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Abstract

This paper examines the empirical difficulties inherent in assessing the credit quality of
collateralized debt obligations (CDOs). Because of the way CDO liabilities are structured,
CDO note payouts are sensitive to tail collateral loss events. As a result, in order to assess
the likelihood and severity of a CDO note’s losses, one needs to know the distribution of
losses for each collateral asset, as well as the dependence of losses across collateral assets.
In practice, CDO collateral losses are most commonly modeled using normal copulas. I
show that for more senior CDO tranches, standard credit risk metrics such as probability of
default, expected loss, and conditional expected loss are highly sensitive to model parameters
which must be estimated or specified judgmentally by a credit analyst. Given assumptions
about the historical data available to a credit analyst, I compute bounds on the accuracy
of normal copula parameter estimates and show that in applied settings data constraints
are likely to impose severe limitations on an analyst’s ability to accurately evaluate CDO
tranches. Thus, CDO note credit ratings should generally be viewed as more preliminary
and less informative than comparable corporate bond ratings.



1 Introduction

Collateralized debt obligations (CDOs) are structured fixed income securities whose payouts
depend on the performance of pools of collateral comprised of corporate bonds or loans, or
other structured securities which are themselves backed by underlying collateral pools. The
CDO market has grown and evolved considerably over the last decade, but recently CDOs
have been implicated in the ongoing financial market turmoil in the US and Europe. As large
numbers of highly-rated CDO notes have experienced dramatic credit rating downgrades
and/or significant falls in market valuations, investors have become unwilling to hold them,
creating liquidity and credit challenges for financial institutions. A number of commentators
have pointed out that lack of transparency and complexity of CDO deals pose challenges for
market participants seeking to quantify and manage CDO credit risks, and rating agencies
that make a business of evaluating the credit quality of debt securities have been criticized
for issuing ratings for CDOs that some believe were too optimistic or did not capture the
full range of risks associated with these investments.1

This paper examines the empirical difficulties inherent in assessing CDO credit perfor-
mance. I argue that the design of CDOs makes these structures more difficult to evaluate
than more traditional types of debt securities with embedded credit risk such as corporate
bonds. In assigning credit ratings, rating agencies and others typically focus on a security’s
probability of default or expected loss. In managing portfolio credit risk, financial institu-
tions and their regulators may make use of more complex risk metrics, such as conditional
expected loss or expected shortfall. Because of the way CDO liabilities are structured, CDO
note payouts are sensitive to tail collateral loss events. As a result, in order assess the like-
lihood and severity of a CDO note’s losses, one needs to know the distribution of losses for
each collateral asset, as well as the dependence of losses across collateral assets. Accurately
measuring loss correlations or other higher-order moments of loss distributions for groups
of fixed income securities can be exceptionally challenging, particularly when defaults are
relatively rare.

The paper is organized as follows. Section 2 briefly surveys prior research on normal
copula models commonly used to evaluate the credit risk of CDOs and other structured
finance products. Section 3 presents a stripped down version of a normal copula model and
shows how it can be used to compute loss distributions for unstructured and structured debt
securities. This model is considerably simpler than those typically used to evaluate debt
securities. It is intended to capture the salient features of richer copula-based credit models,
while allowing one to investigate the role of a small number of key model parameters. Section
4 uses simulations to show how changes in model parameters affect standard metrics of the
credit quality of debt securities. These simulations show that risk metrics for more senior
CDO tranches are much more sensitive to errors in copula model parameters than risk metrics
for more junior CDO tranches or unstructured bonds. Section 5 computes bounds on the
precision with which normal copula model parameters can be estimated given assumptions
about the historical data available to an analyst. This analysis highlights how both the
quantity and character of available data imposes quantifiable limits on an analyst’s ability
to accurately estimate model parameters. Section 6 uses results from Sections 4 and 5 to

1See, for example Mason and Rosner (2007).
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simulate the distribution of standard credit risk metrics for different types of structured and
unstructured bonds. These results suggest that even when high quality historical data are
relatively plentiful, it may be difficult to accurately gauge the credit quality of more senior
CDO notes.

2 Literature review

Modeling dependence in realized defaults among groups of credit exposures is critical for
portfolio credit risk management. Normal copula models describe default dependence using
systems of correlated normal latent credit factors. Copula-based models have become popular
over the last decade both because they are computationally tractable, and because they
can be derived from the structural corporate debt valuation framework of Merton (1974).
Today, normal copula models are used in a broad range of risk management applications.
Widely used portfolio evaluation tools developed by The RiskMetrics Group (Gupton, Finger
and Bhatia 1997) and Moody’s/KMV (Kealhofer 1998) can be interpreted as variants of
normal copula models (Li 2000). Normal copula models are used to compute bank regulatory
requirements under the Basel II risk-based regulatory capital accord (Basel Committee on
Banking Supervision 2004). Moody’s, Standard and Poor’s, and Fitch, the three largest
bond rating agencies, rely on normal copula models to develop credit ratings for CDOs2

and normal copula models are commonly used to price CDO notes (Andersen and Sidenius
2005a).

Despite their popularity, limitations of normal copula models have been well documented.
A particular concern is that models capable of fitting observable data under typical credit
conditions appear to understate the likelihood of extreme portfolio credit loss events. Numer-
ous authors have proposed extensions or generalizations of the normal copula framework to
address this problem. For example, Frey, McNeil and Nyfeler (2001) propose a copula model
based on thicker tailed t-distributed latent variables and Andersen and Sidenius (2005b)
and Burtschell, Gregory and Laurent (2007) extend the normal copula model to allow for
unobserved heterogeneity in latent factor correlations across credit exposures.

Normal copula models and their various extensions depend on vectors of parameters
that describe the probability and likely severity of individual credit loss events and the
correlation structure of latent credit factors. In applied settings these parameters must be
estimated from historical data or specified judgmentally by a credit analyst. Any errors
in estimating model parameters will naturally result in miss-measurement of the credit risk
associated with individual exposures or portfolios of exposures. Simulation studies by Loffler
(2001), Tarashev and Zhu (2007), and Hamerle and Rosch (2005) investigate the sensitivity
of portfolio loss measures to errors in estimating copula model parameters.

A small body of research has examined the statistical properties of specific estimators of
copula model correlation parameters. Gordy and Heitfield (2002) compare the small sample
properties of maximum likelihood and moment-based estimators of credit factor correlation
parameters and show how imposing intuitive parameter restrictions can improve estimation

2See Jolivet, Lassalvy, Mueller-Heumann and Sieler (2006), Gilkes (2004), and Koo, Cromartie and Vedova
(2006) for descriptions of the normal-copula models used by Moody’s, S&P, and Fitch respectively.
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efficiency. Frey and McNeil (2003) propose maximum likelihood estimators for copula cor-
relation parameters in the presence of non-normal latent credit factors, and Hamerle and
Rosch (2005) examine the sensitivity of correlation parameters to miss-specification of the
distribution of latent credit factors.

The analysis presented in this paper contributes to the academic literature on copula
models in a number of ways. I show how bounds on the accuracy of normal copula model
parameters can be determined with minimum assumptions about the actual estimators used.
Unlike previous research on the accuracy of copula model parameters, I allow for the possi-
bility that an analyst my have access to data no the credit quality of non-defaulted firms that
are useful for estimating model parameters. This extension is important, since in applied
settings normal copula correlation parameters are commonly estimated using information on
equity returns or imputed asset returns for publicly traded firms or historical ratings tran-
sition data for rated bonds.3 Though others have investigated the effects of copula model
specification errors on measures of portfolio credit risk, this paper is the first to rigorously
examine how data limitations affect the accuracy of credit risk metrics for structured debt
products.

3 The normal copula/beta model for correlated bond

credit losses

Throughout this paper, I will use the term “simple” bonds to describe traditional debt claims
on corporations or sovereigns. I will use the term “structured” bonds to describe bonds
issued by CDOs, whose payouts depend on an underlying collateral pool of simple bonds.
This section describe a stripped down version of the normal copula/beta model commonly
used to evaluate the credit risk of both simple and structured bonds. The specification
used in this analysis allows for cross sectional correlation in realized default rates for simple
bonds and stochastic losses for those bonds that default. Correlations in defaults are driven
by a single systematic risk factor. For simplicity, I assume that loss rates given default are
independent of the systematic factor. It should be noted that both the single systematic risk
factor assumption and the assumption that there is no systematic risk in loss given default
can be easily relaxed in more applied settings, and indeed, this is commonly done in practice.

3.1 Simple bonds

Under the simplest normal copula framework, bond i defaults during a specified horizon if an
unobservable normal latent factor Yi lies below the default threshold Φ−1(π) where Φ−1(·) is
inverse of the standard normal cumulative density function. The parameter π describes the
bond’s marginal probability of default. Cross sectional correlation in defaults across pairs of

3For example Gupton et al. (1997) describes how equity return correlations are used to infer latent factor
correlation parameters used in the CreditMetrics portfolio risk model and Kealhofer (1998) explains how
Moodys/KMV uses imputed obligor asset returns to calibrate correlation parameters in its portfolio risk
model.
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simple bonds i and j arises from correlations in latent credit factors Yi and Yj. Let

Yi =
√
ρX −

√

1 − ρEi

whereX is a standard normal random factor shared by all bonds, and Ei is a standard normal
idiosyncratic factor that is unique for each bond. The parameter ρ lies between zero and
one and determines the correlation in credit factors between pairs of bonds. Higher values
of ρ imply higher correlation between credit factors, and, by extension, higher correlation in
realized defaults across pairs of bonds.

Assume that bond i is a bullet loan that pays 1 + ri at maturity if the obligor does
not default, and (1 + ri)(1 − λi) if the obligor defaults. λi is a random variable describing
the realized loss given default of the bond. For corporate bond exposures, this loss rate is
often assumed to be drawn from a beta distribution which may or may not depend on the
systematic factor(s) that drive asset correlations. As noted above, for simplicity this analysis
assume that λi is independent of all other random variables. The beta distribution is a two
parameter distribution with support on the unit interval that can be fully characterized by
a mean parameter µ and a standard deviation parameter σ.4

The payout from a one dollar investment in bond i at the terminal date is,

Vi = (1 + ri) − 1
{

Yi ≤ Φ−1(π)
}

λi(1 + ri)

The right-most term is the realized contractual loss per dollar invested. Note that when λi

is large, this loss rate may exceed 100 percent because of accrued but unpaid interest. Given
N homogeneous bonds, the joint distribution of V1 . . . VN is fully described by the parameter
vector θ = (π, ρ, µ, σ).

3.2 CDOs backed by simple bonds

The simplest types of collateralized debt obligations (CDOs) issue tranches of structured
debt securities backed by pools of corporate bonds. The normal-copula/beta model of bond
losses can be used to build up a model of CDO tranche credit losses.

Consider a static CDO deal backed by N bonds. Investments are made at the “deal
date” and proceeds are distributed to investors at the “terminal data”. The value of the
collateral pool at the deal date is normalized to 1 and the value of the collateral pool at the
terminal date is denoted Vp. ce of the collateral pool is funded by equity investors at the
deal date. The remaining 1 − ce of the pool is funded by a continuum of arbitrarily thin
debt tranches. Debt tranches are indexed by c ∈ [ce, 1]. c is a tranche’s attachment point in
the CDO capital structure, so higher values of c imply greater seniority. The interest paid
to each debt tranche is described by the non-increasing function r(c). At the terminal date,
collateral is liquidated and tranche c investors are paid 1+r(c) if sufficient funds are available.
If Vp is not sufficient to pay all debt investors, tranches are paid according to seniority. If Vp

exceeds that needed to pay debt investors, equity investors receive any residual value.

4In the statistics literature the beta distribution is most commonly characterized by two shape parameters
α and β. I use the less common µ-σ parametrization to make the economic interpretation of model parameters
more transparent. It can be shown that α = (µ(1 − µ) − σ2)µ/σ2 and β = (µ− 2µ2 + µ3 − µσ2)/σ2.
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Assuming no credit losses, the total value of all debt tranches senior to tranche c is

V̄ (c) = (1 − c) +R(c)

where R(c) =
∫ 1

c
r(s)ds is the total interest owed to these tranches. The realized value of

tranches senior to c is

V (c) = V̄ (c) − 1
{

Vp ≤ V̄ (c)
} (

V̄ (c) − Vp

)

The second right-hand term is the value of any realized credit losses for tranches senior to
c. Note that the value for a “slice” of the CDO with attachment point cl and detachment
point ch is V (cl) − V (ch). The value of the equity trance is Ve = Vp − V (ce).

To keep notation simple, this analysis is restricted to CDOs backed by equal-weighted
pools of bonds that are homogeneous in the sense that all bonds in the pool share the same
parameter vector θ and pay the same interest rate rp. Let M =

∑N

n=1 1 {Yn ≤ Φ−1(π)} be a
random variable that described the number of bonds in the CDO collateral pool that default
by the terminal date, and let λ̄M = 1

M

∑M

j=1 λj be the average loss given default for those M
bonds. The value of the collateral pool at the terminal date is

Vp = (1 + rp) −
M

N
λ̄M .

The random variables M and λ̄M determine Vp. M is a draw from a binomial-normal
mixture distribution, and, conditional on M , λ̄M is an average of M independent beta
random variables. Neither the marginal distributions of M nor the conditional distribution
of λ̄M given M can be expressed in closed form, but both can be computed analytically with
high precision. The product of these two distributions is the joint distribution of M and λ̄M ,
which provides all the information necessary to compute the joint distribution of Vp, V (c)
(for all c) and Ve.

The distribution of CDO tranche payouts is fully determined by N , rp, r(c), and the
normal copula/beta model parameter vector θ for the collateral pool. Given θ, any number
of relevant metrics of the credit risk associated with a CDO note can be computed. The
next section examines how three commonly used metrics of credit risk depend on θ.

4 Sensitivity of credit risk metrics to model parame-

ters

This analysis considers three standard metrics of credit quality: probability of default, ex-
pected loss, and conditional expected loss. Define the expectation operator E [Z] as the
expected value of the random variable Z whose distribution is determined by θ. Let V be
the value of a one dollar investment in a debt security at the terminal date and let r be the
contractual interest on that security. The security’s probability of default is defined as

PD = E [1 {V < 1 + r}] . (1)

PD describes the likelihood of a credit loss, but not the magnitude of the loss. The expected
loss

EL = (1 + r) − E [V ] (2)
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summarizes the expected likelihood and the magnitude of a credit loss. Note that EL may
exceed 100 percent because both principal and accrued interest may be lost.

PD and EL describe the first moments of a security’s loss distribution. In portfolio risk
management applications such as economic capital allocation, analysts also require infor-
mation about a security’s marginal contribution to portfolio-wide losses. A number of risk
metrics useful for describing the dependence between an individual exposure’s credit losses
and those of a broader portfolio have been proposed in the risk management literature, and
I do not propose to survey them here. This analysis will consider one such measure derived
from an asymptotic single risk factor approximation. Gordy (2003) shows that if a portfolio
is well diversified and its overall loss rate depends on a single systematic factor X̄ then an
exposure’s marginal contribution to portfolio value-at-risk (VaR) can be determined analyt-
ically by calculating its conditional expected loss of the exposure given an adverse draw of
the systematic risk factor, The conditional expected loss associated with a qth percentile
portfolio VaR measure is

ELq = (1 + r) − E
[

V | X̄ = x̄q

]

(3)

where x̄q is the 1−qth percentile of the stochastic systematic risk factor. Unlike PD and EL,
which describe the center of the distribution of V , ELq describes the tail of this distribution.5

Under the normal copula/beta model, EL, PD, and ELq for both simple and structured
bonds are determined by the parameter vector θ. For simple bonds,

PD = π

and
EL = (1 + r)πµ,

If we assume that correlation between the single systematic factor underlying a financial
institution’s overall asset portfolio X̄ and the systematic factor that affects bond default
rates X is 50 percent, the conditional expected loss for a simple bond is

ELq = (1 + r)Φ

(

Φ−1(π) −√
0.5ρx̄q√

1 − 0.5ρ

)

µ

where x̄q = Φ−1(1 − q).6

For simple bonds, PD is determined by the normal copula marginal default probability
parameter π, EL depends on both π and the expected loss-given-default µ, and ELq is a
function of π, µ, and the asset value correlation parameter ρ. For structured bonds, simple
analytic formulas for PD, EL, and ELq are not available, but these risk metrics can be
computed numerically for any value of θ. In contrast to the case for simple bonds, PD, EL,
and ELq for structured bonds each depend on all four elements of θ.

5If a portfolio is not fully diversified or if multiple systematic factors are present (e,g., sector specific
factors) then a given exposure’s marginal contribution to portfolio VaR depends on all exposures within
the portfolio. In these cases, portfolio-specific measures of marginal VaR contributions can be derived. See
Pykhtin (2003) for an analytic approach and Heitfield, Burton and Chomsisengphet (2006) for a simulation-
based approach to computing marginal VaR contributions in the presence of multiple risk factors.

6See Pykhtin and Dev (2002) for detailed analysis of conditional expected loss in the presence of a single
portfolio-wide systematic factor and a correlated CDO collateral-pool-specific factor.
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Table 1: Credit risk statistics for hypothetical CDO deal backed by 100 mezzanine-rated
bonds.

Position Spread PD EL EL0.95

Tranche (%) (bp) (%) (%) (%)
Junior 3 – 6 224 16.78 11.86 45.88

Jr. Mezz. 6 – 9 84 6.24 4.29 19.64
Sr. Mezz. 9 – 12 34 2.54 1.73 8.04

Senior 12 – 15 14 1.07 0.71 3.07
Sup. Sen. 15 – 100 0 0.43 0.01 0.05
Collateral 56 5.00 3.45 8.14

The true value of the normal copula/beta model parameters, which will be denoted with
the subscript “0”, cannot be directly observed by a credit analyst. In practice, model param-
eters are either determined judgmentally or estimated from historical data. Any differences
between θ0 and the value of θ used to compute the expectations in equations (1), (2), and
(3) can result in errors in imputed risk metrics.

To illustrate how errors in θ can affect imputed risk metrics, this paper examines two
hypothetical CDO deals summarized in Tables 1 and 2. Both CDO deals are backed by
homogeneous collateral pools of 100 simple bonds, described in the bottom rows of the
tables. In the mezzanine CDO example π0 = 0.05, ρ0 = 0.20, µ0 = 0.55, and σ0 = 0.35 and
bonds have a maturity of 5 years. In the high-grade CDO example, all normal copula/beta
parameters are the same except the default probability parameter, which is set at π0 =
0.01. The default probability parameter for the mezzanine and high-grade cases roughly
corresponds to the five-year cumulative default rate for corporate bonds rated Baa- and
A- respectively by Moody’s. The collateral’s asset value correlation and LGD parameters
are chosen to be broadly consistent with those used in major rating agencies’ or regulators’
CDO credit risk models.7 A constant risk-free interest rate of four percent is assumed, and
spreads are set so that a risk-neutral pricing model based on θ0 would value the bonds at
par at origination.

As is typical of securitization deals, credit risk metrics for the various tranches of the CDO
bear little direct relation to those of the underlying collateral pool but are very sensitive to
each tranche’s position in the deal capital structure. Tranches lower in the capital structure,
which are the first to take losses, have much higher default probabilities, expected losses,
and conditional expected losses than more senior tranches.

Figures 1 through 8 show how deviations in each component of θ from θ0 affects PD, EL,
and ELq. Each line in a panel plots the ratio of a particular risk metric to its true value (i.e.,
the risk metric computed given θ = θ0) as θ changes. For example, the first panel of Figure
1 shows how bonds’ implied default probabilities change with π holding all other elements
of θ fixed at their true values. All lines cross at the true value of the model parameter in

7For example, Basel II uses corporate bond asset correlation parameters ranging from 0.12 to 0.24 depend-
ing on firm size, and baseline unsecured loss given default parameter of 0.45 (Basel Committee on Banking
Supervision 2004).
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Table 2: Credit risk statistics for hypothetical CDO deal backed by 100 high-grade bonds.

Position Spread PD EL EL0.95

Tranche (%) (bp) (%) (%) (%)
Junior 1 – 2 183 13.24 9.56 35.17

Jr. Mezz. 2 – 4 57 5.41 2.88 12.84
Sr. Mezz. 4 – 6 15 1.29 0.75 3.35

Senior 6 – 8 5 0.39 0.23 0.90
Sup. Sen. 8 – 100 0 0.12 0.00 0.01
Collateral 11 1.00 0.68 1.92

question.
As these results plainly show, structured bonds are considerably more sensitive to speci-

fication errors in each component of θ than simple bonds, and the higher is a bond’s position
in the CDO capital structure the greater is its sensitivity to parameter errors. Moreover,
a risk metric’s sensitivity to parameter errors is inversely proportional to its relevance for
portfolio risk management; conditional expected loss is more sensitive to errors in θ than
expected loss, and expected loss is more sensitive to specification errors than probability of
default.

For more senior tranches, risk metrics are remarkably sensitive to model parameters.
For example, if a credit risk manager were to use an asset value correlation parameter of 15
percent to evaluate the “Senior” tranche of the high-grade CDO in an environment where the
true correlation was 20 percent, she would understate the tranche’s default probability and
expected loss by over 50 percent, and the tranche’s conditional expected loss (equivalent to
its marginal capital requirement) by more than 75 percent. Conversely, if she used an asset
correlation parameter of 25 percent, she would overstate the tranche’s default probability
and expected loss by 100 percent and its conditional expected loss by 200 percent.

5 Bounding the accuracy of model parameters

The sensitivity of structured bond risk metrics to θ begs the question, how accurately can
model parameters be estimated? The answer, of course, depends on the type and volume
of historical data available and the statistical estimator used. Practitioners typically use
historical data on the default frequencies of rated bonds to estimate default probability pa-
rameters. Factor correlation parameters can also be calibrated from such data but, as Gordy
and Heitfield (2002) show, accurately estimating correlation parameters from default rate
data requires long data histories and/or strong ex ante parameter restrictions. As noted
earlier, the latent credit factors of the normal copula model have a structural interpretation
as obligor asset returns in a Merton (1974) valuation framework. Leveraging this fact, prac-
titioners often use information on equity returns or imputed asset returns for publicly traded
firms as proxies for latent credit factors. Alternatively, some practitioners use information
on bond rating transitions (which are far more common than bond defaults) to estimate
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Figure 1: Sensitivity of mezzanine CDO risk metrics to errors in the default probability
parameter π.
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Figure 2: Sensitivity of mezzanine CDO risk metrics to errors in the asset value correlation
parameter ρ.

0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

ρ

E
st

im
at

e/
T

ru
e

PD

 

 

0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

ρ

E
st

im
at

e/
T

ru
e

EL

0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

ρ

E
st

im
at

e/
T

ru
e

EL
0.95

Junior
Jr. Mezz
Sr. Mezz
Senior
Bond

10



Figure 3: Sensitivity of mezzanine CDO risk metrics to errors in the expected loss given
default parameter µ.
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Figure 4: Sensitivity of mezzanine CDO risk metrics to errors in the loss-given-default volatil-
ity parameter σ.
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Figure 5: Sensitivity of high-grade CDO risk metrics to errors in the default probability
parameter π.
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Figure 6: Sensitivity of high-grade CDO risk metrics to errors in the asset value correlation
parameter ρ.
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Figure 7: Sensitivity of high-grade CDO risk metrics to errors in the expected loss given
default parameter µ.
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Figure 8: Sensitivity of high-grade CDO risk metrics to errors in the loss-given-default
volatility parameter σ.
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factor correlations. Loss given default parameters are typically estimated from data on the
market price of traded debt shortly after a default event or ultimate recoveries on defaulted
bonds or loans.

In this section, I present a stylized data generating process (DGP) capable of describing
the range of data that might reasonably be available to a credit analyst. I assume that
the normal copula/beta model is correctly specified in the sense that the DGP is consistent
with this model given a true parameter vector θ0. Using the DGP, I derive lower bounds on
the sampling variance of any unbiased estimator of θ0. This allows one to investigate how
the quality and character of available historical data affects the accuracy of normal copula
parameter estimates.

Assume that an analyst observes T cohorts which each contain N simple bonds. All
bonds in all cohorts share the same underlying model parameter vector θ0. Within a cohort,
all bonds are sensitive to the same systematic risk factor X, but systematic risk factors
are assumed to be independent across cohorts. Such data could arise, for example if one
observed information on T non-overlapping cohorts of bonds over time.

For each bond i in cohort t, the analyst observes the following information ex post. First
the analyst observes an indicator variable Dit which is equal to one if the bond defaults (i.e,
if Yit ≤ Φ−1(π0)) and zero otherwise. Second, if bond it defaults, the analyst observes the
realized loss rate given default λit. Finally, if the bond does not default, the analyst observes
a noisy signal of the bond’s realized latent credit factor Yit, denoted Y ∗

it . Y
∗

it is a weighted
sum of Yit and a standard normal error term Uit which is assumed to be independent of all
other variables in the model:

Y ∗

it =
√
ω
(

√

1 − ψYit +
√

ψUit

)

.

The parameter ψ lies on the unit interval and captures the relative amount of noise in the
signal Y ∗

it . In the limiting case where ψ = 0, Y ∗

it is perfectly correlated with the realized
credit factor Yit. At the other extreme, where ψ = 1, Y ∗

it provides no information about Yit.
In this case Y ∗

it can be safely ignored by the analyst, and inference about θ must be based
solely on information about whether or not bonds have defaulted. ω controls the scale of Y ∗

it .
The nuisance parameters ω and ψ are not of direct interest to the analyst, but they must be
estimated in order to use information from Y ∗

it to estimate π and ρ.8 For the remainder of
this paper we will redefine θ to include these nuisance parameters.

In applied settings, our stylized assumption that historical data can be grouped into
independent, homogeneous cohorts could be easily generalized in useful ways. For example,
a more realistic DGP might allow for correlations across cohort-specific systematic factors
since in practice cohorts may well be overlapping in time. Within cohort heterogeneity,
particularly with respect to πo, could also be accommodated as in Gordy and Heitfield
(2002). This would allow one to investigate the costs and benefits of pooling historical
data across different types of credit exposures. However, for our current purposes, relatively
stylized DGP assumptions are useful, because they allow us to investigate how broad features
of available data affect parameter estimates.

8An exception occurs in the limiting cases where ψ0 = 0 or ψ0 = 1. When ψ0 = 0 there is no uncertainty
about the information content of Y ∗

it
and hence no need to estimate ψ0. In this case it is still necessary

to estimate the scale parameter ω0 When ψ0 = 1, Y ∗

it
is irrelevant to inference of θ, so there is no need to

estimate either ψ or ω.
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Conditional on X, the likelihood of observing the vector (Dit, Y
∗

it , λit) can be expressed
as the product of a marginal likelihood for (Dit, Y

∗

it) given X which depends on π and ρ and
a conditional likelihood for λit given Dit that depends on µ and σ:

f (Dit, Y
∗

it , λit|X; θ) = f (Dit, Y
∗

it |X; π, ρ, ψ, ω) f (λit|Dit;µ; σ) (4)

The first right-hand term is

f (Dit, Y
∗

it |X; π, ρ, ψ, ω) =

[

Φ

(

Φ−1(π) −√
ρX√

1 − ρ

)]Dit

×
[

φ

(

(Y ∗

it/
√
ω) −√

1 − ψ
√
ρX√

S

)]1−Dit

×
[

Φ

(

−SΦ−1(π) − ψ
√
ρX − (1 − ρ)

√
1 − ψ (Y ∗

it/
√
ω)√

S
√

ψ(1 − ρ)

)]1−Dit

(5)

where S = (1− ψ)(1− ρ) + ψ. See the appendix for a derivation of (5). The second term in
(4) is the likelihood of the loss rate λit, which is only observable if Dit = 1. It can be written

f (λit|Dit;µ, σ) = [β (λit)]
Dit

where β(z) is the PDF for a beta-distributed random variable with mean and standard
deviation parameter µ and σ respectively. The joint likelihood for cohort t is

Lt(θ) =

∫ N
∏

i=1

f (Dit, Y
∗

it |x; π, ρ)φ(x)dx

N
∏

i=1

f (λit|Dit;µ, σ)

Given the likelihood of the DGP, the well known Cramer-Rao lower bound defines the
minimum covariance matrix of any asymptotically unbiased estimator for θ0. The Fischer
information matrix for our DGP is

I (θ0) = E

[

∂2 lnLt(θ0)

(∂θ)2

]

.

If an estimator θ̂ is asymptotically unbiased, then the difference between its covariance matrix
and 1

T
(I (θ0))

−1 is a positive semi-definite matrix. Among other things, this implies that

the variance of each element of θ̂ is at least as large as the corresponding diagonal element
of the average of the inverse information matrix. If we posit a value of θ0, the Cramer-Rao
bound can be computed directly for any combinations of T , N , and ψ0.

Because the marginal distribution of Dit does not depend on µ and σ and the conditional
distribution of λit does not depend on π, ρ, ψ, and ω, the information matrix for θ is block
diagonal with respect to (π, ρ, ψ, ω) and (µ, σ).9 As a result, we can investigate the accuracy
of these two subvectors separately. For the remainder of this paper we will focus on the first
subvector, though the methods described here are equally applicable to analysis of µ and σ.

Figures 9 and 10 show how the minimum standard deviation of π and ρ vary as N , T ,
and ψ change. Several useful results can be gleaned from this analysis.

9Note that this result does not hold for the more general case where loss given default is not independent
of the systematic factor X .
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• As one might expect sampling errors for π and ρ tend to be higher relative to the true
parameter values for populations with low default rates. It is more difficult to estimate
the frequency and volatility of low probability events with precision.

• The figures dramatically illustrate the value of observing high quality historical data
on the credit performance of those bonds that do not default. Comparing results
for ψ0 = 1.0 and ψ0 = 0.0 we see that observing credit factors for non-defaulted
firms reduces standard errors by about two-thirds for the mezzanine bond population
and by about three-quarters for the high-grade bond population. Indeed, for high-
grade bond populations, estimating ρ with reasonable precision virtually requires some
type of credit factor data. Interestingly, these results also show that the accuracy of
default probability parameters can be greatly improved by incorporating information
on latent credit factors. Given that default probability parameters are commonly
calibrated using only long-run default frequencies, this fact does not appear to be
widely appreciated.

• Cohort size is more important when defaults are rare (Figure 10) than when they are
relatively common (Figure 9). For example, increasing N from 50 to 200 reduces the
standard deviation of ρ by about one-third for the mezzanine bond population, but by
over half for the high-grade bond population. For the high-grade population increasing
N and T have about the same effect on sampling errors. To see this, compare the points
for N = 50 and T = 40 with those for N = 200 and T = 10).

6 Distribution of credit risk metrics

Section 4 shows how standard measures of credit risk depend on estimated normal copula
model parameters, and Section 5 shows how the accuracy of parameter estimates depends
on the data available to an analyst. This section combines these results to examine how the
distribution of PD, EL and ELq are affected by the characteristics of the data generating
process.

Given the sampling distribution for an estimator θ̂ of θ0, the distribution of PD, EL,
and ELq for simple and structured bonds can be estimated using Monte Carlo simulation.
Unfortunately, while the Fischer information inequality allows one to bound the sampling
variance of unbiased estimators, it provides no additional insights into the small sample
properties of such estimators. Hence, in order to simulate the distribution of PD, EL, and
ELq, we need to make some assumptions about the sampling distribution of θ̂.

π and ρ, are bounded between zero and one, so the natural assumption that θ̂ is drawn
from a multivariate normal distribution is inappropriate. One can circumvent this problem
by reparameterizing the normal copula model in such a way that model parameters are
defined over the entire real line. Let π̃ = Φ−1(π) and ρ̃ = Φ−1(ρ). (π̃, ρ̃) has support ℜ2,
and the sampling variance for a minimum variance unbiased estimator of this vector can
be derived by inverting the Fischer information matrix for the reparameterized likelihood
function.
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Figure 9: Minimum standard deviation of unbiased normal copula parameter estimators for
mezzanine bonds under various data generating processes (π0 = 0.05, ρ0 = 0.20).
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Figure 10: Minimum standard deviation of unbiased normal copula parameter estimators
for high-grade bonds under various data generating processes (π0 = 0.01, ρ0 = 0.20).
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The sampling distributions of PD, EL, and ELq are simulated as follows. For each
Monte Carlo iteration I draw a value of (π̃, ρ̃) from a bivariate normal distribution with mean
(π̃0, ρ̃0) and covariance matrix equal to the Cramer-Rao bound. Using this parameter value,
I compute implied PD, EL, and ELq for simple bonds and CDO tranches. Two-thousand
Monte Carlo iterations are run for each of four hypothetical data generating processes:

• a “wide” panel with partially observable credit factors (N = 200, T = 10, ψ = 0.2);

• a “long” panel with partially observable credit factors (N = 50, T = 40, ψ = 0.2);

• a “wide” panel with unobservable credit factors (N = 200, T = 10, ψ = 1.0); and

• a “long” panel with unobservable credit factors: (N = 50, T = 40, ψ = 1.0).

In each case, simulations are run for both the mezzanine and the high-grade CDO deals
described in Section 4.

Simulation results are reported in Tables 3 and 4 and Figures 11 through 18. Several
conclusions can be drown from these simulations.

• Standard measures of credit risk such as probability of default, expected loss, and con-
ditional expected loss for more senior CDO tranches have significantly larger sampling
errors than those for more junior tranches or unstructured bonds.

• Standard measures of credit risk for CDOs backed by high-grade securities are likely
to have larger sampling errors than those backed by mezzanine-grade securities.

• Long, narrow data panels generally produce more accurate risk metrics than short,
wide panels with comparable numbers of observations, particularly when no data on
latent credit factors are available.

• Proxy data for latent credit factors can significantly improve the accuracy of risk met-
rics for both unstructured and structured securities. Notably, such data significantly
improves the accuracy of PD ane EL estimates for unstructured securities, even though
these credit risk metrics do not depend on asset correlation parameters.

Overall, the results presented here suggest that statements about the credit quality of
senior structured securities should be viewed with considerable skepticism, particularly when
those securities are backed by high-grade collateral. Normal copula models provide a valuable
tool for ranking the relative risks of similar classes of structured securities, but they may be
less useful for making comparisons across different types of credit products.
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Table 3: 90% confidence intervals for risk metrics of a mezzanine CDO.

PD (%) EL (%) EL0.95 (%)
Tranche True 5th 95th True 5th 95th True 5th 95th

N = 50, T = 40, ψ0 = 0.2
Junior 16.78 12.59 20.91 11.86 8.15 15.70 45.88 33.53 57.24

Jr. Mezz. 6.24 3.80 9.02 4.29 2.40 6.68 19.64 11.17 29.61
Sr. Mezz. 2.54 1.24 4.38 1.73 0.76 3.22 8.04 3.45 14.99

Senior 1.07 0.41 2.18 0.71 0.24 1.56 3.07 0.97 7.14
Collateral 5.00 4.27 5.81 3.45 2.95 4.01 8.14 6.73 9.72

N = 200, T = 10, ψ0 = 0.2
Junior 16.78 12.19 21.51 11.86 7.81 16.28 45.88 32.21 58.61

Jr. Mezz. 6.24 3.54 9.42 4.29 2.17 6.97 19.64 10.14 30.81
Sr. Mezz. 2.54 1.11 4.57 1.73 0.68 3.35 8.04 3.03 15.63

Senior 1.07 0.36 2.31 0.71 0.21 1.69 3.07 0.82 7.69
Collateral 5.00 4.18 5.93 3.45 2.89 4.10 8.14 6.59 9.91

N = 50, T = 40, ψ0 = 1.0
Junior 16.78 10.47 24.11 11.86 6.70 18.22 45.88 28.14 63.40

Jr. Mezz. 6.24 2.95 10.75 4.29 1.72 8.00 19.64 8.02 34.86
Sr. Mezz. 2.54 0.81 5.38 1.73 0.47 4.12 8.04 2.06 19.13

Senior 1.07 0.22 2.94 0.71 0.12 2.18 3.07 0.47 9.93
Collateral 5.00 3.79 6.48 3.45 2.61 4.48 8.14 6.15 10.60

N = 200, T = 10, ψ0 = 1.0
Junior 16.78 10.38 28.56 11.86 7.10 20.59 45.88 30.97 64.42

Jr. Mezz. 6.24 3.54 10.98 4.29 2.33 7.63 19.64 10.86 32.14
Sr. Mezz. 2.54 1.24 4.69 1.73 0.77 3.21 8.04 3.44 14.89

Senior 1.07 0.42 2.12 0.71 0.25 1.48 3.07 0.99 6.71
Collateral 5.00 3.50 7.22 3.45 2.42 4.99 8.14 6.44 10.25
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Table 4: 90% confidence intervals for risk metrics of a high-grade CDO.

PD (%) EL (%) EL0.95 (%)
Tranche True 5th 95th True 5th 95th True 5th 95th

N = 50, T = 40, ψ0 = 0.2
Junior 13.24 8.84 18.59 9.56 5.93 14.32 35.17 23.20 48.79

Jr. Mezz. 5.41 3.05 8.78 2.88 1.47 5.17 12.84 6.55 22.26
Sr. Mezz. 1.29 0.54 2.69 0.75 0.28 1.70 3.35 1.17 7.90

Senior 0.39 0.12 1.02 0.23 0.06 0.67 0.90 0.22 2.88
Collateral 1.00 0.71 1.39 0.68 0.48 0.94 1.92 1.37 2.66

N = 200, T = 10, ψ0 = 0.2
Junior 13.24 8.43 18.31 9.56 5.55 14.10 35.17 21.30 49.18

Jr. Mezz. 5.41 2.72 8.80 2.88 1.21 5.26 12.84 5.43 23.26
Sr. Mezz. 1.29 0.41 2.91 0.75 0.20 1.91 3.35 0.84 8.92

Senior 0.39 0.07 1.16 0.23 0.03 0.79 0.90 0.12 3.43
Collateral 1.00 0.69 1.38 0.68 0.46 0.93 1.92 1.29 2.74

N = 50, T = 40, ψ0 = 1.0
Junior 13.24 6.40 24.24 9.56 4.45 18.16 35.17 18.35 55.23

Jr. Mezz. 5.41 2.25 10.93 2.88 1.00 6.24 12.84 4.36 26.39
Sr. Mezz. 1.29 0.30 3.32 0.75 0.13 2.08 3.35 0.56 9.61

Senior 0.39 0.04 1.25 0.23 0.02 0.89 0.90 0.06 3.75
Collateral 1.00 0.54 1.70 0.68 0.37 1.15 1.92 1.16 2.99

N = 200, T = 10, ψ0 = 1.0
Junior 13.24 7.52 20.74 9.56 5.14 15.61 35.17 19.64 51.39

Jr. Mezz. 5.41 2.51 9.52 2.88 1.03 5.74 12.84 4.55 24.96
Sr. Mezz. 1.29 0.28 3.19 0.75 0.12 2.22 3.35 0.51 10.47

Senior 0.39 0.03 1.49 0.23 0.01 1.06 0.90 0.05 4.59
Collateral 1.00 0.63 1.51 0.68 0.42 1.02 1.92 1.23 2.89

24



Figure 11: Distribution of estimated mezzanine CDO risk metrics given a long data panel
with well observed credit factors (N = 50, T = 40, ψ = 0.2).
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Figure 12: Distribution of estimated mezzanine CDO risk metrics given a wide data panel
with well observed credit factors (N = 200, T = 10, ψ = 0.2).
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Figure 13: Distribution of estimated mezzanine CDO risk metrics given a long data panel
with unobserved credit factors (N = 50, T = 40, ψ = 1.0).
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Figure 14: Distribution of estimated mezzanine CDO risk metrics given a wide data panel
with unobserved credit factors (N = 200, T = 10, ψ = 1.0).
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Figure 15: Distribution of estimated high-grade CDO risk metrics given a long data panel
with well observed credit factors (N = 50, T = 40, ψ = 0.2).
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Figure 16: Distribution of estimated high-grade CDO risk metrics given a wide data panel
with well observed credit factors (N = 200, T = 10, ψ = 0.2).
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Figure 17: Distribution of estimated high-grade CDO risk metrics given a long data panel
with unobserved credit factors (N = 50, T = 40, ψ = 1.0).
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Figure 18: Distribution of estimated high-grade CDO risk metrics given a wide data panel
with unobserved credit factors (N = 200, T = 10, ψ = 1.0).
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APPENDIX: Derivation of DGP likelihood

Conditional on X, Y ∗ and Y have the joint distribution,

[

Y ∗

Y

]

| X ∼ N
([ √

ω
√

1 − ψ
√
ρX√

ρX

]

,

[

ω(1 − ψ)(1 − ρ) + ψ
√
ω(1 − ρ)

√
1 − ψ√

ω(1 − ρ)
√

1 − ψ 1 − ρ

])

.

This implies that conditional on Y ∗ and X, Y is distributed

Y | Y ∗, X ∼ N
(

ψ
√
ρX + (1 − ρ)

√
1 − ψ (Y ∗/

√
ω)

(1 − ψ)(1 − ρ) + ψ
,

ψ(1 − ρ)

(1 − ψ)(1 − ρ) + ψ

)

.

Thus, we can write the joint distribution of Y ∗ and Y conditional on X as

f (y∗, y|X) = φ

(

(y∗/
√
ω) −√

1 − ψ
√
ρX

√

(1 − ψ)(1 − ρ) + ψ

)

× φ

(

((1 − ψ)(1 − ρ) + ψ) y − ψ
√
ρX − (1 − ρ)

√
1 − ψ (y∗

√
ω)

√

(1 − ψ)(1 − ρ) + ψ
√

ψ(1 − ρ)

)

. (6)

The first right-hand term is the PDF of Y ∗ given X. The second term is the PDF of Y given
Y ∗ and X.

Recall that D is an indicator variable that is equal to one if Y ≤ Ψ−1(π) and zero
otherwise. Y ∗ is only observable when D = 0. If D = 0 the joint likelihood of Y ∗ and D
given X is

f(y∗, D = 1|X) =

∫

∞

Φ−1(π)

f(y∗, y|X)dy = φ

(

y∗ −√
1 − ψ

√
ρX√

S

)

×
(

1 − Φ

(

SΦ−1(π) − ψ
√
ρX − (1 − ρ)

√
1 − ψ (y∗/

√
ω)√

S
√

ψ(1 − ρ)

))

(7)

where S = (1 − ψ)(1 − ρ) + ψ. The second equality follows directly from (6). If D = 1, Y ∗

is not observable, and the likelihood is

f(D = 0|X) =

∫ Φ−1(π)

−∞

f(y|X)dy = Φ

(

Φ−1(π) −√
ρX√

1 − ρ

)

. (8)

Combining (7) and (8) yields (5).
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