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Abstract

This paper provides a new econometric framework to make inference about
structural breaks in panel data models. The main contribution is twofold. First,
di¤erent from most existing research which studies structural-change problem
in a single time series setup, this paper investigates structural breaks by ex-
ploiting the rich information in the panel data. Second, in contrast to the
common-break method that assumes all series change structure at the same
time, my method assumes the change points of di¤erent time series follow a
common distribution, allowing for the heterogeneity in the timing of struc-
tural changes across series while retaining the commonality among series. For
the case of a single structural break in each time series, I propose a general
nonparametric method by assuming that change points of di¤erent time series
follow a multinomial distribution. If in addition, each time series is allowed to
have multiple structural breaks, a special form of the common distribution is
imposed to restrict the joint distribution of multiple breaks.
By incorporating both the similarity and the heterogeneity among series,

this method not only improves the quality of change-point estimation, but it
also reveals useful information about how di¤erent series respond to a common
shock. This helps to answer important questions such as how stocks of di¤er-
ent industries respond to a new policy or how di¤erent experimental groups
respond to a new treatment. Monte Carlo simulations show that this method
greatly increases the precision of change-point estimation, and the estimation
algorithm is fast. I apply this method to investigate the volatility decline, or
the Great Moderation, in 50 US states. Using quarterly personal income data,
I �nd that the cross-sectional distribution of break dates has two peaks: one be-
ing around 1984, which has been generally recognized as the start of the Great
Moderation; the other being around 1988, which corresponds to the stock mar-
ket crash of the previous year. Only a small number of states had no evidence
of structural change in the volatility.

Key Words Panel Data, multiple structural breaks, Bayesian inference, Hid-
den Markov Chain, Great Moderation
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1 Introduction

Many recent studies highlight the presence of structural instability in key economic

indexes and �nancial time series, such as output growth, unemployment, exchange

rate, and stock returns (Stock and Waston, 1996). Various economic events can lead

to structural changes in a wide range of time series, such as �nancial liberalization

(Behaert, 2002), changes in exchange rate regimes, and the introduction of new mon-

etary policies. The most striking example was the Great Moderation, which is well

documented in the literature as the substantial reduction of volatility in major US

macroeconomic time series since the 1980s.

The precise estimation of a change point has rich implications. First, it helps

uncover the source of a structural change by spotting special events around the break

dates. Second, it can be used to evaluate the impact of an event or a new policy by

estimating the response time of the economy to the shocks.

In addition, from a statistical perspective, ignoring structural breaks in econo-

metric modeling can lead to model misspeci�cation and spurious estimation results

of model parameters. For instance, Lamoureux and Lastrapes (1990) �nd that the

extent of persistence in variance of stock-return data may be overstated if structural

breaks are ignored. Pesaran and Timmermann (2006) point out that forecasting

results based on such a misspeci�ed model are unreliable.

While most research in the structural break literature addresses single time series

problem, few studies have been done in a panel (or multivariate) data environment.

Assume a series fytgt=1;:::T is subject to a structural change at some time k�: It is well
known in econometric theory that the estimator of change point k� for a single series

is not consistent, and that only the fraction k̂
T
converges in probability to the true

value k�

T
: Even with more observations of yt; it is not guaranteed that the estimation

of k� would be improved. When the magnitude of the structural break is not large

enough or the true change point k� is too close to the start or end of the sample,

the single series approach might fail to detect any structural change even if there is

one. Motivated by such observations, Bai (2006) proposes a panel data approach and

proves that one is able to estimate the break point k� itself consistently if a lot of

time series are subject to a common break, which signi�cantly improves the quality

of the break point estimation. This is the so-called advantage of "borrowed power",

which exploits the cross-section information. In the rest of the paper, I will refer to

Bai (2006)�s method as "common-break approach".
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A key question that arises in the context of panel data is how to build the link

for structural changes across di¤erent series. The easiest way is to assume that all

series experience the structural break at the same time. However, it is not realistic

to assume that di¤erent series change their structure at exactly the same time. More

generally, individual series may experience the structural break at di¤erent times,

even after experiencing the same event, due to the cross-sectional heterogeneity in the

transmission mechanism or response time. Therefore, it is crucial to �nd a way to relax

the conventional common-break assumption while still retaining the common feature

of structural changes across di¤erent series. This not only improves the estimation

quality of change points, but it also provides useful and important information about

the cross-sectional pattern of structural changes. Only by taking into account both

the similarity and the heterogeneity across sections, is one able to answer important

questions, such as how stocks of di¤erent industries respond to a new policy or how

di¤erent experimental groups respond to a new treatment. It is thus imperative to

develop a new and e¤ective method for change-point detection in panel data.

This paper develops a new approach for estimating and making inference about

structural changes in panel data models based on a Bayesian method. The new

method takes into account two key factors. First, di¤erent series are subject to com-

mon shocks, which are assumed to be the source of the structural changes. Second,

various series exhibit heterogeneous responses to these common shocks, and the tim-

ing of structural changes is allowed to be di¤erent across series. A key assumption

is that change points for di¤erent time series follow a common distribution. The

common-distribution assumption relaxes the conventional common-break restriction

while still retaining the common feature of the structural changes. If there is only

a single structural change for each series, a non-parametric multinomial distribution

assumption is used to model the pattern of change points across sections. This single

structural change framework follows Joseph and Wolfson (1993, 1997), who discuss

the change-point estimation problem for Poisson panel data with a single structural

break for each series. While they only focus on estimating the underlying common

distribution of unknown change points, this paper focuses on estimating both the

common distribution and the location of change point for each individual series.

In addition, if we allow each time series to have multiple structural breaks, the

nonparametric common distribution becomes more complicated as the number of

structural breaks increases. Such a complication arises because one has to model the
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joint distribution of multiple change points. Proper restriction on the joint distri-

bution is needed to keep the model parsimonious and tractable. As a special form

of such restrictions, I propose a nonreversible hidden Markov chain model, which

is built on the structural break model proposed by Chib (1998). Chib�s framework

has been applied by many researchers to address various economic or econometric is-

sues, e.g., Kim, Nelson and Piger (2004), and Pesaran, Pettenuzzo and Timmermann

(2005). However, existing studies focus on the single series case, and thus require

strong assumptions on both break magnitude and locations of the true break dates.

As I will discuss later in more detail, Chib�s framework is actually a special form of

the common distribution model in the univariate case. In this paper, I extend the

nonreversible hidden Markov chain model to a multivariate setup. With this modi-

�cation, it becomes a powerful tool to analyze multiple change points in panel data

models.

Finally, I apply the method to study the US state-level facts of the Great Modera-

tion. It is well documented that major US macroeconomic time series, such as output

growth and in�ation, have experienced a substantial reduction in volatility since the

1980s. However, little has been done to examine whether such a Great Moderation

exists in disaggregate data. Owyang, Piger and Wall (2008) conduct a study about

the state-level Great Moderation using unemployment data. However, they estimate

the structural change state-by-state without taking into account the strong correla-

tion and co-movement among states. I apply the panel data methodology to 50 US

state-level quarterly personal income data1, spanning from 1952Q2 to 2008Q2. The

cross-sectional distribution of break dates has two peaks, one around 1984, and the

other around 1988. Only a few states show no evidence of structural breaks in the

volatility. These �ndings continue to hold if one assumes two breaks for each state.

The contribution of this paper is twofold. First, it provides a new and e¤ective

methodology to analyze change points by using panel data information, which not only

improves the estimation precision but also makes study of the cross-sectional pattern

of structural breaks possible. Second, I extend the nonreversible hidden Markov chain

model to the panel data models, as a special form of the general common-distribution

framework. It greatly simpli�es the form of the non-parametric common distribution

while retaining enough �exibility.

The rest of the paper is organized as follows. Section 2 shows the motivation by

1We exclude the state Louisiana due to some data irregularities caused by Hurricane Katrina.
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using Monte Carlo simulations. Section 3 describes the non-parametric method to

estimate and make inference about structural changes in panel data. Section 4 pro-

vides an example of the parametric approach. In section 5, I extend the nonreversible

hidden Markov chain model from a univariate to a multivariate data environment, as

a special form of the non-parametric method to keep the model parsimonious in the

presence of multiple structural changes. In section 6, I apply the panel data model

to investigate the Great Moderation in the state-level data.

2 Motivating the Panel Data Approach: Common

Break

Assume a series fytgt=1;:::T is subjected to a structure break at some time k�; �� = k�

T
:

It is well known that the estimate of change point for a single series is not consistent;

only the fraction k̂
T
converges in probability to ��: Even with more observations of

yt; it is not guaranteed that the estimation of k would be improved. In addition,

the e¤ectiveness of the single-series approach critically depends on two assumptions.

First, the magnitude of the parameter change after a break must be large enough.

Second, the true change point k� must lie su¢ ciently far from both the start and the

end of the sample. However, one can take advantage of "borrowed power" by noticing

the cross-sectional pattern of the structure changes. An extreme case is the one in

which many di¤erent series experience a structure break at the same time, in which

the accuracy of the break point estimator is greatly increased. In particular, when

the number of such series N is large enough, the consistent estimation of the break

point itself could be achieved. This is so-called "borrowing power".

For a multivariate time series setup, the common-break model is well studied by

Bai, Lumsdaine and Stock (1998). Bai (2006) studies the common-break model in a

panel data framework, and proves that the consistency for the break-point estimate

itself instead of the fraction is achieved. That paper also provides the convergence

rate and limiting distribution. It has important potential applications in various

economic research areas. The stock market saw many di¤erent equities�prices drop

or soar together within one day or a short period in anticipation of the same event.

Developed countries experienced the Great Moderation in the growth rate volatility

around the same year. The behavior of a large number of consumers changed suddenly

after a new tax return policy was announced (an example provided in Levitt and
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Dubner, 2005). A group of patients�physical conditions change after taking a new

treatment.

It is worth noting that it may sound restrictive to assume that di¤erent series are

subject to a structural break at the same time. However, if we take a second look at

the literature, we may �nd that many change-point studies focus on a single aggregate

index. For instance, a lot of empirical work is dedicated to modeling the stock index

and estimating the change point. The index is a weighted average of individual stock

prices. By analyzing structural breaks in this way, it has been implicitly assumed

that di¤erent stock prices are subject to a structural break at the same time. A

vast majority of the macroeconomic literature studies the Great Moderation, or the

volatility decline observed in output growth, employment growth and in�ation. To

identify the date when the Great Moderation occured, researchers generally use the

country-level output data, which is a simple aggregate of the state-level outputs.

Thus the common structural break for di¤erent states is implicitly assumed in these

studies. Compared to the single-series method, the common-break method greatly

improves the estimation precision of change points.

The larger the number of series, the more accurate the estimation. For models

with mean breaks, Monte Carlo results can be found in Bai (2006). I use Monte

Carlo simulations to show that one can still gain such a bene�t for complex models

like GARCH, by using multiple series to estimate the change points. The change-

point analysis for GARCH models has always been a challenge in the literature, due

to the di¢ culties of precise estimation of GARCH parameters. Another reason is that

a CUSUM approach is generally used, which requires that unconditional volatilities

change substantially after the break. The Bayesian method is a likelihood approach,

and thus does not require restrictions on unconditional volatilities across structural

regimes. Assume the GARCH(1,1) model is given by

yt =
p
ht"t; where "t � i:i:d:N(0; 1); t = 1; :::; T; (1)

ht =

(
!1 + �1y

2
t�1 + �1ht�1; t � k�

!2 + �2y
2
t�1 + �2ht�1; t > k

� :

where T = 2000, k� = 800: Let

(!1; �1; �1) = (0:10; 0:10; 0:80);

(!2; �2; �2) = (0:15; 0:60; 0:35):
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I make 500 MCMC draws to calculate the posterior distribution of change points.

Figure 1. Left Panel: Bayesian Posterior Distribution for k̂ � k0 when only using
single series; Right Panel: Bayesian Posterior Distribution for k̂ � k0, N = 5:
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More generally, the model with M structural breaks is

fy(i)t g; t = 1; :::; T; i = 1; 2; :::N (2)

y
(i)
t � F (�; �m); for t 2 (km�1; km]

The only link between di¤erent series is that they are subject to structural breaks

at the same time, fkmgm=1;:::M :
Again, let us assume that the prior of fkmg is jointly uniform distribution on

[2; T � 1] (discrete version). Given other change point k�m and model parameters

f�mgm=1;:::M ; the conditional posterior density for the break point km follows the form

p(km = tjy; �; k�m) =

NQ
i=1

l(�jy; k�m; km = t)

TP
s=2

f
NQ
i=1

l(�jy; k�m; km = s)
(3)
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3 Nonparametric Approach to Change-Point Esti-

mation

The common-break assumption provides a prospective for estimating structural breaks

using panel data. However, it is generally not realistic to assume that di¤erent se-

ries change structure at exactly the same time. Individual series may experience the

structural break at di¤erent time even after attack of the same event, due to the

cross-sectional heterogeneity in the response time. Therefore, it is crucial to �nd

a way to incorporate such a heterogeneity, while retaining the common feature of

structural changes across di¤erent series. This will not only bene�t the estimation

but can also provide useful information about the cross-sectional pattern of structural

changes. Only by taking into account both the similarity and the heterogeneity across

sections, is one able to answer important questions such as how stocks of di¤erent

industries respond to a new policy or how di¤erent experimental groups respond to

a new treatment.

In this section, I relax the common-break assumption, by properly building a

link for structural changes across di¤erent series. My approach provides a general

framework to handle structural-break problem in panel data, allowing di¤erent series

to experience a structural break at di¤erent time.

This new method takes into account two key factors. First, the di¤erent series

are subject to common shocks, which are assumed to be the source of the structural

changes. Second, various series exhibit heterogeneous responses to such common

shocks and the timing of structural changes can be di¤erent across sections. A key

assumption is that change points for di¤erent time series follow a common distribu-

tion. The common-distribution assumption relaxes the conventional common-break

restriction while still retaining the common feature of the structural changes. If there

is only a single structural change for each series, a non-parametric multinomial dis-

tribution is used to model the pattern of change points across sections.

In this section, I discuss the panel data model in which each di¤erent time series

has a single structural break at ki: Now, the break points fkig ; i = 1; :::; N; follow
a common distribution F (�; �); where � is the parameter characterizing the CDF.
Notice that F (�; �) is now part of the model, not a prior. A hierarchical layer needs
to be added for the parameter �: Since change points can only be integers, F (�; �)
should be a discrete distribution.
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A natural way is to assume that ki follows a multinomial distribution governed

by � = (�t)t=1;2;:::;T :

Denote

�t = prob(ki = t); for t = 1; 2; :::; T (4)

Then � = (�t)t=1;2;:::;T , where
TP
t=1

�t = 1. In practice, one does not need to assign

positive probability to each time period between 1 and T; but can limit the support

of F (�; �) to a much narrower interval depending on one�s prior belief about when
the breaks happened. For example, to study how the stocks of di¤erent industries

respond to a new policy, one could only search in a short period after the policy is

applied, therefore reducing the dimension of parameters to be estimated. It must

be emphasized that N must be large enough to consistently estimate �: It is worth

pointing out that one may not need very large N to acchieve a good estimate of � if

the true distribution is very concentrated. This can be caused by strong comovement

among di¤erent series, which tend to change their structure in a short period. The

estimation of � will soon concentrate around that period while leaving prob(ki =

tjY ) near zero for the dates outside the interval. The US state-level Great Moderation
application in section 6 corroborates such an intuition.

In this setup, di¤erent series are linked by F (�; �); of which each series�s break point
ki is a random realization. It is easy to incorporate more correlation between series.

For instance, one can also assume that (�(i)m )i=1;:::;N;m=1;:::M+1 are random numbers

generated by the same distribution, and we are able to estimate this distribution as

well as (�(i)m )i=1;:::;N;m=1;:::M+1 by applying the same trick. Here I only assume that

change points are subject to a common distribution while leaving other parameters

independent across sections without loss of generality.

To formally state the algorithm, let us take a simple linear model as an example.

Data

Y =

0BBBB@
y11; y12; :::; y1T

y21; y21; :::; y2T

::

yN1; yN2; :::; yNT

1CCCCA
are observations for N di¤erent time series. Series i spans from 1 to T and experiences

a single structural break at time ki: Di¤erent from the conventional common-break

assumption for panel data, I allow ki 6= kj; for any i 6= j:
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For series i,

yit � N(ui1; �
2
i1); for t � ki (5)

yit � N(ui2; �
2
i2); for ki + 1 < t � T

For this simple model, � = fuij; �2ijg
t=1;:::;T
i=1;:::;N : k = (k1; k2; :::; kN) are treated as

hidden variables and are assumed to follow a multinomial distribution with prob(ki =

t) = �t; for t = 1; :::; T: Both � and � are model parameters and need to be estimated.

To facilitate the computation, I choose conjugate priors for parameters fuij; �2ij; �tg;
i = 1; :::N; t = 1; :::T; and j = 1; 2:

Likelihood Parameters Prior
Prior

hyperparameters

Posterior

hyperparameters

Normal with

known mean �
variance �2

Scaled

inverse-chi

v

�20

v + T
v�20+

PT
t=1(yt��)

2

v+T

Normal with

known variance �2
mean � Normal

�0

�20

�0=�
2
0+
PT
t=1 y

2
t =�

2

1=�20+T=�
2

(1=�20 + T=�
2)
�1

Multinomial probability � Dirichlet
�0

(T � 1)

�t = �0;t+PN
i=1 Ifki = tg;

for t = 1; :::; T

Here I use the Dirichlet distribution as the prior for �

� = (�1; �2; :::; �T ) � Dirichlet(�) (6)

where � = (�1; :::; �T )

Thus the posterior conditional distribution for � is

�jk � Dirichlet(�0)

where �0t = �t +
NX
i=1

Ifk(1)i =tg

� = (�1; :::; �T ) is called hyperparameter. For instance, if we set �1 = ::: = �T = 1;

then equal weights are imposed on each period.

The Gibbs sampling procedure is given as follows. To save notation, a variable
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with an arrow on the top means a vector consisting of all elements of that variable.

For example,
�!
k (0) = (k

(0)
1 ; :::; k

(0)
N ):

Step 1: Given initial values
�
�
(0)
ij ; �

2 (0)
ij ; k

(0)
i ; �

(0)
t

�
, i = 1; 2; :::N; j = 1; 2; t =

1; 2; ::; T

Step 2: Update parameter �ij
Given the initial values of other parameters

�
�
(0)
ij ; �

2 (0)
ij ; k

(0)
i ; �

(0)
t

�
, i =

1; 2; :::N; j = 1; 2; t = 1; 2; ::; T and data Y; the posterior conditional distribution of

�
(1)
ij is

�
(1)
i1 j�!� 2 (0);

�!
k (0);�!� (0); Y (7)

� Normal((�i10
�2i10

+

Pk
(0)
i
t=1 yt

2

�
2 (0)
i1

)=(
1

�2i10
+
k
(0)
i

�
2 (0)
i1

); (
1

�2i10
+
k
(0)
i

�
2 (0)
i1

)�1)

�
(1)
i2 j�!� 2 (0);

�!
k (0);�!� (0); Y

� Normal((�i20
�2i20

+

PT

t=k
(0)
i +1

yt
2

�
2 (0)
i2

)=(
1

�2i20
+
T � k(0)i
�
2 (0)
i2

); (
1

�2i20
+
T � k(0)i
�
2 (0)
i2

)�1)

Step 3: Update parameter �2ij
Given

�
�
(1)
ij ; k

(0)
i ; �

(0)
t ; X

�
, i = 1; 2; :::N; j = 1; 2; t = 1; 2; ::; T; �2 (1)ij has

the following posterior conditional distribution

�
2 (1)
i1 j�!� (1);�!k (0);�!� (0); Y (8)

� Scaled inverse-chi-square(�i1 + k
(0)
i ;

�i1�
2
i10 +

Pk
(0)
i
t=1(yit � �

(1)
i1 )

2

�i1 + k
(0)
i

)

�
2 (1)
i2 j�!� (1);�!k (0);�!� (0); Y

� Scaled inverse-chi-square(�i2 + T � k(0)i ;
�i2�

2
i20 +

PT

t=k
(0)
i +1

(yit � �(1)i2 )2

�i2 + T � k(0)i
)

Step 3: Update parameter k(1)i
Draw k(1)i ; given

�
�
(1)
ij ; �

2 (1)
ij ; �

(0)
t ; Y

�
, i = 1; 2; :::N; j = 1; 2; t = 1; 2; ::; T
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Pr(k
(1)
i = � j�!� (1);�!� 2 (1);�!� (0); Y ) = (9)

�Q
t=1

1p
2��

2 (1)
i1

expf� (yit��
(1)
i1

)2

2�
2 (1)
i1

g
TQ

k=t+1

1p
2��

2 (1)
i2

expf� (yit��
(1)
i2

)2

2�
2 (1)
i2

g�(0)t

TP
t=1

(
tQ

k=1

1q
2��

2 (1)
i1

expf� (xit��(1)i1 )2

2�
2 (1)
i1

g
TQ

k=t+1

1q
2��

2 (1)
i2

expf� (xit��(1)i2 )2

2�
2 (1)
i2

g�(0)t )

Step 4: Update parameter �t
Draw �(1)t ; given

�
�
(1)
ij ; �

2 (1)
ij ; k

(1)
i ; Y

�
, i = 1; 2; :::N; j = 1; 2; t = 1; 2; ::; T

�!� (1)j�!k (1) � Dirichlet(�!� 0) (10)

where �0� = �� +
NX
i=1

Ifk(1)i =�g

To get random draws of f�tg; one needs to draw Z� from Gamma(�0� ; 1); for each
� = 1; 2; :::T (or through the support of F (�; �) if one restricts the break points to a

narrower interval). Then update �t = Zt=
TP
�=1

Z� :

It is worth mentioning that the existence of conjugate priors is not essential for the

common distribution method to work. For more complicated models, which might not

have conjugate priors, one can still use either Metropolis-Hastings sampler or Griddy-

Gibbs sampler to generate random draws from the joint posterior distribution.

Monte Carlo simulations show that such a panel data method is able to improve

the quality of estimates. Data is generated by model (5): In the rest of this paper, the

point estimator k̂ of change point is calculated as the posterior mean rounded to the

nearest integer. In the lower panel of Figure 2, the solid line is the true value of change

points for 50 time series, and the dashed line describes the change-point estimates

using the non-parametric panel data model, while the dash-dotted line shows k̂single
by estimating univariate model series by series. N = 50; T = 40; and the true change

points are independent random draws from uniform distribution over [15; 25]: k̂panel
is much closer to the true change point k0 for most series than k̂single.
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Figure 2. Panel Data V.S. Single series
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To check the robustness of the above result, I simulate 200 independent samples,

each containing 50 time series and spanning 50 periods. The true change points are

independent random draws from uniform distribution over [15; 25]: For each sample,

I compute the sum of squared errors using the following equation,

SSEN =
1

N

NX
i=1

(k̂i � k�i )2;

where k�i is the true change point.

In Figure 3, I plot the SSE of estimation result for both panel data model and

single series model in the upper panel. In the lower panel, the di¤erence between

SSEsingle � SSEpanel is plotted against zero line, thus the positive numbers represent
the gain in precision by using panel data model. The graph shows that the panel data

model uniformly outperforms the single series model in terms of signi�cant reduction

in estimation errors for all 200 independent samples.
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Figure 3. 200 Simulations
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4 A Parametric Method to Change-Point Estima-

tion

When the number of series N is large but the time length T is not very large, the

nonparametric method described in the previous section works very well and gives

consistent estimation of both the model parameters and the distribution followed by

the break points k = fki; i = 1; :::; Ng: However, the estimation error would become
big when N is small and T is large, because the large number of additional parameters

� = (�1; �2; :::; �T ):

Remark 1 When using the nonparametric method of section 3, one may not need
a very large N to achieve a good estimation of � in two cases. One case is that the

true distribution of change points is very concentrated. This can be due to strong

comovement among di¤erent series, and all the series tend to change their structure

around the same period. The estimation of � will soon concentrate around that period

while leaving prob(ki = tjY ) near zero for the dates outside a short interval. The US
state-level Great Moderation application in section 6 corroborates such a intuition.
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Another case is that the magnitude of structural break is very large. Large break mag-

nitudes will facilitate the detection of the change points, despite the large dimension

of �:

To deal with the structural problem in this case, one needs to develop a parsimo-

nious way to model the distribution of break points k = fki; i = 1; :::; Ng; and the
most vital part is to reduce the parameter dimension of �; which characterizes the

distribution F (�; �): The choice of F (�; �) must satisfy the following properties:
1) The dimension of � is low;

2) F (�; �) has support on [0;+1);
3) F (�; �) is a discrete distribution.
4) F (�; �) has a shape �exible enough since the structural break could happen

anytime between period 1 and T:

5) It is easy to compute the posterior density.

The Poisson distribution is an ideal candidate. It is a discrete probability distrib-

ution that expresses the probability of a number of events occurring in a �xed period

of time, provided these events occur with a known average rate and independently

of the time since the last event, and it is governed by only one parameter �, the

expected number of occurrences during the given interval. The Gamma distribution

is its conjugate prior, thus the posterior density is easy to achieve.

Koop and Potter(2004) use the Poisson distribution to model the duration of

regimes for a single series model with structural breaks. The regime duration is just a

reparametrization of the change points. When there exists only one structural break,

the duration of the �rst regime is equal to the value of the change point. However,

their work is based on the state-space model initialized by Chib (1998), and needs to

make inference about the hidden states and transition matrix. Unlike Chib (1998),

they allow the transition matrix to vary along with the duration of the most recent

regime, which greatly complicates the computation. As they recognize in the paper,

calculating the transition probability matrix will involve O(T 3) calculations.

There are also other advantages of the Poisson distribution. First, ki is not

restricted between 1 and T since the Poisson distribution allows for ki = 0 and ki � T .
This way, the series is allowed to have no structural break. Second, forecasting is

feasible. For instance, it is reasonable to suppose that foreign countries� economy

condition can shed some light on the home country�s future economic performance.
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The model is speci�ed as

Y = fyitgi=1;:::;Nt=1;:::;T � f(Y jk; �) (11)

� = f�jig
j=1;2
i=1;:::;N ; and �i =

(
�1i ; for t � ki

�2i ; for ki < t � T
k = fki; i = 1; :::; Ng; ki � Poisson(�)

Again, k is treated as missing data or latent variables here. Because one does not

observe k; inference of k is needed, which can be achieved by studying its posterior

distribution. This is made possible by using Gibbs sampling. It draws the random

samples from the marginal posteriors p(�jY; k; �), p(�jY; k; �) and p(kjY; �; �) instead
of from the joint posterior p(�; �; kjY ): An important assumption is p(�jk; �; Y ) =
p(�jk): The procedure is given as follows.
Step 1. Specify priors for parameters � and �: The choice of priors for � has been

described previously. For convenience, I choose Gamma(a; b) as prior for �, where a

and b are prespeci�ed constant, say 2 and 1:

Step 2. Given observed data Y; and initial values of k = fki; i = 1; :::; Ng and
�; make random draws of parameters � from their posterior density. This step is the

same as the procedure described in previous sections. Use Griddy-Gibbs method.

Step 3. Given updated value of �;and initial value of �;

k � f(kj�; �; Y ) / f(Y j�; k; �)p(kj�; �) / f(Y j�; k)p(kj�) (12)

In this example, for i = 1; :::; N;

p(ki = tjy; �; k�i) =
l(�jY; ki = t; k�i) � p(ki = tj�)

TP
s=1

l(�jY; ki = s; k�i) � p(ki = sj�))
(13)

Step 4. Given updated � and k = fki; i = 1; :::; Ng; � � f(�j�; k; Y ) = p(�jk) by
assumption, which is Gamma(a+

PN
i=1 ki;

�
N + 1

b

��1
):

Remark 2 Although the Poisson distribution greatly reduces the dimension of the
parameter vector, it has a bell-shaped density function. It is a good approximation if

the true change points exhibit a unimodal pattern, i.e. a majority of series experience

the structural changes on a tight time interval. This is a reasonable assumption

when di¤erent series change structure due to a common shock and the change points
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are clustered. Otherwise, one needs to assume a more �exible shape of the common

distribution for the change points to allow for a more �exible pattern. The mixture

normal distribution is a good candidate if more �exibility is desired.

5 The Nonreversible HiddenMarkov Chain in Panel

Data Models

5.1 The Modeling of Multiple Change Points in Panel Data

In addition to the di¢ culty of estimation when T is large but N is small, another

problem arises when one further allows each series to have multiple structural changes.

For the panel data

Y =

0BBBB@
y11; y12; :::; y1T

y21; y21; :::; y2T

::

yN1; yN2; :::; yNT

1CCCCA ;
assume that each process yit experiences M structural breaks during [1; T ]: The

change points for series i are fk(i)m gm=1;:::M ; i = 1; :::N:We need to make assumptions
about the joint distribution of fk(i)m g whenever the number of structural breaks is
larger than 1: For illustration purpose, let us assume that each series yit has two

breaks at k(i)1 and k(i)2 : The joint density of k
(i)
1 and k(i)2 , F (k

(i)
1 ; k

(i)
2 ) is assumed to

be the same across series, thus I drop the superscript i from the notation when the

context is clear in the rest of the paper.

F (k1; k2) = f(k2jk1) � f(k1)

If one sticks to the nonparametric method, one needs to specify the probability

for each possible pair of (k1; k2) on the whole interval [1; T ];

�t;� = prob(k1 = t1; k2 = t2); for any 1 � t1 < t2 � T (14)

which makes the dimension of vector � become T � (T � 1)=2: Likewise, when the
number of breaksM increases, the dimension of the vector � also increases accordingly

to CMT ; which is of the order of T
M : Even with moderately large T , there would be

too many parameters in the model and precise estimation would be a challenge to
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achieve.

Hence one needs to add some restriction to the form of F (k1; k2; :::kM) to reduce

the number of parameters. In this section, I introduce a special form of common

distribution F (k1; k2; :::kM) which proves to be a powerful tool to deal with multiple-

break problems. It is built on the structural break model proposed by Chib (1998)

which has been widely used in many applications, e.g., Nelson and Piger (2002), and

Pesaran, Pettenuzzo and Timmermann (2006). However, all the existing works study

the single series case.

As we willshortly see, the nonreversible hidden Markov chain model is actually

a special form of the common-distribution model in the univariate case. Realizing

this link, I extend the original univariate model to a multivariate data environment.

With my modi�cation, it becomes a powerful tool to estimate multiple change points

in panel data.

It is worthwhile to begin by reviewing the in�uential structural break model for

a single time series by Chib (1998), which provides an e¢ cient way to estimate a

univariate model with multiple structural breaks. The observed data is fytgt=1;:::T . If
there are M structural changes during [1; T ]; there would be M +1 di¤erent regimes.

Assume that yt � F (�; �); while � = �m in the mth regime. Let ST = (s1; s2; :::; sT );
and st is a latent discrete state variable which takes values on f1; 2; :::M + 1g: The
fstg follows a Markov chain and the transition matrix P is given by

P =

0BBBBBB@
p11 p12 0 ::::

0 p22 p23 0 :::

:::

pM;M pM;M+1

0 ::: 1

1CCCCCCA (15)

where pii = prob(st = ijst�1 = i); and pi;i+1 = prob(st = i+ 1jst�1 = i): Although
this method does not explicitly model the change points fkmgm=1;:::M ; the estimation
of km is obtained by counting the length of regime m: The structural change occurs

when st jumps one step ahead, thus

km = ft : st+1 = m+ 1; st = mg for m = 1; 2; :::M (16)

Di¤erent from the conventional Markov switching model, the Markov chain is
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nonreversible, since st+1 cannot jump backwards to m � 1 once st = m; and st
can only move forward step-by-step without skipping. This is an innovative way

to look at the change-point problem and build the bridge between Markov switching

literature and the change-point literature. It is particularly useful when the structural

change actually does not have a recurring pattern, as is assumed in Markov switching

literature.

To understand the link between the common distribution model and the nonre-

versible hidden Markov chain model, let us assume a single structural break for each

series. Thus the transition matrix P is

P =

 
p11 1� p11
0 1

!

The hidden states fstg will only take value on f1; 2g:
The nonparametric method does not make any special assumption about prob(k =

t) and let �t = prob(ki = t); for t = 1; 2; :::; T to be the model parameters with
TP
t=1

�t = 1: If the nonreversible Markov chain structure is assumed, then

�t = prob(k = t) = prob(st = 1; and st+1 = 2) = p
t
11 � (1� p11) (17)

The transition matrix P summarizes all the information about the distribution of

change points. Each �t now is a function of a single parameter p11: The nonreversible

hidden Markov chain assumption is actually a special form of the nonparametric

distribution F (k). This restriction greatly reduces the dimension of the parameter

vector � (in the case of two structural breaks, from T � (T � 1)=2 to 2). Likewise, for
multiple change-points problem, the transition matrix P governs the joint distribution

F (k1; k2; :::kM), and prob(k1 = t1; k2 = t2; :::; kM = tM) for any 1 � t1 < t2 < ::: <

tM � T becomes a function of P: Instead of estimating � of CMT dimension, now only

M parameters fpmmgm=1;:::M need to be estimated.

In the multivariate context, we modify the univariate nonreversible hidden Markov

chain model by assuming that di¤erent series share the same transition matrix P:

While the dimension of model parameters is signi�cantly lowered, the nonreversible

hidden Markov chain model still retains enough �exibility to allow each series to evolve

in di¤erent ways over time, and thus experience structural change at di¤erent times.

The algorithm for multivariate Markov chain is described in detail in the Appendix.
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5.2 Monte Carlo simulations

To show the advantage of taking into account panel data information, I simulate 10

di¤erent series. yt = � + �t � et; where et � i:i:d: Normal(0; 1); and assume that the
mean � does not vary across regimes. If there is also a structural break in the mean,

it is even easier to detect the change points. Only variance �2t reduces 20% from

regime 1 to regime 2. Also, di¤erent series changes regimes at di¤erent time with 2

periods�lag between two consecutive series. Figure 4 plots a typical realization for

fyi;tgi=1;:::Nt=1;:::T : For instance, the �rst series changes regime at t = 100; the second one

changes at t = 102; etc. In the following �gure, I plot those series. For some series,

the structural break is not that obvious.

Figure 5 shows that the change-point estimation for both multivariate analysis and

single-series estimation. The latter treats individual series independently and does not

consider the clustering pattern of the change points. Overall, the method assuming

common transition matrix across series outperforms the single-series method.

Figure 4.
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Figure 5.
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To assess the robustness of the result, I simulate 200 independent random samples.

Each sample contains N di¤erent time series, and each series has one structural break

during [1; T ]: Di¤erent series have di¤erent change points. We assume that the true

change points k�i are uniformly distributed over [a; b] independently, for i = 1; 2; :::N;

where 1 < a < b < T: For each sample, we estimate the change points fk̂i;multigi=1;:::N
using the multivariate algorithm (panel data analysis) as well as fk̂i;singlegi=1;:::N by
univariate method (series by series analysis) as a benchmark model. The sum of

squared errors is computed as

SSENmulti =
1

N

NX
i=1

(k̂i;multi � k�i )2

SSEsin gle =
1

N

NX
i=1

(k̂i;single � k�i )2

For each sample, we compute both SSEmulti and SSEsingle; and I plot the SSEmulti
and SSEsingle for the 200 independent samples in the following graphs. The Monte

Carlo simulations are performed in the following procedure:
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Step 1: Simulate N time series assuming that fk�i gi=1;:::N are i.i.d uniformly dis-
tributed over [a; b]:

Step 2: Estimate the change points using multivariate model. Compute the sum

of squared errors SSENmulti =
1
N

NP
i=1

(k̂Ni;multi � k�i )2

Step 3: Estimate the change points for each series separately using univariate

model. Compute the sum of squared errors

SSENsin gle =
1

N

NX
i=1

(k̂i;single � k�i )2 (18)

Step 4: Repeat the experiment 200 times.

First, I choose N = 5; T = 200; yi;t =

(
�+ �i1 � eit; for 1 � t � k�i
�+ �i2 � eit; for k�i < t � T

, a =

T=2 = 100; b = 125; thus the change points fk�i gi=1;:::5 are uniformly distributed over
[100; 125]: �2i1 is randomly generated from uniform [0:5; 0:75]; while �

2
i2 = 0:8 � �2i1: To

compare the result of multivariate model with that of the univariate method, I plot

SSEN=5multi and SSE
N=5
sin gle (upper panel) as well as the di¤erence between them (lower

panel) in Figure 6. The di¤erence is calculated as SSEN=5sin gle�SSEN=5multi; thus a positive

number implies improvement in the estimation precision of multivariate model over

univariate model. Figure 6 shows that the multivariate model outperforms the single

series model with only a few exceptions for the 200 independent samples.

In Figure 7, I set a = T=2 = 100; b = 150; thus the change points follow a more

di¤use distribution. Again, the multivariate model reduces the estimation errors for

almost all simulations, despite less similarity among di¤erent series implied by the

more di¤use change-point distribution.

Furthermore in Figure 8, I increase the number of series to N = 10; T = 200; a =

T=2 = 100; b = 150;other parameters are generated in the same way as in the N = 5

case. The true distribution of change points fk�i gi=1;:::10 are now uniform[100; 150]:
The upper panel of Figure 8 plots SSEN=10multi and SSE

N=10
sin gle , and the lower panel shows

the SSEN=10sin gle � SSEN=10multi , which is plotted against the zero line. The graph shows

that the di¤erence SSEN=10sin gle �SSEN=10multi is above zero for most of the samples, which

implies improvement in the change-point estimation by using the multivariate model.

The extensive simulation experiments show that the multivariate model uniformly

reduces the estimation errors comparing with the single series model.
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Figure 6. N = 5; T = 200; a = T=2 = 100; b = 125: Multivariate V.S. univariate

model
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Figure 7. N = 5; T = 200; a = T=2 = 100; b = 150; Multivariate V.S. univariate

model
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Figure 8. N = 10; T = 200; a = T=2 = 100; b = 150: Multivariate V.S. univariate

model
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6 Application

It is well documented that major US macroeconomic time series such as output growth

and in�ation have experienced a substantial reduction in volatility since the 1980s.

This is commonly referred to as the Great Moderation. There has been a heated

debate about the causes of the Great Moderation. Some argue that better monetary

policy stabilized the economy, while others consider that improved inventory control

helped stabilization.

One way to track down the source of the Great Moderation is to study the Great

Moderation evidence at the state level. Di¤erent states have di¤erent economic struc-

tures and are exposed to various state-speci�c shocks. However, they also bear great

similarity and are subject to both common nation-wide and global shocks. Knowledge

about the dates of the Great Moderation for all the states is thus helpful to identify

the source of it.

However, little has been done to examine whether such a Great Moderation exists

in disaggregate data. A recent work by Owyang, Piger and Wall (2008) studies

the state-level facts of Great Moderation in unemployment growth rate. However,

they conduct the structural change analysis by univariate method, i.e., they estimate
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the change point series-by-series without taking into account the similarity among

di¤erent states.

In this section, I use my multivariate model for change-point detection at the state

level, which could exploit the cross-sectional information. By doing this, two key

factors are taken care of. First, the state-level series are subject to common shocks,

which are assumed to be the source of the volatility decline. Second, di¤erent states

exhibit heterogeneous response to such common shocks and the timing of structural

changes must be allowed to di¤er. By taking into account both the similarity and the

heterogeneity across states, one is able to answer important questions such as how

di¤erent states respond to a new policy or an economic shock.

6.1 Data description

I use 50 US state-level quarterly personal income data, spanning from 1950Q1 to

2008Q2. Louisiana is excluded due to the huge impact of the Hurricane Katrina,

which was a major disaster for the local economy. The data is published by the

Bureau of Economic Analysis. The growth rate is computed as the log di¤erence

yit = log(personal incomeit)� log(personal incomeit�1) (19)

Each state has 233 observations, starting from the second quarter of 1950 and

ending at the second quarter of 2008, thus N = 50; and T = 233 in my model.

The data fyitgi=1;::::;Nt=1;:::;T are plotted below.
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Figure 9. State-level personal income, Part 1
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Figure 10. State-level personal income, Part 2
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6.2 Estimation Results

The cross-section distribution of break dates shows two peaks, one near 1984 and the

other around 1988. Only several states have no evidence of structural breaks in the

volatility.

Figure 11. The estimated distribution of change points
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Figure 12. The histogram for estimated change points using panel data model
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Estimating the change-point state by state

Figure 13.
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Table 1 to 7 report the estimated break dates with their standard errors for each

states.

Table1.

Table2.

Table 3.
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Table 4.

Table 5.

Table 6.
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Table 7.

The panel data method not only results in a more concentrated pattern of break

dates, but it also signi�cantly reduces the standard error of the change-point estimates

when some of them exhibit relatively large standard errors if using single series model.

Pennsylvania is an exception, however, whose standard error of the estimate increases

from 3.2 to 38.6 when using panel data model. Also, Alabama, Delaware, Iowa,

Minnesota and Tennessee still have standard error larger than 10 (2.5 year) when

using the panel data model, and the standard errors for them are even larger if using

the univariate model. To investigate the reason behind such a phenomenon, one needs

to examine the estimation results for each state in greater detail. In the following

two �gures, I show the posterior distribution resulting from the panel data model for

each state.

Figure 14. The posterior distribution of the break date for each state, Part I
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Figure 15. The posterior distribution of the break date for each state, Part II
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After closely checking the posterior distributions of change points for all series, one

may notice that although many states do experience the Great Moderation around

1984, others have structural change around 1988. Most of the posteriors are very

concentrated around the means, but a few are less so, which causes large standard

errors. There are two possible explanations for the large standard error of some states.

First, such a state may not have a signi�cant structural break at all during the sample

periods, as Delaware and Illinois do. Second, a couple of states show very di¤erent

dynamic patterns from the majority of the states. For instance, Alabama and Iowa

seem to have more than one structural breaks, although the other states only show

evidence of one break. In this instance, the standard error would increase too, since

such states are far less similar than others.

Now assume that each time series has two structural breaks. Figure 16 shows the

estimation results of the �rst structural break for 50 states, and Figure 17 shows the

results for the second break date.
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Figure 16. The �rst structural break
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Figure 17. The second structural break
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The above graph shows that only a few states were subject to two structural

breaks, with the second break centered around the 1990s. There is little statistical

evidence to support a second structural change for a majority of states, because most

of the estimated second break points for those states hit the boundary. This suggests
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that most states experienced only one structural break.

7 Conclusion

This paper provides a new and e¤ective Bayesian method to estimate and to make

inference about structural breaks for panel data models. This method takes into ac-

count two key factors: �rst, all series are subject to common shocks, which are the

source of a possible structural change; second, such common shocks have heteroge-

neous impact on di¤erent series, and thus the timing of structural changes can vary

across series. By incorporating both the similarity and the heterogeneity among se-

ries, this method not only improves the quality of change-point estimation, but it also

provides useful information about the cross-sectional pattern of structural changes.

Monte Carlo simulations show that this method greatly increases the precision of

change-point estimation. A key assumption is that change points for di¤erent time

series follow a common distribution, which relaxes the conventional common-break

restriction while retaining the commonality among series. Furthermore, if each time

series has multiple structural breaks, a special form of the common distribution is

imposed to restrict the joint distribution of multiple breaks. I apply this method to

investigate the volatility decline, or the Great Moderation, in 50 U.S. states. Using

quarterly personal income data, I �nd that the cross-sectional distribution of break

dates has two peaks, one being around 1984, which is generally recognized as the

start of the Great Moderation, and the other being around 1988, which corresponds

to the stock market crash of the previous year. Only a couple of states showed no

evidence of structural change in the volatility.

It is worth noting that the panel data method is easily adjusted to incorporate

either more similarity or more heterogeneity among di¤erent series. In this paper, the

only link among various series is the common distribution of the change points. One

can assume that the model parameters of di¤erent series follow a common distribution

by adding another layer to my Bayesian algorithm, especially if strong similarity

exists across sections. On the other hand, one can also loosen the link among series

by assuming di¤erent but correlated distribution of the change points. For example,

in the nonreversible Markov chain model, one can assume that di¤erent series have

di¤erent transition matrices P; which follows a common distribution. These are all

interesting topics to explore.
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8 Appendix: The Gibbs sampling algorithm for

nonreversible hidden Markov chain

8.1 Sampling of the hidden states fsitgi=1;:::Nt=1;:::T and the change

points fkmi g
m=1;:::M
i=1;:::N

The algorithm for sampling fsitgi=1;:::Nt=1;:::T is based on a modi�ed version of the procedure

in Chib(1998). Given the common transition matrix P; each series in the panel has

its own dynamics and thus the states are sampled independently series by series.

To �xed the notation, let Sit = (si1;::::;sit), St+1i = (sit+1;::::;siT ); Yit = (yi1;::::;yit);

and Y t+1i = (yit+1;::::;yiT ); for any series i: We need to draw a sequence of values

fsitgt=1;:::T from the posterior distribution function f(SiT jYiT ; �; P ):
First, we write the joint posterior density in reverse time order using the condi-

tional probability rule

f(SiT jYiT ; �; P ) = f(si;T�1jYT ; si;T ; �; P )����� f(si;tjYT ; St+1i ; �; P )����� f(si;1jYT ; S2i ; �; P )
(20)

To sample the hidden states fsitgt=1;:::T for any given time series in the panel, we
follow the following procedure. Since we have assumed that there are M structural

breaks for each time series i; then si;T =M + 1:

1. draw si;T�1 from f(si;T�1jYT ; si;T =M + 1; �; P )

2. draw si;T�2 from f(si;T�2jYT ; si;T = M + 1; si;T�1; �; P ); here si;T�1 takes the

value drawn from the previous step.

.

.

.

N-2. draw si;2 from f(si;3jYT ; S3i ; �; P ); where S3i take the values drawn from the

previous steps.

The si;1 has been �xed as 1. Chib(1996) shows that

f(si;tjYT ; St+1i ; �; P ) / prob(si;tjYit; �; P ) � prob(si;t+1jsi;t; P ) (21)

prob(si;t+1jsi;t; P ) is just the transition probability given P: The �rst term prob(si;tjYit; �; P )
is obtained by a recursive procedure called "�ltering" starting from t = 1: Given the
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value of prob(si;t�1jYit�1; �; P ); one could update the prob(si;tjYit; �; P ) following

prob(si;t = mjYit; �; P ) =
prob(si;t = mjYit�1; �; P )� f(yitjYi;t�1; �m)
M+1P
l=1

prob(si;t = ljYit�1; �; P )� f(yitjYi;t�1; �l)
(22)

Notice that

prob(si;t = mjYit�1; �; P ) (23)

= prob(si;t = mjsi;t�1 = m;P )� prob(si;t�1 = mjYit�1; �; P )+
prob(si;t = mjsi;t�1 = m� 1; P )� prob(si;t�1 = m� 1jYit�1; �; P )

Again, both prob(si;t = mjsi;t�1 = m;P ) and prob(si;t = mjsi;t�1 = m� 1; P ) are
the transition probabilities.

Given updated fsitgi=1;:::Nt=1;:::T ; it is straightforward to get fkmi g
m=1;:::M
i=1;:::N : For any i =

1; :::; N; kmi = k
m�1
i +

TP
t=1

I(si;t = m):

8.2 Sampling of P

Assume the prior distribution of pmm is Beta. And pmm and pl:l are independent

draws from the same Beta distribution, i.e.

pmm � i:i:d Beta(a; b) (24)

Since all series share the same P; pmm is the same across sections and one must

use panel data information to update the value of pmm:

Given updated fsitgi=1;:::Nt=1;:::T ; the posterior distribution of pmm is assumed to be

independent from data Y .

pmmjfsitgi=1;:::Nt=1;:::T � Beta(a+ nmm; b+ 1) (25)

Where nmm =
NP
i=1

I(sit = m); and I(sit = m) = 1 if and only if sit = m; I(sit =

m) = 0 otherwise.

36



8.3 Sampling of other model parameters

For illustration purpose, I describe the sampling algorithm for the simple model yi;t =(
�+ �1i � eit; for 1 � t � k�i
�+ �2i � eit; for k�i < t � T

; i = 1; :::; N; and assume only one structural break.

However, it is straightforward to apply the same algorithm to more complicated

models. For more than one structural break, just divide the time series into more

regimes and perform the same procedure for parameters in each regime.

In the above two sections, I have simulated the hidden states fsitgi=1;:::Nt=1;:::T thus the

change points fkmi g
m=1;:::M
i=1;:::N as well. To update the common transition matrix P; one

needs to take into account the updated information about fkmi g
m=1;:::M
i=1;:::N for all the

series in the panel. Once that is done, one can update other model parameters such

as
�
�ij; �

2
ij; ki

�
, i = 1; 2; :::N; j = 1; 2; t = 1; 2; ::; T

Step 1: Given initial values
�
�
(0)
ij ; �

2 (0)
ij ; k

(0)
i

�
, i = 1; 2; :::N; j = 1; 2; t = 1; 2; ::; T

Step 2: Update parameters �ij
Given the initial values of other parameters

�
�
(0)
ij ; �

2 (0)
ij ; k

(0)
i ; �

(0)
t

�
, i =

1; 2; :::N; j = 1; 2; t = 1; 2; ::; T and data Y; the posterior conditional distribution of

�
(1)
ij is

�
(1)
i1 j�!� 2 (0);

�!
k (0);�!� (0); Y (26)

� Normal((�i10
�2i10

+

Pk
(0)
i
t=1 yt

2

�
2 (0)
i1

)=(
1

�2i10
+
k
(0)
i

�
2 (0)
i1

); (
1

�2i10
+
k
(0)
i

�
2 (0)
i1

)�1)

�
(1)
i2 j�!� 2 (0);

�!
k (0);�!� (0); Y

� Normal((�i20
�2i20

+

PT

t=k
(0)
i +1

yt
2

�
2 (0)
i2

)=(
1

�2i20
+
T � k(0)i
�
2 (0)
i2

); (
1

�2i20
+
T � k(0)i
�
2 (0)
i2

)�1)

Step 3: Update parameters �2ij
Given

�
�
(1)
ij ; k

(0)
i ; �

(0)
t ; X

�
, i = 1; 2; :::N; j = 1; 2; t = 1; 2; ::; T; �2 (1)ij has
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the following posterior conditional distribution

�
2 (1)
i1 j�!� (1);�!k (0);�!� (0); Y (27)

� Scaled inverse-chi-square(�i1 + k
(0)
i ;

�i1�
2
i10 +

Pk
(0)
i
t=1(yit � �

(1)
i1 )

2

�i1 + k
(0)
i

)

�
2 (1)
i2 j�!� (1);�!k (0);�!� (0); Y

� Scaled inverse-chi-square(�i2 + T � k(0)i ;
�i2�

2
i20 +

PT

t=k
(0)
i +1

(yit � �(1)i2 )2

�i2 + T � k(0)i
)

Here I choose conjugate priors for each parameter to relieve the computational

burden. If the model bears a more complicated form and conjugate priors are not

available for the model parameters, one can use Griddy-Gibbs sampling or standard

Metropolis-Hasting Algorithm.
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