which we shall have to take into account. As in the previous stage of the estimation, we make

use of the observed samples for the macroeconomic factors y1;t; y2;t, and simulate samples for the

latent factor only. Note, �nally, that given � and �, we can now identify � from c and D.

In the sequel, we rely on the following auxiliary model:

VIXt = a
VIX + bVIXVIXt�1 +

X
i2f36;48g

bVIX1;i y1;t�i +
X

i2f36;48g
bVIX2;i y2;t�i + �

VIX
t : (34)

De�ne, ~ T =
�
~ 1;T ;VIX; �̂VIX

�>
, where ~ 1;T is the ordinary least squares estimator of the

parameters in Eq. (34), and VIX and �̂VIX are the sample mean and standard deviation of the

VIX index. Likewise, de�ne  ̂T ;�;h(�̂T ; �̂T ;�), the simulated counterpart to ~ T at simulation

h, obtained through simulations of the model-implied index VIXt;�;h(�̂T ; �̂T ;�), where the two

macroeconomic factors, y1;t and y2;t, are �xed at their sample values.

The estimator of �, the parameters underlying the risk-premium process, is:

�̂T = arg min
�2�0

 1H
HX
h=1

 ̂T ;�;h(�̂T ; �̂T ;�)� ~ T


2

; (35)

for some compact set �0.

We have:

Proposition 4: Under regularity conditions (Assumption B1 in Appendix B), if for some � 2
(0; 1), T; T ; �

p
T ! 0, �T !1; and T =T ! �, then:

p
T
�
�̂T � �0

�
d�! N(0;V 3) ; V 3 =

�
D>
3D3

��1
D>
3

��
1 +

1

H

�
(J3 �K3) + P 3

�
D3

�
D>
3D3

��1
;
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where the four matrices D3, J3,K3 and P 3 are de�ned in Appendix B.1, and �0 is the minimizer

of the moment conditions in Eq. (35) for �
p
T ! 0, �T !1.

Note that the matrix P 3 captures the contribution of parameter estimation error. The esti-

mation error arises because the model-implied VIX index, VIXt;�;h(�̂T ; �̂T ;�), is simulated using

parameters estimated in the previous two stages, �̂T and �̂T :

3.4 Bootstrap Standard Errors

The limiting variance-covariance matrices in the previous Propositions 2, 3 and 4, V 1, V 2, and

V 3, are di¢ cult to estimate, as they require the computation of several numerical derivatives.

Moreover, V 3 re�ects the contribution of parameter estimation error. As a viable route to

cope with this lack of a closed-form expression for the standard errors, we develop bootstrap

standard errors consistent for V 1, V 2, and V 3. Note that our estimation procedure is an hybrid

between Indirect Inference and Simulated GMM, which leads to technical issues, arising because

the auxiliary models we use are potentially dynamically misspeci�ed, and likely have a score

that is not necessarily a martingale di¤erence sequence. A natural solution is to appeal to the

�block-bootstrap,�described succinctly in Appendix B.2. The block-bootstrap method takes into

account a possible correlation of the score of the auxiliary models. In Appendix B.2, we develop

three results (Propositions B1, B2 and B3), which allow us to make use of this method within

the simulation-based estimation procedure of this section.

4 Empirical analysis

4.1 Data

Our security data include the S&P 500 Compounded index and the VIX index, as published by

the Chicago Board of Exchange. Data for the VIX index are available daily, but only for the

period following January 1990. Our macroeconomic variables include the consumer price index

(CPI) and the index of industrial production (IP) for the US. Information related to the CPI and

the IP index is made available to the market between the 19-th and the 23-th of every month.

To possibly avoid overreaction to releases of information, we sample the S&P Compounded index

and the VIX index every 25-th of the month. We compute the real stock price as the ratio

between the S&P index and the CPI. Our dataset, then, includes (i) monthly observations of

the VIX index, from January 1990 to December 2006, for a total of 204 observations; and (ii)

monthly observations of the real stock price, the CPI and the index of IP, from January 1950 to

December 2006, for a total of 672 observations.

We use this sample to estimate the model. We utilize additional data, from January 2007
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to March 2009, to implement a stress test of how the previously estimated model would have

performed over a particularly critical period. Such out-of-sample period is critical for at least three

reasons: �rst, the NBER determined that the US economy entered in a recession in December

2007, which is the third NBER-dated recession since the creation of the new VIX index; second,

this period includes the events of the subprime crisis, which are quite unique in �nancial history

and, of course, extremely relevant to the purposes of our paper; third, both realized stock market

volatility and the VIX index reached record highs, as discussed below, and possibly pose serious

challenges to rational models of asset prices. As we shall explain, our out-of-sample experiments

are not intended to forecast the market, stock market volatility, and the level of the VIX index.

Rather, we feed the model estimated up to December 2006, with the macroeconomic data (the

CPI and the index of IP) available from January 2007, and compare the predictions of the model

with the actual movements in the market, stock market volatility and the VIX index.

To create the two macroeconomic factors from the CPI and the index of IP, we compute gross

in�ation and gross industrial production growth, both at a yearly level,

y1;t � CPIt=CPIt�12 and y2;t � IPt=IPt�12;

where CPIt is the consumer price index and IPt is the seasonally adjusted industrial production

index, as of month t. As we explain in the Introduction, many theoretical explanations of asset

price movements, and in fact, the empirical evidence, would lead us to expect that asset prices

are indeed related to variables tracking the business cycle conditions (see, e.g., Cochrane (2005)),

such as the CPI and the IP growth. For example, in their seminal article relating stock returns to

the macroeconomy, Chen, Roll and Ross (1986) �nd that industrial production and in�ation are

among the most prominent priced factors. Theoretically, in standard theories of external habit

formation, the pricing kernel volatility is driven by the surplus consumption ratio, de�ned as

the percentage deviation of current consumption, C, from some habit level, H, i.e. (C �H) =C,
which highly correlates with procyclical variables such as industrial production growth. Likewise,

standard asset pricing models predict that compensation for in�ation risk relates to variables that

are highly correlated with in�ation (e.g., Bakshi and Chen (1996), Buraschi and Jiltsov (2005)).

Mainly for computational reasons, we refrain from considering additional factors to model the

linkages of the pricing kernel to the business cycle.

Figure 1 depicts the two series y1;t and y2;t, along with NBER-dated recession events. Gross

in�ation is procyclical, although it peaked up during the 1975 and the 1980 recessions, as a

result of the geopolitical driven oil crises that occurred in 1973 and 1979. Its volatility during

the 1970s was large until the Monetary experiment of the early 1980s, although it dramatically

dropped during the period following the experiment, usually referred to as the Great Moderation

(e.g., Bernanke (2004)). At the same time, in�ation is persistent: a Dickey-Fuller test rejects the

null hypothesis of a unit root in y1;t, although the rejection is at the marginal 95% level. The
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asset pricing implications of this property are then promising: although in�ation has become less

volatile, its persistence makes it a candidate for being a risk for the long run. The inclusion of

in�ation as a determinant of the pricing kernel displays one additional attractive feature. An

old debate exists upon whether stocks provide a hedge against in�ation (see, e.g., Danthine and

Donaldson (1986)). While our no-arbitrage model is silent about the general equilibrium forces

underlying in�ation-hedge properties of asset prices, its data-driven structure allows us to assess

quite directly the relations between in�ation and the stock price, returns, volatility and volatility

risk-premiums.

Figure 1 also shows that while the volatility of gross industrial production growth dropped

during the Great Moderation, growth is still persistent, although less so than gross in�ation: here,

a Dickey-Fuller test rejects the null hypothesis of a unit root in y2;t at any conventional level.

Finally, the properties of gross in�ation and gross industrial production over our out-of-sample

period, from January 2007 to March 2009, are discussed in Section 4.2.4.

4.2 Estimation results

4.2.1 Macroeconomic drivers

Table 1 reports parameter estimates for the joint process of the two macroeconomic variables,

y1;t and y2;t. The estimates are obtained through the �rst step of the procedure set forth in

Section 3.1. In parenthesis, we report the standard errors computed through the block-bootstrap

procedure developed in Appendix B.2. These estimates, which are all largely signi�cant, con�rm

our previous discussion of Figure 1: in�ation is more persistent than IP growth, as both its speed

of adjustment in the absence of feedbacks, �1, and its feedback parameter, ��1, are much lower than

the counterparts for IP growth, �2 and ��2. Moreover, the sign and value of these parameters are

those we need to match the impulse-response functions for y1;t and y2;t in the data (not reported

here, for space reasons). These feedback e¤ects do have asset pricing implications, as we shall

discuss below. Finally, note that the estimates of �1 and �2 are both negative, implying that the

volatility of these two macroeconomic variables are countercyclical, another interesting property,

from an asset pricing perspective.

4.2.2 Aggregate stock returns and volatility

Table 2 reports parameter estimates and standard errors for (i) the parameters linking the two

macroeconomic factors, y1;t and y2;t, and the unobservable factor, y3;t, to the real stock price

index, St; and (ii) the parameters for the unobservable factor process. Parameter estimates are

obtained through the second step of our estimation strategy, explained in Section 3.2. Standard

errors are computed through the block-bootstrap procedure developed in Appendix B.2. The

parameter estimates are all largely signi�cant. They point to two main conclusions. First, the
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stock price is positively related to both in�ation and IP growth, although the link with IP growth

seems to be of paramount importance. Second, the unobservable factor is largely persistent, and

displays a large volatility, as the estimate of the speed reversion coe¢ cient, �3 is low. Note, the

literature on long run risks started by Bansal and Yaron (2004) emphasizes the asset pricing

implications of long run risks a¤ecting the expected consumption growth rate. Interestingly, the

presence of a persistent factor a¤ecting stock returns and volatility emerges quite neatly from

our estimation.

Finally, the conditional volatility of the third factor, evaluated at the long run mean, �3 � 1,
i.e.

p
�3 + �3y3

��
y3=1

, is about 35. This �gure implies a price impact of a volatility shock

in the third factor equal to s3 �
p
�3 + �3y3

��
y3=1

= 0:38, at the estimated parameters. In

comparison, these price impacts equal s1 �
p
�1 + �1y1

��
y1=�1

= 1:48 � 10�3, for in�ation, and
s2 �

p
�2 + �2y2

��
y2=�2

= 0:11, for industrial production growth, at the estimated parameters.

Hence, in our model, the price impact of a shock in the volatility of the IP growth, is about three

times smaller than that resulting from the volatility of the unobservable factor. We shall discuss

below the role in�ation plays in the context of our estimated model.

Figure 2 shows the dynamics of stock returns and volatility predicted by the model, along

with their sample counterparts, calculated as described in Section 3.2. These predictions are

obtained by feeding the model with sample data for the two macroeconomic factors, y1;t and y2;t,

in conjunction with simulations of the third unobservable factor. For each simulation i, the stock

price is computed through Eq. (28), using all the estimated parameters, the sample paths of the

two macroeconomic factors, y1;t and y2;t, and the simulated path of the third factor. Given the

simulated stock price, we compute stock returns and volatility, for each simulation. Finally, for

each point in time, we average over the cross-section of 1000 simulations, and report returns (in

the top panel of Figure 2) and volatility (in the bottom panel). Returns are computed as we do

with the data, and volatility is obtained through Eq. (13).

The model appears to capture the procyclical nature of stock returns and the countercyclical

behavior of stock volatility. It generates all the stock market drops occurred during the NBER

recessions, and all the volatility upward swings occurred during the NBER recessions, including

the dramatic spike of the 1975 recession. In the data, average stock volatility is about 11%, with

a standard deviation of about 3.8%. The model predicts an average volatility of about 13%, with

a standard deviation of about 1.3%.

How much of the variation in volatility can be attributable to macroeconomic factors? It is

a natural question, as the key innovation of our model is the introduction of these factors for

the purpose of explaining volatility, on top of a standard unobservable factor. Naturally, the

cyclical properties of stock returns and volatility that we see in Figure 2 can only arise due to the

�uctuation of the macroeconomic factors. To quantitatively assess these properties, we perform

the following experiment. We freeze the path of each factor yj;t at its estimated long run mean,
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�j , simulate the model, and compute the average stock market returns, stock volatility and the

standard deviation of stock volatility, over the simulations. Naturally, in this exercise, we cannot

compute volatility through Eq. (13), which is based on the assumptions that the three factors

are indeed stochastic, and a¤ect the asset price. Instead, we calculate the stock volatility of the

model, through the same formulae that we use to compute stock volatility from the data.

Figures 3 and 4, and the following table, report the results of this numerical experiment.

When we shut down the gross in�ation channel, we do not achieve any noticeable percentage

reduction in the model-implied average volatility and its standard deviation. Therefore, gross

in�ation seems to play a marginal role as a determinant of stock market volatility, and its cyclical

properties. At the same time, the model predicts that in�ation links to asset returns and volatility

in a manner comparable to that in the data. For example, it is well-known since at least Fama

(1981) that real stock returns are negatively correlated with in�ation, a property that hinders

the ability of stocks to hedge against in�ation. In our sample, this correlation is -42%, while the

correlation our model generates is -22%.6 Finally, the correlation between stock volatility and

in�ation is 23% in the data, while that implied by the model is 24%.

Percentage reduction in stock volatility

and the volatility of stock volatility

volatility vol of vol

without y1 � 0 � 0
without y2 11% 77%

without y3 69% �95%

Instead, industrial production growth plays a quite important role. Fixing y2;t at its long

run mean leads to about a 10% reduction in the average level of volatility, although the third

unobservable factor is key in explaining the level of stock volatility: when we �x y3;t = �3, thus

taking the variability of y3;t out of the picture, the average level of volatility drops by nearly 70%.

At the same time, industrial production is needed to explain the cyclical swings of stock volatility

that we have in the data. When y2;t is frozen at �2, the standard deviation of the model-implied

stock volatility drops dramatically by 77%.

When, instead, y3;t is frozen at �3, we even observe an increase in the variability of stock

volatility, of about 95%. This �nding is easily explained. As shown in Figure 1, gross industrial

production was very volatile during the 1950s, which translates into a similar property for the

aggregate market returns. Indeed, Figure 3 shows that when y3;t is frozen at �3, the model predicts

6 In our model, the real stock price is positively related to both in�ation and growth, but the correlation between

in�ation and growth is about -24%, which explains the negative �gure our model predicts for the correlation between

real returns and in�ation.
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that the level of stock volatility is quite high until the recession occurred in 1960, although it

then progressively lowers. It is this change in level occurring during the 1960s, which makes

the standard deviation of stock volatility even higher than when the unobservable factor is not

frozen (as in Figure 2). If we condition on subsamples that only include the Great Moderation

era (e.g., from January 1985), we �nd that the standard deviation of stock volatility is back to

approximately 1.3%. In other words, the presence of an unobservable factor has virtually no

e¤ect on the variability of stock volatility, during the Great Moderation.

In fact, the main challenge of the model is to explain why we have observed a sustained

stock market volatility, in spite of the Great Moderation. Our estimation results lead to a quite

clear conclusion: the level of stock volatility cannot be explained by macroeconomic variables

only. Instead, some unobservable factor is needed, which accounts for about two thirds of the

�uctuations in stock volatility (precisely, 69%). At the same time, the same unobservable factor

cannot explain the variability in stock volatility. As Figure 4 reveals, when we freeze the two

macroeconomic factors at their unconditional means, �1 and �2, the stock volatility predicted by

the model is just the average of its empirical counterpart, with virtually no �uctuations at all.7

All in all, our empirical results suggest that the volatility of stock volatility is attributable to

the cyclical variations in stock volatility, which our model captures through the relation between

asset returns and industrial production growth. Of course, these swings are ampli�ed by the

presence of the third unobservable factor.

4.2.3 Volatility risk-premiums and the dynamics of the VIX index

Table 3 reports parameter estimates and standard errors for the vector of the risk-premiums

coe¢ cients � in the risk-premium process of Eq. (19). The estimates, which are all signi�cant,

are obtained through the third, and �nal step, of the estimation procedure, described in Section

3.3. Standard errors are computed through the block-bootstrap procedure developed in Appendix

B.2.

The estimates imply that the risk-premiums processes are all positive, and quite large. More-

over, the risk compensation for gross in�ation increases with in�ation and that for industrial

production is countercyclical, given the sign of the estimated values for the loadings of in�ation,�
�1�1(1) + �2(1)

�
(positive), and industrial production,

�
�2�1(2) + �2(2)

�
(negative), in the risk-

premium process of Eq. (19). While gross in�ation does receive compensation, and helps explain

the dynamics of the volatility risk-premium, as we explain below, the countercyclical behavior of

the risk-premium for industrial production growth is even more critical, at least over the period

7 In Figure 4, stock volatility �uctuates between around 11% and 12%, and yet stock returns are quite smooth.

The reason is that stock returns are computed yearly, while stock volatility is estimated with one-month returns,

which the model predicts to be quite volatile (precisely, about 12%, annualized, on average), even in the absence

of macroeconomic factors.
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from 1990 to 2006. Our estimated model predicts indeed that in bad times, the risk-premium

for industrial production growth goes up, and future expected economic conditions even worsen,

under the risk-neutral probability, which boosts future expected volatility, under the same risk-

neutral probability. In part because of these e¤ects, the VIX index predicted by the model is

countercyclical. This reasoning is quantitatively sound. Figure 5 (top panel) depicts the VIX in-

dex, along with the VIX index predicted by the model and the (square root of the) model-implied

expected integrated variance. The model appears to reproduce well the large swings in the VIX

index that we have observed during the 1991 and the 2001 recession episodes.

The top panel of Figure 5 also shows the dynamics of expected future volatility, under the

physical probability. This expected volatility is certainly countercyclical, although it does not

display the large variations the model predicts for its risk-neutral counterpart, the VIX index. The

VIX index predicted by the model is countercyclical because the risk-premiums required to bear

the �uctuations of the macroeconomic factors are (i) positive and (ii) countercyclical, as argued

above, and, also, because (iii) current volatility is countercyclical. Expected future volatility is

countercyclical, under the physical probability, only because of the third e¤ect. Figure 6 reveals

the �tilt� in the future paths of industrial production growth that we need, in order to make

our model match the data on the VIX index. The left panel of this picture depicts sample paths

over one month, under the physical probability. The right panel depicts sample paths under the

risk-neutral probability. In words, movements in the volatility risk-premiums account for the

variation of the VIX index sensibly more than movements in the future expected volatility under

the physical probability, as clearly summarized by Figure 5.

The substantial wedge between expected volatility under the two probabilities is actually

reinforced by the feedback between in�ation and industrial production growth. The mechanism

is the following. Gross in�ation requires a large and positive risk-premium, as already mentioned.

This premium is actually so large, to make expected in�ation always decrease from its current

levels, under the risk-neutral probability. (Technically, the in�ation risk-premium is such that the

drift of in�ation is negative under the risk-neutral probability.) Since the feedback parameter,

��2, is positive and large in value, the risk-neutral expectation of industrial production worsens

even more than in the absence of feedback e¤ects, due precisely to the in�ation risk-premium. In

other words, in�ation a¤ects the VIX index through a subtle channel, the compensation for the

risk of correlation between in�ation and growth, arising due to sizeable values of (i) the feedback

between in�ation and growth, as summarized by ��2, (ii) the in�ation risk-premium. Interestingly,

Stock and Watson (2003) �nd that the linkages of asset prices to growth are stronger than for

in�ation. Our results further qualify this �nding: while our previous �ndings suggest that in�ation

does not a¤ect too much the dynamics of stock returns and volatility, the presence of signi�cant

feedbacks between in�ation and industrial production growth, in conjunction with compensation

for in�ation risk, reveal that in�ation does a¤ect future expected volatility, under the risk-neutral
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probability.

Finally, the bottom panel in Figure 5 plots the volatility risk-premium, de�ned as the dif-

ference between the (square roots of the) model-implied expected integrated variance under the

risk-neutral probability and the model-implied expected integrated variance under the physical

probability. This risk-premium is countercyclical, and this property arises for exactly the same

reasons we put forward to explain the large swings of the VIX index predicted by the model: posi-

tive compensation for risk, countercyclical variation of the risk-premiums required to compensate

for the risk in �uctuations of the macroeconomic factors, and feedback e¤ects between the two

macroeconomic factors. Interestingly, the two recessions, in 1991 and 2001, seem to be antici-

pated by a surge in the volatility risk-premium. Figure 7 provides scatterplots of the volatility

risk-premium against in�ation and industrial production. The top panel reveals that the volatility

risk-premium does not display a neat relation with in�ation, although we have explained that the

in�ation risk-premium is an important determinant of it, as it magni�es the industrial production

growth channel, through a feedback e¤ect. Instead, the bottom panel reveals a neat and inverse

relation between the volatility risk-premium and industrial production growth, and suggests an

interesting �convexity�property: in good times, the volatility risk-premium does not move too

much in response of movements in the industrial production growth, although it increases quickly

and by a sizeable amount as soon as business cycle conditions deteriorate.

4.2.4 Out-of-sample predictions of the model, and the subprime crisis

We undertake out-of-sample experiments to investigate the model�s predictions over a quite ex-

ceptional period, that from January 2007 to March 2009. This sample covers the subprime

turmoil, and features unprecedented events, both for the severity of capital markets uncertainty

and the performance of the US economy. The market witnessed a spectacular drop accompanied

by an extraordinary surge in volatility. In March 2009, yearly returns plummeted to -58.30%,

a performance even worse than that experienced in October 1974 (-58.10%). Furthermore, ac-

cording to our estimates, obtained through Eq. (29), aggregate stock volatility reached 28.20%

in March 2009, the highest level ever experienced in our sample. Finally, the VIX index hit its

highest value in our sample in November 2008 (72.67%), and remained stubbornly high for several

months. The time series behavior of stock returns, stock volatility and the VIX index during our

out-of-sample period are depicted over the shaded areas in Figures 2 and 5.

Macroeconomic developments over our out-of-sample period were equally extreme, with yearly

in�ation rates achieving negative values in 2009, and yearly industrial production growth being

as low as -13%, in March 2009. The shaded area in Figure 1 covers the out-of-sample behavior

of gross in�ation and growth.

Under such macroeconomic conditions, we expect our model to produce the following predic-

tions: (i) stock returns drop, (ii) stock volatility rises, (iii) the VIX index rises, and more than
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stock volatility. The mechanism is, by now, clear. Asset prices and, hence, returns, plummet,

as they are positively related to in�ation and growth, which both crashed. Moreover, volatility

increases, with the VIX index increasing even more, due to our previous �nding of (i) sizeable

macroeconomic risk-premiums and (ii) strong countercyclical variation in these premiums. We

now feed the model with the macroeconomic factors observed from January 2007 to March 2009,

to obtain quantitative predictions about stock returns, stock volatility and the VIX index.

Figures 2 and 5 con�rm our reasoning, and reveal that the model is able to trace out the

dynamics of stock returns and volatility (Figure 2), and the VIX index (Figure 5), over the out-

of-sample period. The market literally crashes, as in the data, although only less than a half as

much as in the data: the lowest value for yearly stock returns the model predicts, out-of-sample,

is -23.28%, which is the second lowest �gure our model produces, overall. (The lowest level the

model predicts is -23.64%, for June 1954, when both in�ation and industrial production growth

were quite low.) Instead, the model predicts that stock volatility and the VIX index surge even

more than in the data, reaching record highs of 32.48% (volatility) and 73.67% (VIX).

Figure 8 provide additional details about the period from January 2000 to March 2009. It

compares stock volatility and the VIX index with the predictions of the model and those of a OLS

regression. The OLS for volatility is that in Eq. (31), excluding the lag for six months, related

to the autoregressive term. The OLS for the VIX index is that in Eq. (34). OLS predictions

are obtained by feeding the OLS predictive part with its regressors, using parameter estimates

obtained with data up to December 2006. The following table reports Root Mean Squared Errors

(RMSE) for both our model and OLS, calculated for the out-of-sample period.

RMSE for the model and OLS

Model OLS

Volatility 0.0508 0.0700

VIX Index 0.1215 0.1319

Overall, OLS predictions do not seem to capture the countercyclical behavior of stock volatil-

ity. As for the VIX index, the OLS model (in fact, by Eq. (34), an autoregressive, distributed

lag model) produces predictions that are not as accurate as the model, and generate over�t. The

model, instead, reproduces the huge swings we see in the data, in both the last two recession

episodes. It also seems to anticipate turning points, in that it raises before and drops at the end

of a recession. The RMSEs clearly favour the model against OLS, although it appears to do so

more with volatility than for the VIX, as Figure 8 informally reveals.
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5 Conclusion

How precisely does aggregate stock market volatility relate to the business cycle? This old question

has been formulated at least since O¢ cer (1973) and Schwert (1989a,b). We learnt from recent

theoretical explanations that the countercyclical behavior of stock volatility can be understood as

the result of a rational valuation process. However, how much of this countercyclical behavior is

responsible for the sustained level aggregate volatility has experienced for centuries? This paper

shows that approximately one third of this level can be explained by macroeconomic factors,

and that some unobserved component is needed indeed to make stock volatility consistent with

rational asset valuation. Moreover, we show that a business cycle factor is needed to explain the

inevitable �uctuations of stock volatility around its average.

We show that risk-premiums arising from �uctuations in this volatility are strongly coun-

tercyclical, certainly more so than stock volatility alone. In fact, the risk-compensation for the

�uctuation in the macroeconomic factors is large and countercyclical, and explains the large

swings in the VIX index that we observe during recessions. We undertake out-of-sample exper-

iments that cover the 2007-2009 subprime crisis, when the VIX reached a record high of more

than 70%, which our model successfully reproduces, through a countercyclical variation in the

volatility risk-premiums. Finally, we provide evidence that the same volatility risk-premiums

might help predict developments in the business cycle in bad times� the end of a recession.

Which macroeconomic factor matters? We �nd that industrial production growth is largely

responsible for the random �uctuations of stock volatility around its level, and that in�ation plays,

instead, a quite limited role in this context. At the same time, in�ation plays an important role

as a determinant of the VIX index, through two channels: (i) one, direct, channel, related to the

in�ation risk-premium, and (ii) an indirect channel, arising from the business cycle propagation

mechanism, through which in�ation and industrial production growth are correlated. The second

channel is subtle, as it gives rise to a correlation risk that we show it is signi�cantly priced by

the market.

The key aspect of our model is that the relations among the market, stock volatility, volatility

risk-premiums and the macroeconomic factors, are consistent with no-arbitrage. In particular,

volatility is endogenous in our framework: the same variables driving the payo¤ process and the

volatility of the pricing kernel, and hence, the asset price, are those that drive stock volatility

and volatility-related risk-premiums. A question for future research is to explore whether the

no-arbitrage framework in this paper can be used to improve forecasts of real economic activity.

In fact, stock volatility and volatility risk-premiums are driven by business cycle factors, as this

paper clearly demonstrates. An even more challenging and fundamental question is to explore

the extent to which business cycle, stock volatility and volatility risk-premiums do endogenously

develop.
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Tables

Table 1

Parameter estimates and block-bootstrap standard errors for the joint process of the two
macroeconomic factors, gross in�ation, y1;t � CPIt/CPIt�12 � y1 (t) and gross industrial
production growth, y2;t � IPt/ IPt�12 � y2 (t), where CPIt is the Consumer price index as of
month t, IPt is the real, seasonally adjusted industrial production index as of month t, and:�
dy1 (t)

dy2 (t)

�
=

�
�1 ��1

��2 �2

� �
�1 � y1 (t)
�2 � y2 (t)

�
dt+

� p
�1 + �1y1 (t) 0

0
p
�2 + �2y2 (t)

� �
dW1 (t)

dW2 (t)

�
;

where Wj (t), j = 1; 2, are two independent Brownian motions, and the parameter vector is

�> =
�
�j ; �j ; �j ; �j ; ��j ; j = 1; 2

�
. Parameter estimates are obtained through the �rst step of

the estimation procedure set forth in Section 3.1, relying on Indirect Inference and Simulated

Method of Moments. Matching conditions relate to (i) parameter estimates for the auxiliary

Vector Autoregressive models in Eq. (25), and (ii) the sample mean and standard deviation

of y1;t and y2;t. The block-bootstrap procedure for the standard errors of the estimates is

developed in Appendix B.2. The sample covers monthly data for the period from January

1950 to December 2006.

Estimate Std error

�1 0.0331 3.4630�10�4

�1 1.0379 3.4855�10�3

�1 2.2206�10�4 2.7607�10�6

�1 �9.6197�10�7 1.0099�10�8

�2 0.5344 7.4482�10�3

�2 1.0415 4.9926�10�3

�2 0.0540 3.5233�10�4

�2 �0.0497 3.3939�10�4

��1 �0.2992 4.3054�10�3

��2 1.2878 1.8091�10�2
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Table 2

Parameter estimates and block-bootstrap standard errors for the stock price and the unob-
servable factor:

s (t) = s0 +
3P
i=1

siyi (t) ;

where s (t) is the real stock price, obtained as the ratio between the S&P Compounded index
and the Consumer Price Index; y1 (t) and y2 (t) are the observed gross in�ation and gross
industrial production growth, as de�ned in Table 1; �nally, y3 (t) is an unobserved factor,
with the following dynamics:

dy3 (t) = �3 (�3 � y3 (t)) dt+
p
�3 + �3y3 (t)dW3 (t) ;

where W3 (t) is a standard Brownian motion, and is independent of the Brownian motions

driving the �uctuations of the two macroeconomic factors y1 (t) and y2 (t). The parameter

vector is �> = (�3; �3; �3; �3; s0; sj ; j = 1; 2; 3), where the long run mean for the unobservable

factor, �3, is set equal to one for the purpose of model�s identi�cation. Parameter estimates

are obtained through the second step of the estimation procedure set forth in Section 3.2,

relying on Indirect Inference and Simulated Method of Moments. Matching conditions relate

to (i) parameter estimates for the auxiliary model for stock returns, Eq. (30), and for the

auxiliary model for stock volatility, Eq. (31), and (ii) the sample mean and standard deviation

of stock returns and volatility. The block-bootstrap procedure for the standard errors of the

estimates is developed in Appendix B.2. The sample covers monthly data for the period from

January 1950 to December 2006.

Estimate Std error

s0 0.1279 6.3962�10�2

s1 0.0998 4.9570�10�2

s2 2.5103 1.5668�10�1

s3 0.0109 4.6518�10�3

�3 0.0092 2.8930�10�3

�3 1 restricted

�3 9.4543�102 3.2877�102

�3 4.1653 2.0533
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Table 3

Parameter estimates and block-bootstrap standard errors for the risk-premium parameters of
the total risk-premium process in Eq. (19):

�1 (y1 (t)) = �1�1(1) +
�
�1�1(1) + �2(1)

�
y1 (t) (in�ation)

�2 (y2 (t)) = �2�1(2) +
�
�2�1(2) + �2(2)

�
y2 (t) (industrial production)

�3 (y3 (t)) = �3�1(3) +
�
�3�1(3) + �2(3)

�
y3 (t) (unobservable factor)

where y1 (t) and y2 (t) are the observed gross in�ation and gross industrial production growth,

as de�ned in Table 1, and y3 (t) is the unobserved factor. The parameter vector is �
> =�

�1(1); �2(1); �1(2); �2(2); �1(3); �2(3)
�
. Parameter estimates are obtained through the third step

of the estimation procedure set forth in Section 3.3, relying on Indirect Inference and Simulated

Method of Moments. Matching conditions relate to (i) parameter estimates for the auxiliary

model for the VIX index, Eq. (34), and (ii) the sample mean and standard deviation of

the VIX index. The block-bootstrap procedure for the standard errors of the estimates is

developed in Appendix B.2. The sample covers monthly data for the period from January

1990 to December 2006.

Estimate Std error

In�ation
�1(1)

�2(1)

�24.6491�102

36.5596

31.4150�10
4.8917

Ind. Prod.
�1(2)

�2(2)

47.0883�10
1.1159

24.0197

0.1677

Unobs.
�1(3)

�2(3)

�0.2078
27.7137�10

0.0274

35.6533
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Figures

Figure 1 � Industrial production growth and in�ation, with NBER dated re-

cession periods. This �gure plots the one-year, monthly gross in�ation, de�ned as y1;t �
CPIt/CPIt�12, and the one-year, monthly gross industrial production growth, de�ned as

y2;t � IPt/ IPt�12, where CPIt is the Consumer price index as of month t, and IPt is the real,

seasonally adjusted industrial production index as of month t. The sample covers monthly

data for the period from January 1950 to December 2006. Vertical solid lines (in black) track

the beginning of NBER-dated recessions, and vertical dashed lines (in red) indicate the end

of NBER-dated recessions. The shaded area (in yellow) covers the out-of-sample period, from

January 2007 to March 2009, which we use to formulate model�s predictions.

33



Figure 2 �Stock returns and volatility along with the model predictions, with

NBER dated recession periods, and out-of-sample predictions. This �gure plots

one-year ex-post price changes and one-year return volatility, along with their counterparts

predicted by the model. The top panel depicts continuously compounded price changes,

de�ned as Rt � ln (st/ st�12), where st is the real stock price as of month t. The bottom

panel depicts smoothed return volatility, de�ned as Volt �
p
6� �12�1

P12
i=1 jln (st+1�i=st�i)j,

along with the instantaneous standard deviation predicted by the model, obtained through

Eq. (12). Each prediction at each point in time is obtained by feeding the model with the

two macroeconomic factors depicted in Figure 1 (in�ation and growth) and by averaging

over the cross-section of 1000 dynamic simulations of the unobserved factor. The sample

covers monthly data for the period from January 1950 to December 2006. Vertical solid

lines (in black) track the beginning of NBER-dated recessions, and vertical dashed lines (in

red) indicate the end of NBER-dated recessions. The shaded area (in yellow) covers the

out-of-sample period, from January 2007 to March 2009, which we use to formulate model�s

predictions.
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Figure 3 �Stock returns and volatility along with the model predictions in the

absence of an unobservable factor, with NBER dated recession periods. This �gure

plots one-year price changes and one-year return volatility, along with their counterparts

predicited by the model, when the model is driven by the macroeconomic factors only. The

top panel depicts continuously compounded price changes, de�ned as Rt � ln (st/ st�12),

where st is the real stock price as of month t. The bottom panel depicts smoothed return

volatility, de�ned as Volt �
p
6� � 12�1

P12
i=1 jln (st+1�i=st�i)j, along with the instantaneous

standard deviation predicted by the model, estimated in the same way as for the data. Each

prediction at each point in time is obtained by feeding the model with the two macroeconomic

factors depicted in Figure 1 (in�ation and growth) and by freezing the unobserved factor at

its long run mean, �3 = 1. The sample covers monthly data for the period from January

1950 to December 2006. Vertical solid lines (in black) track the beginning of NBER-dated

recessions, and vertical dashed lines (in red) indicate the end of NBER-dated recessions.
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Figure 4 �Stock returns and volatility along with the model predictions in the

absence of macroeconomic factors, with NBER dated recession periods. This �gure

plots one-year price changes and one-year return volatility, along with their counterparts

predicited by the model, when the model is driven by the unobservable factor only. The top

panel depicts continuously compounded price changes, de�ned as Rt � ln (st/ st�12), where
st is the real stock price as of month t. The bottom panel depicts smoothed return volatility,

de�ned as Volt �
p
6� � 12�1

P12
i=1 jln (st+1�i=st�i)j, along with the instantaneous standard

deviation predicted by the model, estimated in the same way as for the data. Each prediction

at each point in time is obtained by freezing the two macroeconomic factors at their long

run means, �1 and �2, and by averaging over the cross-section 1000 dynamic simulations of

the unobserved factor. The sample covers monthly data for the period from January 1950 to

December 2006. Vertical solid lines (in black) track the beginning of NBER-dated recessions,

and vertical dashed lines (in red) indicate the end of NBER-dated recessions.
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Figure 5 �The VIX Index and volatility risk-premia, with NBER dated recession
periods, and out-of-sample predictions. This �gure plots the VIX index along with
model�s predictions. The top panel depicts (i) the VIX index, (ii) the VIX index predicted
by the model, and (iii) the VIX index predicted by the model in an economy without risk-
aversion, i.e. the expected integrated volatility under the physical probability. The bottom
panel depicts the volatility risk-premium predicted by the model, de�ned as the di¤erence
between the model-generated expected integrated volatility under the risk-neutral and the
physical probability,

VRP (y (t)) �
r

1

T � t

 r
E
�R T

t
�2 (y (u)) du

���y (t)��rE �R Tt �2 (y (u)) du���y (t)�
!
;

where T � t = 12�1, E is the conditional expectation under the risk-neutral probability, E is
the conditional expectation under the true probability, �2 (y) is the instantaneous variance
predicted by the model, obtained through Eq. (12), and y is the vector of three factors: the
two macroeconomic factors depicted in Figure 1 (in�ation and growth) and one unobservable
factor. Each prediction at each point in time is obtained by feeding the model with the
two macroeconomic factors depicted in Figure 1 (in�ation and growth) and by averaging
over the cross-section of 1000 dynamic simulations of the unobserved factor. The sample
covers monthly data for the period from January 1990 to December 2006. Vertical solid
lines (in black) track the beginning of NBER-dated recessions, and vertical dashed lines (in
red) indicate the end of NBER-dated recessions. The shaded area (in yellow) covers the
out-of-sample period, from January 2007 to March 2009, which we use to formulate model�s
predictions.
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Figure 6 �Sample paths of industrial production growth: under the objective

probability, and implied by the VIX index. This �gure plots 1000 simulations of one

month paths of the gross industral production growth, with starting values �xed at 1:03 (gross

in�ation) and 0:96 (gross industrial production growth). The left panel displays the sample

paths under P , the physical probability. The right panel depicts the sample paths under Q,

the risk-neutral probability, obtained by matching the model to the VIX index.
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Figure 7 �Volatility risk-premium against in�ation and industrial production

growth. This �gure provides scatterplots of the volatility risk-premium predicted by the

model, depicted in Figure 3 (bottom panel), against the two macroeconomic factors depicted

in Figure 1 (in�ation and growth). Each prediction at each point in time is obtained by feeding

the model with the two macroeconomic and by averaging over 1000 dynamic simulations of

the unobserved factor. The sample covers monthly data for the period from January 1990 to

December 2006. Vertical solid lines (in black) track the beginning of NBER-dated recessions,

and vertical dashed lines (in red) indicate the end of NBER-dated recessions.
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Figure 8 �Out of sample predictions and the subprime crisis. This �gure plots
one-year return volatility and the VIX index, along with its counterparts predicted by the
model and by an OLS regression. The left panel depicts smoothed return volatility, de�ned as
Volt �

p
6� � 12�1

P12
i=1 jln (st+1�i=st�i)j, where st is the real stock price as of month t, along

with the instantaneous standard deviation predicted by (i) the model, through Eq. (12), and
(ii) the predictive part of an OLS regression of Volt on to past values of Volt, in�ation and
industrial production growth. The right panel depicts the VIX index, along with the VIX
index predicted by (i) the model; and (ii) the predictive part of an OLS regression of the VIX
index on to past values of the VIX index, in�ation and industrial production growth. Each
prediction is obtained by feeding the model and the predictive part of the OLS regression
with the two macroeconomic factors depicted in Figure 1 (in�ation and growth) and, for the
model, by averaging over the cross-section of 1000 dynamic simulations of the unobserved
factor. The sample depicted in the �gure spans the period from January 2000 to March
2009. The estimation of both the model and the OLS regressions relates to the period from
January 1950 to December 2006. Vertical solid lines (in black) track the beginning of NBER-
dated recessions, and the vertical dashed line (in red) indicates the end of the NBER-dated
recession, occurred in November 2001. The shaded area (in yellow) covers the out-of-sample
period, from January 2007 to March 2009, which includes the NBER recession announced to
have occurred in December 2007, and the subprime crisis, which started in June 2007.
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Technical Appendix
A. Proofs for Section 2
Existence of a strong solution to Eq. (1) and Eq. (18).
Consider the following conditions: for all i,

(i) For all y : V (y)(ii) = 0, �
>
i (��y + ��) > 1

2
�>i ��

>�i

(ii) For all j, if
�
�>i �

�
j
6= 0, then Vii = Vjj .

Then, by Du¢ e and Kan (1996) (unnumbered theorem, p. 388), there exists a unique strong solution to Eq.
(1) for which V (y (t))(ii) > 0 for all t almost surely.

We apply these conditions to the di¤usion in Eq. (18). Condition (i) collapses to,

For all yi : �i + �iyi = 0; �i
�
�i (�i � yi) + ��i

�
�j � yj

��
>
1

2
�2i ; i 6= j;

with ��3 � 0. That is, ruling out the trivial case �i = 0,

�i (�i�i + �i) + ��i�i

�
�j +

�j
�j

�
>
1

2
�2i ; i 6= j: (A1)

Proof of Proposition 1
The technical condition in Proposition 1 is,

E

"Z T

t

�>�V (y (�)) + �>y (�)
�� (�)>

2 d�
#
<1; (A2)

for some constants  and � in Eq. (A10) below.
Next, de�ne the Arrow-Debreu adjusted asset price process as, s� (t) � e�rt� (t) s (y (t)), t > 0. By Itô�s

lemma, it satis�es,
ds� (t)

s� (t)
= Dr (y (t)) dt+

�
Q (y (t))> �� (y (t))>

�
dW (t) ; (A3)

where

Dr (y) = �r + As (y)
s (y)

�Q (y)>� (y) ;

As (y) = sy (y)
> � (�� y) + 1

2
Tr
�
[�V (y)] [�V (y)]> syy (y)

�
; Q (y)> =

sy (y)
>�V (y)

s (y)
;

and sy and syy denote the gradient and the Hessian of s with respect to y. By absence of arbitrage opportunities,
for any T <1,

s� (t) = E

�Z T

t

�� (h) dh

����F (t)�+ E[s� (T ) j F (t)]; (A4)

where �� (t) is the current Arrow-Debreu value of the dividend to be paid o¤ at time t, viz �� (t) = e�rt� (t) � (t).
Below, we show that the following transversality condition holds,

lim
T!1

E[s� (T ) j F (t)] = 0; (A5)

from which Eq. (8) in the main text follows, once we show that
R1
t
E[�� (h)]dh <1.

Next, by Eq. (A4),

0 =
d

d�
E[s� (�) j F (t)]

����
�=t

+ �� (t) : (A6)

Below, we show that

E[s� (T ) j F (t)] = s� (t) +
Z T

t

D(y (h)) s� (h) dh: (A7)
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Therefore, by the assumptions on �, Eq. (A6) can be rearranged to yield the following ordinary di¤erential
equation,

For all y, sy (y)
> (c�Dy) + 1

2
Tr
�
[�V (y)] [�V (y)]> syy (y)

�
+ � (y)� rs (y) = 0; (A8)

where c and D are de�ned in the proposition.
Assume that the price function is a¢ ne in y,

s (y) =  + �>y; (A9)

for some scalar  and some vector �. By plugging this guess back into Eq. (A8) we obtain,

For all y, �>c+ �0 � r �
h
�> (D + rIn�n)� �>

i
y = 0:

That is,

�>c+ �0 � r = 0 and
h
�> (D + rIn�n)� �>

i
= 01�n:

The solution to this system is,

 =
�0 + �

>c

r
and �> = �> (D + rIn�n)

�1 : (A10)

We are left to show that Eq. (A5) and (A7) hold true.
As for Eq. (A5), we have:

lim
T!1

E[s� (T ) j F (t)] = lim
T!1

E[e�r(T�t)� (T ) s (y (T )) j F (t)]

=  lim
T!1

e�r(T�t)E[� (T ) j F (t)] + lim
T!1

e�r(T�t)E[� (T )�>y (T ) j F (t)]

= � (t) lim
T!1

e�r(T�t)E[�>y (T ) j F (t)];

where the second line follows by Eq. (A9), and the third line holds because E[� (T ) j F (t)] = 1 for all T , and by a
change of measure. Eq. (A5) follows because y is stationary mean-reverting under the risk-neutral probability.

To show that Eq. (A7) holds, we need to show that the di¤usion part of s� in Eq. (A3) is a martingale, not
only a local martingale, which it does whenever for all T ,

E

�Z T

t

Q (y (�))> �� (�)>2 d�� <1;
which is the condition in (A2).

B. Proofs for Section 3
Remarks on notation: Hereafter, we let Avar and Acov denote the probability limits of the variance and
covariance operators, respectively. Let u be a n� 1 vector, where each element depends on some m� 1 parameter
vector �. We de�ne: the m � n matrix r�u =

@u>

@�
; kukp =

�p
u>u

�p
, for some scalar p > 0; and juj2 = uu

>,

the outer product of u. Finally, for any n�m matrix A, we set jAj =
Pn

i=1

Pm
j=1 jai;j j.

B.1. Proofs of Propositions 2, 3 and 4
The sets � and � in Sections 3.1 and 3.2 are de�ned as:

� = f� : The inequality in (A1) holds, �i > 0; and �i�j � ��i��j > 0; i; j = 1; 2 and i 6= jg ;

and
� = f� : The inequality in (A1) holds for i = 3, and �3 > 0g :

Furthermore, we let �0 and �0 be the solutions to the two limit problems,

�0 = arg min
�2�0

plim
T!1;�!0

 1H
HX
h=1

'̂T;�;h (�)� ~'T


2

;
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and

�0 = arg min
�2�0

plim
T!1;�!0

 1H
HX
h=1

#̂T;�;h (�)� ~#T


2

;

where �0 and �0 are compact sets of � and �, respectively. Finally, we de�ne the limit problem for the estimator
of the risk-premium parameters,

�0 = arg min
�2�0

plim
T!1;�!0

 1H
HX
h=1

 ̂T ;�;h(�̂T ; �̂T ;�)� ~ T


2

:

We are now ready to prove the propositions in Section 3. The following assumption summarizes the properties
of the data generating mechanism we rely on.

Assumption B1: (i) Conditions (i) and (ii) in Appendix A hold for i = 1; 2; 3; (ii) The sample observations for
the macroeconomic factors y1(t); y2(t) are generated by Eq. (18) for j = 1; 2; (iii) As for Eq. (18), for i; j = 1; 2
i 6= j; �i�j � �i�j > 0 and for all i = 1; 2; 3 �i > 0; (iv) The sample observations for the stock market index s(t)
are generated by Eq. (21); (v) The risk-premium vector � (y) and the dividend vector � (y) are de�ned as in Eqs.
(19) and (20).

Proof of Proposition 2
By the conditions in Assumptions B1(i) and B1(ii), (y1(t); y2(t)) admits a unique strong solution, and has a
positive-de�nite covariance matrix with probability one. Assumption B1(iii) ensures that (y1(t); y2(t)) is geomet-
rically ergodic and the skeleton (y1;t; y2;t) is geometrically �-mixing. Further, by Glasserman and Kim (2008), the
stationary distribution of (y1(t); y2(t)) and (y1;t; y2;t) has exponential tails, which ensures that there are enough
�nite moments for the uniform law of large numbers and the central limit theorem to apply. By the same argument,
for any � 2 �0, the simulated skeleton (y

�
1;t;�;h; y

�
2;t;�;h) is also geometrically �-mixing, with stationary distribu-

tion having exponential tails. Finally, given Eq. (18), (y�1;t;�;h; y
�
2;t;�;h) is at least twice continuously di¤erentiable

in any open neighborhood of �0.
We claim that �̂T ��0 = op(1), which follows by the usual arguments relying on unique identi�ability (ensured

by the previous properties of the di¤usion in Eq. (18) and its simulated skeleton), and the uniform law of large
numbers. Next, by the �rst order conditions and a mean-value expansion around �0,

0 = r�

�
1
H

PH
h=1 '̂T;�;h(�̂T )

�> �
1
H

PH
h=1 '̂T;�;h(�̂T )� ~'T

�
= r�

�
1
H

PH
h=1 '̂T;�;h(�̂T )

�> �
1
H

PH
h=1 '̂T;�;h (�0)� ~'T

�
+r�

�
1
H

PH
h=1 '̂T;�;h(�̂T )

�>
r�

�
1
H

PH
h=1 '̂T;�;h(

��T )
��
�̂T � �0

�
;

where ��T is some convex combination of �̂T and �0. Let

D1 (�0) �D1 = plim r�

�
1
H

PH
h=1 '̂T;�;h (�0)

�
:

By the uniform law of large numbers, sup�2�0

���r�

�
1
H

PH
h=1 '̂T;�;h (�)

�
�D1 (�)

��� = op(1), and as �̂T � �0 =

op(1), r�

�
1
H

PH
h=1 '̂T;�;h(

��T )
�
�D1 = op(1). Hence,

p
T
�
�̂T � �0

�
= �

�
D>
1 D1

��1
D>
1

�p
T
�
1
H

PH
h=1 '̂T;�;h (�0)�'0

�
�
p
T (~'T �'0)

�
+ op(1):

Let '̂T;h (�0) be the unfeasible estimator, obtained by simulating continuous paths for yj (t), i.e. y
�0
j;t;h, j = 1; 2.

We claim that for h = 1; � � � ; H, p
T
�
'̂T;�;h (�0)� '̂T;h (�0)

�
= op(1):

Let Y �0
t;�;h be the vector containing all the regressors in Eq. (26), and let '̂1;T;�;h (�0) be the parameter estimator

of the OLS regression of y�01;t;�;h on Y
�0
t;�;h. We have:
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As for the �rst term on the RHS of (B1),
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= Op(1), and by Theorem 2.3 in Pardoux and

Talay (1985), we have, for " > 0 and
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The second term on the right hand side of Eq. (B1) can be dealt with similarly. Thus, we have:
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where,
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The last term of the right hand side of this equality is zero, because the simulated paths are independent of the
sample paths. Moreover, the simulated paths are independent and identically distributed across all simulation
replications and, hence,
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Finally, given Assumption B1(ii),
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The proposition follows by the central limit theorem for geometrically strong mixing processes.

Proof of Proposition 3
By the same arguments utilized in the proof of Proposition 2,
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Let #̂T;h (�0) be the the unfeasible estimator, obtained by simulating continuous paths for the unobservable factor
Z (t). By the same arguments as those in the proof of Proposition 2,
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Paths for the model-based stock price are obtained through the sample paths for the observable factors y1;t; y2;t.
Therefore, simulated paths are not independent across simulations, and are not independent of the actual sample
paths of stock price and volatility. We have:
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Therefore, using the fact that Avar
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Details on the simulations of the VIX index predicted by the model
We construct a simulated series of length T for the VIX index, at a monthly frequency. Since we do not have
a closed-form formula for the VIX index, we need to resort to numerical methods aiming to approximate it. We
address this issue by simulating the three factors at a daily frequency, which we then use to numerically integrate
the daily volatilities. For each simulation draw h = 1; � � �; H, we initialize each monthly path at the values taken
by the observable macroeconomic factors, i.e. at y1;t, y2;t, t = T �T ; � � �; T � 1, and at the monthly unconditional
mean of the unobservable factor. For i = 1; 2; 3; h = 1; � � �; H; k = 0; � � �; �̂�1 � 1, let ŷ�

i;t+k�̂;h
be the value of the

i-th factor, at time t + k�̂, for the h-th simulation under the risk-neutral probability, performed with parameter
� 2 �0 and remaining parameters �xed at their estimates obtained in the �rst and second step of our estimation
procedure. �̂ will be de�ned in a moment. Simulations are obtained through a Milstein approximation to the
risk-neutral version of Eq. (18),

dyi (t) = [�i (�i � yi (t)) + ��i (��i � �yi (t))� � (yi)] dt+
p
�i + �iyi (t)d

~Wi (t) ; i = 1; 2; 3;

45



where � (yi) denotes the i-th element of the vector � (y) in Eq. (19), and ~Wi is a standard Brownian motion under
the risk-neutral probability. We use the discretization step �̂ = �=22, where � is the discretization step used in
the �rst and the second step of our estimation procedure Given Eqs. (21)-(24), the model-based volatility under
the risk-neutral measure, at the j-th simulation, is:

�2t+k�̂;h(�̂T ; �̂T ;�) =

P3
i=1 ŝ
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ŝi;T ŷ
�
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and ŝl;T l = 0; � � �; 3 are the reduced-form parameters obtained in step 2 of the estimation procedure. Finally,
we compute the simulated value of the model-based VIX, VIXt;�̂;h(�̂T ; �̂T ;�), by integrating volatility over each
month, as follows:

VIXt;�̂;h(�̂T ; �̂T ;�) =
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�̂�1�1X
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�2
t+(k+1)�̂;h
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By repeating the same procedure outlined above H times, we can then generate H paths of length T . From now
on, we simplify notation and index all parameter estimators and simulated factors by �, rather than �̂.

Proof of Proposition 4

Given Assumptions B1(i) and B1(iii), for any � in a compact set �0, y�i;t+(k+1)�;h, i = 1; 2; 3, h = 1; � � �; H, is
geometrically �-mixing, and has a stationary distribution with exponential tails. Thus, by Eqs. (B2), (B3) and
(B4), VIXt;�;h (�0;�0;�0) is also geometrically �-mixing with exponential tails. Therefore, VIXt;�;h (�0;�0;�0)
has enough �nite moments to satisfy su¢ cient conditions for the law of large numbers and the central limit theorem
to apply. Next, note that VIXt;�;h (�;�;�) is continuously di¤erentiable in the interior of �0 � �0 � �0 and,
hence, the uniform law of large numbers also applies. We may now proceed with a proof that follows the general
lines of Propositions 2 and 3, provided we take into account the contribution of parameter estimation error, arising
because the risk-neutral paths of the factors are generated using �̂T and �̂T , not the unknown �0 and �0.

Given the �rst order conditions, and a mean value expansion around �0;
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Given Propositions 2 and 3, by the uniform law of large numbers, we have that �̂T � �0 = op(1) and, also,
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We have,
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Let  ̂T ;h(�̂T ; �̂T ;�0) be the estimator obtained in the case we computed the model-based VIX using simulated
paths for the unobservable factor Z�ut;�;h. By an argument similar to that in Proposition 2,
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By the same argument as in Proposition 3,
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Hence, given Propositions 2 and 3,
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B.2. Bootstrap estimates of the standard errors
We draw B overlapping blocks of length l, with T = Bl, of

Xt = (y1;t; � � �; y1;t�k1 ; y2;t; � � �; y2;t�k2;St; � � �; St�k3);

where k1; k2; k3 depend on the lags we use in the auxiliary models. The re-sampled observations are:

X�
t = (y

�
1;t; � � �; y�1;t�k1 ; y

�
2;t; � � �; y�2;t�k2;S

�
t ; � � �; S�t�k3):

Let P � be the probability measure governing the re-sampled series, X�
t , and let E

�; var� denote the mean and the
variance taken with respect to P �, respectively. Further O�p(1) and o

�
p(1) denote, respectively, a term bounded in

probability, and converging to zero in probability, under P �, conditional on the sample and for all samples but a
set of probability measure approaching zero.

Bootstrap Standard Errors for �
The simulated samples for y1;t and y2;t are independent of the actual samples and are also independent across
simulation replications. Also, as stated in Proposition 2, the estimators of the auxiliary model parameters, based
on actual and simulated samples, have the same asymptotic variance. Hence, there is no need to re-sample the
simulated series.

Given that the number of auxiliary model parameters and moment conditions is larger than the number of
parameters to be estimated, we need to use an appropriate re-centering term. In the over-identi�ed case, even if
the population moment conditions have mean zero, the bootstrap moment conditions do not have mean zero, and
a hence proper re-centering term is necessary (see, e.g., Hall and Horowitz (1996)).

Let ~'�T;i be the bootstrap analog to ~'T at draw i, and de�ne:
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We compute the bootstrap covariance matrix, as follows:
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The next proposition shows that
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V̂ 1;T;B , is a consistent estimator of V 1, thereby allowing to compute

asymptotically valid bootstrap standard errors.

Proposition B1: Under the same assumptions of Proposition 2, if l=T 1=2 ! 0 as T;B; l!1, then for all " > 0,
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Proof: By the �rst order conditions and a mean value expansion around �̂T ;
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The Proposition follows, once we show that:

E�
�p
T (~'�T � ~'T )

�
= op(1); (B5)

var�
�p
T (~'�T � ~'T )

�
= var

�p
T (~'T �'0)

�
+Op(l=

p
T ); (B6)

and for " > 0,

E�
��p

T k~'�T � ~'T k
�2+"�

= Op(1): (B7)

Indeed, under conditions (B5)-(B6), we have that by the uniform law of large numbers,���r�

�
1
H

PH
h=1 '̂T;h(�̂

�
T )
�
�D1

��� = o�p(1). Hence,
p
T
�
�̂
�
T � �̂T

�
=
�
D>
1 D1

��1
D>
1

p
T (~'T � ~'

�
T ) + o

�
p(1):

and, given (B6), and recalling that l=
p
T ! 0;

var�
�p
T (~'�T � ~'T )

�
= Avar

�p
T (~'T �'0)

�
+ op(1):

Given (B7), the statement follows by Theorem 1 in Goncalves and White (2005).
Let us show (B5), (B6) and (B7). We have,
p
T (~'�T � ~'T ) =

p
T
��
~'�1;T � ~'1;T

�
;
�
~'�2;T � ~'2;T

�
; (�y�1 � �y1) ; (�y�2 � �y2) ;

�
�̂�21 � �̂21

�
;
�
�̂�22 � �̂22

��>
:

Since each component of
p
T (~'�T � ~'T ) can be dealt with in the same way, we only considerp

T
�
~'�1;T � ~'1;T

�
. Let Y t be the vector containing all the regressors in Eq. (25), and Y �

t be its bootstrap
counterpart. By the �rst order conditions,

p
T
�
~'�1;T � ~'1;T

�
=

 
1

T

TX
t=25

Y �
tY

�>
t

!�1
1p
T

TX
t=25

Y �
t

�
y�1;t � Y �>

t ~'1;T

�
=
�
E(Y tY

>
t )
��1 1p

T

TX
t=25

Y �
t

�
y�1;t � Y �>

t ~'1;T

�
+ o�p(1);

as 1
T

PT
t=25 Y

�
tY

�>
t �E�

�
1
T

PT
t=25 Y

�
tY

�>
t

�
= o�p(1), and E

�
�
1
T

PT
t=25 Y

�
tY

�>
t

�
= 1

T

PT
t=25 Y tY

>
t +Op(l=T ) =

E
�
Y tY

>
t

�
+ op(1). We have,

E�
�p
T
�
~'�1;T � ~'1;T

��
= E(Y tY

>
t )
1

T

TX
t=25

Y t

�
y1;t � Y >

t ~'1;T

�
+Op(l=

p
T ) = op(1):

This proves (B5). Next,

var�
�p
T
�
~'�1;T � ~'1;T
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=
�
E�(Y tY

>
t )
��1

var�
 
1

T

TX
t=25

Y �
t

�
y�1;t � Y �>

t ~'1;T

�!�
E�(Y tY

>
t )
��1

+ op(1)

=
�
E(Y tY

>
t )
��10@ 1

T

lX
j=�l

T�lX
t=25+l

Y tY
>
t�j~�1;t~�1;t�j

1A�E(Y tY
>
t )
��1

+ op(1)

= Avar
�p
T
�
~'1;T �'1;0

��
+ op(1);

where ~�1;t = y1;t �Y >
t ~'1;T : This proves (B6). Finally, as

1
T

PT
t=25 Y tY

>
t is full rank, by the same argument used

above, for a generic constant C, and " > 0,

E�
��p

T k~'�T � ~'k
�2+"�

� C
 1p

T

TX
t=25

Y t

�
y1;t � Y >

t ~'1;T

�
2+"

= Op(1):

This proves (B7).

Bootstrap Standard Errors for �
The model-based stock price series is simulated using the actual samples of the observable factors, and simulated
samples for the unobservable factor. Thus, we need to take into account the contribution of K2, the covariance
between simulated and sample paths, as well as among paths at di¤erent simulation replications.

Construct the re-sampled simulated stock price series as:

s�;�t;�;h = s0 + s1y
�
1;t + s2y

�
2;t + Z

�u;�
t;�;h; (B8)

where Z�u;�t;�;h is re-sampled from the simulated unobservable process Z�ut;�;h, and use s
�;�
t;�;h to construct R

�
t;�;h(�)

and Vol�t;�;h(�): De�ne,

~#
�
T =

�
~#
�
1;T ; ~#

�
2;T ; �R

�;Vol
�
�>
;

where ~#
�
1;T ; ~#

�
2;T are the estimators of the auxiliary models obtained using re-sampled observations, and R

�
, Vol

�

are the sample means of R�t = ln(S�t =S
�
t�12) and Vol

�
t =

p
6� � 1

12

P12
i=1 jln (S

�
t+1�i=S

�
t�i)j, with S�t being the

re-sampled series of the observable stock price process St, and

#̂
�
T;�;h (�) =

�
#̂
�
1;T;�;h (�) ; #̂

�
2;T;�;h (�) ; �R

�
�;h(�);Vol

�
�;h(�)

�>
;

where #̂
�
1;T;�;h (�) and #̂

�
2;T;�;h (�) are the parameters of the auxiliary models estimated using re-sampled simulated

observations, and R
�
�;h(�);Vol

�
�;h(�) are the sample means of R

�
t;�;h(�) and Vol

�
t;�;h(�): De�ne:

�̂
�
T;i = arg min

�2�0

 1H
HX
h=1

�
#̂
�
T;�;h;i (�)� #̂

�

T;h(�̂T )
�
�
�
~#
�
T;i � ~#T

�
2

; i = 1; � � �; B;

where #̂
�
T;�;h;i (�) and ~#

�
T;i denote the values of #̂

�
T;�;h (�) and ~#

�
T a t the i-th bootstrap replication. The

bootstrap covariance matrix is:

V̂ 2;T;B =
T

B

BX
i=1

������̂�T;i � 1

B

BX
i=1

�̂
�
T;i

�����
2

:

The next proposition shows that
�
1 + 1

H

�
V̂ 2;T;B is a consistent estimator of V 2, and can then be used to

obtain asymptotically valid bootstrap standard errors.

Proposition B2: Under the same assumptions of Proposition 3, if l=T 1=2 ! 0 as T;B; l ! 1, then, for all
" > 0,

Pr

�
! : P �

������1 + 1

H

�
V̂ 2;T;B � V 2

���� > "��! 0:

Proof: By the �rst order conditions and a mean value expansion around �̂T ;

0 = r�

�
1
H

PH
h=1 #̂

�
T;�;h(�̂

�
T )
�> �

1
H

PH
h=1

�
#̂
�
T;�;h(�̂

�
T )� #̂T;�;h(�̂T )

�
�
�
~#
�
T � ~#T
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= r�

�
1
H

PH
h=1 #̂

�
T;�;h(�̂

�
T )
�> �

1
H

PH
h=1

�
#̂
�
T;�;h(�̂T )� #̂T;�;h(�̂T )

�
�
�
~#
�
T � ~#T

��
+r�

�
1
H

PH
h=1 #̂

�
T;�;h(�̂

�
T )
�>
r�

�
1
H

PH
h=1 #̂

�
T;�;h

�
��
�
T

���
�̂
�
T � �̂T

�
;

where ��
�
T is a convex combination of (�̂

�
T ; �̂T ). Hence,

p
T
�
�̂
�
T � �̂T

�
= �

�
r�

�
1
H

PH
h=1 #̂

�
T;�;h(�̂

�
T )
�>
r�

�
1
H

PH
h=1 #̂

�
T;�;h

�
��
�
T

����1
�r�

�
1
H

PH
h=1 #̂

�
T;�;h(�̂

�
T )
�>p

T
�
1
H

PH
h=1

�
#̂
�
T;�;h(�̂T )� #̂T;�;h(�̂T )

�
�
�
~#
�
T � ~#T

��
:

We need to show that:

E�
�p
T
�
1
H

PH
h=1

�
#̂
�
T;�;h(�̂T )� #̂T;�;h(�̂T )

���
= op(1); (B9)

var�
�p
T
�
1
H

PH
h=1

�
#̂
�
T;�;h(�̂T )� #̂T;�;h(�̂T )

���
= var

�p
T
�
1
H

PH
h=1

�
#̂T;�;h(�̂T )� # (�0)

���
+op(1); (B10)

and for all " > 0,

E�
�pT � 1

H

PH
h=1

�
#̂
�
T;�;h(�̂T )� #̂T;�;h(�̂T )

��2+"� <1: (B11)

The statement in the Proposition follows by the same argument as that in the proof of Proposition B2. Note that,

p
T

 
1

H

HX
h=1

�
#̂
�
T;�;h(�̂T )� #̂T;�;h(�̂T )

�!
=

0BBBBBB@

p
T
�
1
H

PH
h=1

�
#̂
�
1;T;�;h(�̂T )� #̂1;T;�;h(�̂T )

��
p
T
�
1
H

PH
h=1

�
#̂
�
2;T;�;h(�̂T )� #̂2;T;�;h(�̂T )

��
p
T
�
�R��;h(�̂T )� �R�;h(�̂T )

�
p
T
�
Vol

�
�;h(�̂T )�Vol�;h(�̂T )

�

1CCCCCCA :

We only consider
p
T
�
1
H

PH
h=1

�
#̂
�
2;T;�;h(�̂T )� #̂2;T;�;h(�̂T )

��
, as the remaining terms can be dealt with in the

same manner. Let U t;�;h(�̂T ) be the vector containing all the simulated regressors in Eq. (31). This vector
depends on �̂T because it includes the simulated volatility, obtained with parameter vector � �xed at its estimate,
�̂T . Likewise, let U�

t;�;h(�̂T ) be the vector containing the bootstrap values of all the simulated regressors in Eq.
(31). This vector depends on �̂T because it includes the bootstrapped value of the simulated volatility in Eq. (31),
which we denote with Vol�t;�;h(�̂T ). By the �rst order conditions,

E�
�p
T
�
1
H

PH
h=1

�
#̂
�
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1p
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�
I�T;h

�
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�
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�
;

We have,
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�
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�
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1
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= Op
�
l=
p
T
�
= op(1);

and as II�T;h is of smaller order that I
�
T;h, E

�(II�T;h) = op(1). This proves (B9). Next, we have that for h = 1; � � � ; H,

E�

0@ 1
T

TX
t=13

U�
t;�;h(�̂T )U

�
t;�;h(�̂T )

>

!�11A =

 
1

T

TX
t=13

U t;�;h(�̂T )U t;�;h(�̂T )
>

!�1
+ op(1)

=
�
E
�
U t;�;h (�0)U t;�;h (�0)

>
���1

+ op(1):

Therefore, we need to show that
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t;�;h(�̂T )

�
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�
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+op(1):

Because the blocks are all independent,
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1p
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�
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�
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+ op(1);

where �̂t;�;h = Volt;�;h(�̂T ) � U t;�;h(�̂T )
>#̂2;T;�;h(�̂T ). This proves Eq. (B10). Finally, under the parameter

restrictions in Assumptions B1(i) and B1(iii),
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�
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�
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�
Volt;�;h(�̂T )�U t;�;h(�̂T )

>#̂2;T;�;h(�̂T )
�!

2+"

= Op(1):

Bootstrap Standard Errors for �
As mentioned in the main text, the model free VIX index series is available only from 1990 and so in the third
step we have a sample of length T ; instead of length T . Thus, we need to re-sample y1;t; y2;t; St and VIXt from
the shorter sample, using blocksize l and number of blocks B, so that lB = T . Also, we need to re-sample the
unobservable factor from a sample of length T , at the parameter estimate of �u obtained in the previous step, Ẑ�ut;�;h
say. Let VIX�t;�;h(y

�
t ; �̂

�
T ; �̂

�
T ;�) be the model-based VIX index constructed using y�1;t, y

�
2;t and the unobservable

factor re-sampled at the bootstrap estimators �̂
�
T and �̂

�
T , Ẑ

�u;�
t;�;h say. Finally, let

~ 
�
T =

�
~ 
�
1;T ;VIX

�
; �̂�VIX

�>
;

where ~ 
�
1;T are the auxiliary model parameters estimated using y

�
1;t; y

�
2;t, and VIX

�
t , with VIX

�
t being the re-sampled

series of the model-free VIX, and VIX
�
; �̂�VIX are the sample mean and standard deviation of VIX

�
t , and:

 ̂
�
T ;�;h(�̂

�
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�
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;
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where  ̂
�
1;T ;�;h(�̂

�
T ; �̂

�
T ;�) are the auxiliary model parameters estimated using y�1;t, y�2;t, and

VIX
�
�;h(�̂

�
T ; �̂

�
T ;�) and ~���;h;VIX(�̂

�
T ; �̂

�
T ;�) are the sample mean and standard deviation of

VIX�t;�;h(�̂
�
T ; �̂

�
T ;�). De�ne,
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:

Construct the bootstrap covariance matrix, as

V̂ 3;T ;B =
T
B

BX
i=1

������̂�T ;i � 1

B

BX
i=1

�̂
�
T ;i

�����
2

;

where �̂
�
T ;i denotes the value of �̂

�
T at the i-th bootstrap replication.

The next proposition is the counterpart to Propositions B1 and B2. It shows that
�
1 + 1

H

�
V̂ 3;T ;B is a consistent

estimator of V 3, and can then provide asymptotically valid bootstrap standard errors.

Proposition B3: Under the same assumptions of Proposition 4, if l=T 1=2 ! 0 as T; T ; B; l ! 1, then, for all
" > 0,
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where ��
�
T is some convex combination of �̂

�
T and �̂T . We have:
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By the same arguments used to show Propositions B1 and B2, and the condition that T =T ! � 2 (0; 1),
p
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�
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�
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p
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�
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�
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�̂T � �0

�
= O�p(1):

Therefore, by the uniform law of large numbers,
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�
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�
�̂
�
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�
+
�
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�
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and, hence,
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�
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�
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By an argument similar to that in the proof of Proposition B2,
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T
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�
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�
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�
+
p
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�0

�
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�
T � �̂T

�
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Therefore, by the same argument used in the proof of Propositions B1 and B2, we can show that
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and
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�
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�
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and by Minkowski�s inequality, E�
�pT ��̂�T � �̂T �2+"� = O�p(1), for some " > 0.

54


