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1. INTRODUCTION

Much of macroeconomics — and an even larger fraction of the growth

literature — makes strong assumptions about the shape of the production

function and the direction of technical change. In particular, it is well-

known that for a neoclassical growth model to exhibit steady-state growth,

either the production function must be Cobb-Douglas or technical change

must be labor augmenting in the long run. But apart from analytic conve-

nience, is there any justification for these assumptions?

Where do production functions come from? To take a common example,

our models frequently specify a relation y = f(k, ·) that determines how

much output per worker y can be produced with any quantity of capital per

worker k. We typically assume the economy is endowed with this function,

but consider how we might derive it from deeper microfoundations.

Suppose production techniques are ideas that get discovered over time.

One example of such an idea would be a Leontief technology that says,

“for each unit of labor, take k∗ units of capital. Follow these instructions

[omitted], and you will get out y∗ units of output.” The values k∗ and y∗

are parameters of this production technique.

If one wants to produce with a very different capital-labor ratio from

k∗, this Leontief technique is not particularly helpful, and one needs to

discover a new idea “appropriate” to the higher capital-labor ratio.1 Notice

that one can replace the Leontief structure with a production technology that

exhibits a low elasticity of substitution, and this statement remains true: to

take advantage of a substantially higher capital-labor ratio, one really needs

a new technique targetted at that capital-labor ratio. One needs a new idea.

According to this view, the standard production function that we write

down, mapping the entire range of capital-labor ratios into output per

1This use of appropriate technologies is related to Atkinson and Stiglitz (1969) and Basu
and Weil (1998).
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worker, is a reduced form. It is not a single technology, but rather rep-

resents the substitution possibilities across different production techniques.

The elasticity of substitution for this global production function depends on

the extent to which new techniques that are appropriate at higher capital-

labor ratios have been discovered. That is, it depends on the distribution of

ideas.

But from what distribution are ideas drawn? Kortum (1997) examined

a search model of growth in which ideas are productivity levels that are

drawn from a distribution. He showed that the only way to get exponential

growth in such a model is if ideas are drawn from a Pareto distribution, at

least in the upper tail.

This same basic assumption, that ideas are drawn from a Pareto dis-

tribution, yields two additional results in the framework considered here.

First, the global production function is Cobb-Douglas. Second, the op-

timal choice of the individual production techniques leads technological

change to be purely labor-augmenting in the long run. In other words, an

assumption Kortum (1997) suggests we make if we want a model to ex-

hibit steady-state growth leads to important predictions about the shape of

production functions and the direction of technical change.

In addition to Kortum (1997), this paper is most closely related to an

older paper by Houthakker (1955-56) and to two recent papers, Acemoglu

(2003b) and Caselli and Coleman (2004). The way in which these papers

fit together will be discussed below.2

Section 2 of this paper presents a simple baseline model that illustrates

all of the main results of this paper. In particular, that section shows how a

specific shape for the technology menu produces a Cobb-Douglas produc-

2The insight that production techniques underlie what I call the global production func-
tion is present in the old reswitching debate; see Robinson (1953–1954). The notion that
distributions for individual parameters aggregate up to yield a well-behaved function is also
found in the theory of aggregate demand; see Hildenbrand (1983) and Grandmont (1987).
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tion function and labor-augmenting technical change. Section 3 develops

the full model with richer microfoundations and derives the Cobb-Douglas

result, while Section 4 discusses the underlying assumptions and the re-

lationship between this model and Houthakker (1955–1956). Section 5

develops the implications for the direction of technical change. Section 6

provides a numerical example of the model, and Section 7 concludes.

2. A BASELINE MODEL
2.1. Preliminaries

Let a particular production technique — call it technique i — be defined

by two parameters, ai and bi. With this technique, output Y can be produced

with capital K and labor L according to the local production function

associated with technique i:

Y = F̃ (biK, aiL). (1)

We assume that F̃ (·, ·) exhibits an elasticity of substitution less than one

between its inputs and constant returns to scale in K and L. In addition,

we make the usual neoclassical assumption that F̃ possesses positive but

diminishing marginal products and satisfies the Inada conditions.

This production function can be rearranged to give

Y = aiLF̃

(

biK

aiL
, 1

)

, (2)

so that in per worker terms we have

y = aiF̃

(

bi

ai
k, 1

)

, (3)

where y ≡ Y/L and k ≡ K/L. Now, define yi ≡ ai and ki ≡ ai/bi. Then

the production technique can be written as

y = yiF̃

(

k

ki
, 1

)

. (4)
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FIGURE 1. An Example of the Global Production Function
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Circles identify distinct production techniques; for some of these, the lo-
cal production function associated with the technique has been drawn as
a dashed line. The heavy solid line shows the convex hull of the local
production functions, i.e. the global production function.

If we choose our units so that F̃ (1, 1) = 1, then we have the nice property

that k = ki implies that y = yi. Therefore, we can think of technique i as

being indexed by ai and bi, or, equivalently, by ki and yi.

The shape of the global production function is driven by the distribu-

tion of alternative production techniques rather than by the shape of the

local production function that applies for a single technique.3 To illustrate

this, consider the example given in Figure 1. The circles in this figure de-

note different production techniques that are available — the set of (ki, yi)

pairs. For a subset of these, we also plot the local production function

3Other models in the literature feature a difference between the short-run and long-run
elasticities of substitution, as opposed to the local-global distinction made here. These
include the putty-clay models of Caballero and Hammour (1998) and Gilchrist and Williams
(2000).



6 CHARLES I. JONES

y = F̃ (bik, ai). Finally, the heavy solid line shows the global production

function, given by the convex hull of the local production techniques. For

any given level of k, the global production function shows the maximum

amount of output per worker that can be produced using the set of ideas

that are available.

The key question we’d like to answer is this: What is the shape of the

global production function? To make progress, we now turn to a simple

baseline model.

2.2. The Baseline Model

We begin with a simple model, really not much more than an example.

However this baseline model turns out to be very useful: it is easy to analyze

and captures the essence of the model with more detailed microfoundations

that is presented in Section 3.

At any given point in time, a firm has a stock of ideas — a collection of

local production techniques — from which to choose. This set of production

techniques is characterized by the following technology menu:

H(a, b) = N (5)

where Ha > 0, Hb > 0, and N > 0. Along this menu, there is a tradeoff:

ideas with a high value of b are associated with a low value of a. N

parameterizes the location of this technology menu and might be thought

of as the level of knowledge. A higher N means the technology menu

supports higher levels of a and b. Associated with any (a, b) pair from

this technology menu is a local production function Y = F̃ (bK, aL), with

the properties assumed above in equation (1), including an elasticity of

substitution less than one and constant returns to scale in K and L.

The global production function for this firm describes the maximum

amount of output the firm can produce from a particular set of inputs, when
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FIGURE 2. Direction of Technical Change

a*

b*
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 b

 Y = Y *

 H(a, b) = N

it is free to choose any production technique from the technology menu.

That is, the global production function F (K, L; N) is defined as

Y = F (K, L; N) ≡ max
b,a

F̃ (bK, aL) (6)

subject to (5).

Characterizing the global production function is straightforward. Graph-

ically, one version of this problem with an interior solution is shown in

Figure 2. Algebraically, an interior solution equates the marginal rate of

technical substitution along the isoquant to the marginal rate of technical

substitution along the technology menu. We can express this in its elasticity

form and use the fact that the elasticity of production with respect to b is

the same as the elasticity with respect to K to get the following result:

θK

θL
=

ηb

ηa
, (7)

where θK(a, b; K, L) ≡ F̃1bK/Y is the capital share, θL = 1 − θK is the

analogous labor share, ηb ≡ ∂H
∂b

b
H is the elasticity of H with respect to b,
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and ηa is the analogous elasticity with respect to a. The optimal technology

choice equates the ratio of the capital and labor shares to the ratio of the

elasticities of the technology menu.

In Figure 2, we drew the technology menu as convex to the origin. Of

course, we could have drawn the curve as concave or linear, or we could

have drawn it as convex, but with a sharper curvature than the isoquant.

However, it turns out that the constant elasticity version of the convex curve

delivers a particularly nice result.4 In particular, suppose the technology

menu is given by

H(a, b) ≡ aαbβ = N, α > 0, β > 0. (8)

In this case, the elasticity ηb/ηa = β/α is constant, so the optimal choice

of the technology levels leads to a first-order condition that sets the capital

share equal to the constant β
α+β .

The constancy of the capital share then leads to two useful and interesting

results. First, the global production function takes a Cobb-Douglas form:

for any levels of the inputs K and L, and any location of the technology

menu, N , the choice of technology leads the elasticity of output with respect

to capital and labor to be constant.

In fact, it is easy to derive the exact form of the global production function

by combining the local-global insights of Section 2.1 with the technology

menu. For some technique i, recall the equivalent ways we have of describ-

ing the technique:

yi ≡ ai (9)

ki ≡
ai

bi
(10)

4In this case, the assumption that F̃ has an elasticity of substitution less than one means
that the isoquant curves are more sharply curved than the technology menu, which has an
elasticity of substitution equal to one. This guarantees an interior solution.
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From the technology frontier in equation (8), we know that ai and bi are

related by aα
i bβ

i = N . Simple algebra shows that yi and ki are therefore

related by

yi = (Nkβ
i )

1
α+β . (11)

That is, given the constant elasticity form of the technology frontier, a

plot of the techniques in (k, y) space like that in Figure 1 yields a Cobb-

Douglas production function. With this continuous formulation for the

frontier, the global production function is equal to the technology frontier

in (k, y) space.5 Multiplying by L to get back to the standard form, the

global production function is given by

Y =
(

NKβLα
)

1
α+β . (12)

That is, we get a Cobb-Douglas production function with constant returns

to scale.

The second key result is related to the direction of technical change. To

see this, consider embedding this production setup in a standard neoclassical

growth model.6 The fact that the global production function is Cobb-

Douglas implies immediately that such a model will exhibit a balanced

growth path with positive growth provided N grows exponentially.

The balanced growth path result turns out to have a strong implication

for the direction of technical change. In particular, it implies that the level

of b will be constant along the balanced growth path, and all growth will

5For this to be true, we need the local production techniques to paste up smoothly with
the global production function. For example, if F̃ is a CES function with a capital share
parameter λ (see, for example, equation (36) below), the global production function is
actually proportional to that in equation (12). To make the factor of proportionality equal
to one, we need the share parameter λ to equal β

α+β
, so that the factor share at k = ki is

exactly β

α+β
.

6By this we mean the usual Ramsey-Cass-Koopmans model with isoelastic utility, con-
stant population growth, and constant growth in N .
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occur because a rises over time. To see this result, notice that the first order

condition in equation (7) can be written as

bKF̃1(bK, aL)

aLF̃2(bK, aL)
=

β

α
. (13)

Now, let x ≡ bK/aL. Because F̃ exhibits constant returns to scale, the

marginal products are homogeneous of degree 0. This means we can rewrite

equation (13) as

xF̃1(x, 1)

F̃2(x, 1)
=

β

α
. (14)

Sincex is the only variable in this equation, the optimal choice of technology

is such that x is constant at all points in time.

Finally, we now need to show that along a balanced growth path, the only

way x ≡ bK/aL can be constant is if b is constant. Importantly, recall that

output is always produced with some local production technique. That is,

Yt = F (Kt, Lt; Nt) = F̃ (btKt, atLt), (15)

where bt and at are the optimal choices of the technology levels. Because

F̃ exhibits constant returns, we have

Yt

atLt
= F̃

(

btKt

atLt
, 1

)

. (16)

Since x = bK/aL must be constant, this implies that Y/aL must also be

constant. And this means that bK/Y must be constant. But we know that

K/Y is constant along a balanced growth path in the neoclassical growth

model, so this implies that b must be constant as well, which completes the

proof. Moreover, the fact that the capital share equals β
α+β implies that the

level of b is chosen so that the capital share is invariant to the capital-output

ratio, one of the key results in Acemoglu (2003b).
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Of course, the result that b must be constant along the balanced growth

path is really just an application of the Steady-State Growth Theorem: If a

neoclassical growth model exhibits steady-state growth with constant and

positive factor shares, then either the production function is Cobb-Douglas

or technical change is labor augmenting. In fact, we just proved a version

of this theorem for the case in which the local production function is not

Cobb-Douglas.7

What is the intuition for the result that technical change is purely labor

augmenting? Since the local production function is not Cobb-Douglas,

balanced growth requires bK/aL to be constant, so that bK and aL must

grow at the same rate. In fact, since Y = F̃ (bK, aL), this suggests an

alternative interpretation of the word “balanced” in the phrase “balanced

growth path”: the effective inputs bK and aL must be balanced in the sense

that they grow at the same rate. But the only way this can happen is if b is

constant. For example, we know that with b constant, K will grow at the

same rate as aL. If b were to grow on top of this, bK would grow faster

than aL, and growth would be unbalanced. The consequence that would

result is that the factor shares would trend to zero and one.

In the context of our model, it is easy to be confused by this theorem.

It is well-known that with Cobb-Douglas production, the “direction” of

technical change has no meaning: capital-augmenting technical change

can always be written as labor-augmenting. But the results just outlined

seem to be that production is Cobb-Douglas and technical change is labor-

augmenting. How can this be?

The key to resolving this confusion is to look back at equation (15). First,

recall that production always occurs with some local production technique,

7For the proof of the general theorem, the classic reference is Uzawa (1961); see also Barro
and Sala-i-Martin (1995) for a proof in the special case of factor-augmenting technologies.
Jones and Scrimgeour (2004) present a formal statement of the theorem, discuss a version
of Uzawa’s proof, and develop intuition in the general case.
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F̃ (btKt, atLt). Since this local technique has an elasticity of substitution

less than one, the direction of technical change is a well-defined concept.

Our result is that bt is constant along a balanced growth path, so that tech-

nical change in the local production function is purely labor augmenting.

Second, equation (15) also reminds us of the definition of the global pro-

duction function, F (K, L; N). It is this global production function that

we show to be Cobb-Douglas. At any point in time, both “views” of the

production function are possible, and it is by taking different points of view

that we get our two results.

2.3. Discussion

We now pause to make some more general remarks about the baseline

model. First, notice that an alternative way to set up the baseline model

would be to write down the firm’s full profit maximization problem. That is,

in addition to choosing a and b, we could allow the firm to choose K and L,

taking factor prices as given. We view the analysis of the global production

function as conceptually coming a step before profit maximization. The

global production function is defined over any combination of K and L; if

one desires, one can embed this global production function into a model of

how firms choose their inputs. For our purposes, however, all we are as-

suming about firm behavior is that they operate their technology efficiently.

A helpful analogy might be that one can write down the cost-minimization

problem as a precursor to the profit-maximization problem.8

8In the context of profit maximization, a more formal justification for the global production
function approach can be given. For example, the full profit maximization problem can be
written

max
a,K,L

F̃ (H(a, N)K, aL) − wL − rK.

The global production function approach can be justified by noting that it is characterized
by the first-order condition associated with the technology choice in the profit maximization
problem.
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Second, our problem is closely related to the world technology frontier

problem considered by Caselli and Coleman (2004). Caselli and Coleman

specialize to CES functions for both F̃ and the technology menu H and

embed their setup in a profit maximization problem. They are concerned

primarily with characterizing the choices of the technology levels in a cross-

country context, rather than over time. But the similarity of the setups is

interesting and suggests some potentially productive avenues for research.9

Finally, notice that the problem here is to choose the levels of a and

b. Related problems appear in the literature on the direction of technical

change; see Kennedy (1964), Samuelson (1965) and Drandakis and Phelps

(1966). However, in these problems the choice variables and the constraints

are typically expressed in terms of the growth rates of a and b rather than the

levels. As Acemoglu (2003a) and others have pointed out, this results in an

arbitrary optimization problem in the early literature related to maximizing

the growth rate of output.

Acemoglu (2003b) recasts the traditional problem in terms of a 2-dimensional

version of Romer (1990) with explicit microfoundations and profit maxi-

mizing firms. Under some strong — and arguably implausible10 — con-

ditions on the shape of the idea production functions, Acemoglu shows

that technical change will be purely labor-augmenting in the long run and

that the long-run capital share will be invariant to policies that change the

9Caselli and Coleman also contain a helpful discussion of the existence of interior versus
corner solutions in their setup.

10The production functions for capital-ideas and labor-ideas must be parameterized “just
so.” In particular, let N denote the stock of labor-augmenting ideas. Then the cost of pro-
ducing new labor-augmenting ideas relative to the cost of producing new capital-augmenting
ideas must decline at exactly the rate Ṅ/N . Plausible specifications — such as one in which
the output good itself is the main input into the production of new ideas (in which case the
relative cost of producing labor and capital ideas is constant) or the idea production function
employed by Jones (1995) to remove scale effects from the growth rate (in which case the
relative cost of producing labor ideas declines with Nφ) — lead to a model that does not
exhibit a steady state with a positive capital share.
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capital-output ratio. These results are obviously closely related to what we

have here despite the considerably different approaches of the two papers.

The main differences in terms of the results are that (a) we provide a very

different perspective on the conditions needed to get technical change to be

labor augmenting, and (b) we explicitly bring out the link to a Cobb-Douglas

production function.11

To sum up, the insight from this baseline model is that if the technology

frontier — i.e. the way in which the levels of a and b trade off — exhibits

constant elasticities, then the global production function will be Cobb-

Douglas and technological change will be labor-augmenting in the long

run. But is there any reason to think that the technology frontier takes this

particular shape?

3. MICROFOUNDATIONS: PARETO DISTRIBUTIONS

The baseline model is straightforward and yields strong predictions.

However, it involves a very particular specification of the technology menu.

It turns out that this specification can be derived from a model of ideas with

substantially richer microfoundations. This is the subject of the current

section.12

3.1. Setup

An idea in this economy is a technique for combining capital and labor

to produce output. The production technique associated with idea i is

F̃ (biK, aiL). Because it results in a more tractable problem that yields

11The results here suggest that one might interpret Acemoglu’s setup as providing a Cobb-
Douglas production function in the long run. In contrast, our result delivers Cobb-Douglas
production at any point in time.

12I owe a large debt to Sam Kortum in this section. A previous version of this paper
contained a much more cumbersome derivation of the Cobb-Douglas result. Kortum, in
discussing this earlier version at a conference, offered a number of useful comments that
simplify the presentation, including the Poisson approach that appears in the Appendix.
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analytic results, we make the extreme assumption that this local production

technology is Leontief:

Y = F̃ (biK, aiL) = min{biK, aiL}. (17)

Of course, the intuition regarding the global production function suggests

that it is determined by the distribution of ideas, not by the shape of the

local production function. In later simulation results, we confirm that the

Leontief assumption can be relaxed.

A production technique is parameterized by its labor-augmenting and

capital-augmenting parameters, ai and bi. To derive the Cobb-Douglas

result, we make a strong assumption about the distribution of ideas:

Assumption 3.1. The parameters describing an idea are drawn from

independent Pareto distributions:

Prob [ai ≤ a] = 1 −

(

a

γa

)−α

, a ≥ γa > 0 (18)

Prob [bi ≤ b] = 1 −

(

b

γb

)−β

, b ≥ γb > 0, (19)

where α > 0, β > 0, and α + β > 1.13

With this assumption, the joint distribution of ai and bi satisfies

G(b, a) ≡ Prob [bi > b, ai > a] =

(

b

γb

)−β ( a

γa

)−α

. (20)

We specify this distribution in its complementary form because this sim-

plifies some of the equations that follow.

13This last condition that the sum of the two parameters be greater than one is needed so
that the mean of the Fréchet distribution below exists. On a related point, recall that for a
Pareto distribution, the kth moment exists only if the shape parameter (e.g. α or β) is larger
than k.
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Let Yi(K, L) ≡ F̃ (biK, aiL) denote output using technique i. Then,

since F̃ is Leontief, the distribution of Yi is given by

H(ỹ) ≡ Prob [Yi > ỹ] = Prob [biK > ỹ, aiL > ỹ]

= G

(

ỹ

K
,
ỹ

L

)

= γKβLαỹ−(α+β), (21)

where γ ≡ γα
a γβ

b . That is, the distribution of Yi is itself Pareto.14

3.2. Deriving the Global Production Function

The global production function describes, as a function of inputs, the

maximum amount of output that can be produced using any combination of

existing production techniques. We have already made one simplification

in our setup by limiting consideration to Leontief techniques. Now we

make another by ignoring combinations of techniques and allowing only a

single technique to be used at each point in time. Again, this is a simplifying

assumption that allows for an analytic result, but it will be relaxed later in

the numerical simulations.

Let N denote the total number of production techniques that are available,

and assume that the N ideas are drawn independently. Then, we define the

global production function:

Definition 3.1. The global production function F (K, L; N) is given
as

F (K, L; N) ≡ max
i=1,...,N

F̃ (biK, aiL) (22)

Let Y = F (K, L; N). Since the N draws are independent, the distribu-

tion of the global production function satisfies

Prob [Y ≤ ỹ] = (1 − H(ỹ))N .

14Since bi ≥ γb and ai ≥ γa, the support for this distribution is ỹ ≥ min{γbK, γaL}.
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=
(

1 − γKβLαỹ−(α+β)
)N

. (23)

Of course, as the number of ideas N gets large, this probability for any

given level of ỹ goes to zero. So to get a stable distribution, we need to

normalize our random variable somehow, in a manner analogous to that

used in the Central Limit Theorem.

In this case, the right normalization turns out to involve zN , where

zN ≡
(

γNKβLα
)

1
α+β . (24)

In particular, consider

Prob [Y ≤ zN ỹ] =
(

1 − γKβLα(zN ỹ)−(α+β)
)N

=

(

1 −
ỹ−(α+β)

N

)N

. (25)

Then using the standard result that limN→∞(1 − x/N)N = exp(−x) for

any fixed value of x, we have

lim
N→∞

Prob [Y ≤ zN ỹ] = exp(−ỹ−(α+β)) (26)

for ỹ > 0. This distribution is known as a Fréchet distribution.15

Therefore

Y

(γNKβLα)1/α+β

a

∼ Fréchet(α + β). (27)

The global production function, appropriately normalized, converges asymp-

totically to a Fréchet distribution. This means that as N gets large, the

production function behaves like

Y ≈
(

γNKβLα
)

1
α+β ε (28)

15This is a special case of the much more general theory of extreme values. For a more
general theorem relevant to this case, see Theorem 2.1.1 of Galambos (1978), as well as
Kortum (1997) and Castillo (1988).
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where ε is a random variable drawn from a Fréchet distribution with shape

parameter α + β and a scale parameter equal to unity.

Here, we have derived the Cobb-Douglas result as the number of ideas

goes to infinity. We will show in the simulations that the approximation for

a finite number of ideas works well. In addition, the appendix shows how

to obtain the Cobb-Douglas result with a finite number of ideas under the

stronger assumption that the arrival of ideas follows a Poisson process.

4. DISCUSSION

The result given in equation (28) is one of the main results in the paper.

If ideas are drawn from Pareto distributions, then the global production

function takes, at least as the number of ideas gets large, the Cobb-Douglas

form. For any given production technique, a firm may find it difficult

to substitute capital for labor and vice versa, leading the curvature of the

production technique to set in quickly. However, when firms are allowed

to switch between production technologies, the global production function

depends on the distribution of ideas. If that distribution happens to be a

Pareto distribution, then the production function is Cobb-Douglas.

We can now make a number of remarks. First, the exponent in the Cobb-

Douglas function depends directly on the parameters of the Pareto search

distributions. The easier it is to find ideas that augment a particular factor,

the lower is the relevant Pareto parameter (e.g. α or β), and the lower

is the exponent on that factor. Intuitively, better ideas on average reduce

factor shares because the elasticity of substitution is less than one. Some

additional remarks follow.

4.1. Relationship to the Baseline Model

The simple baseline model given at the beginning of this paper postulated

a technology menu and showed that if this menu exhibited a constant elas-
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ticity, then one could derive a Cobb-Douglas global production function.

The model with microfoundations based on Pareto distributions turns out

to deliver a stochastic version of this technology menu.

In the model, the stochastic version of this menu can be seen by con-

sidering an iso-probability curve Prob [bi > b, ai > a] ≡ G(b, a) = C,

where C > 0 is some constant. With the joint Pareto distribution, this

iso-probability curve is given by

bβaα =
γ

C
. (29)

This iso-curve exhibits constant elasticities and shifts up as the probability

C is lowered, analogous to an increase in N in the baseline model.

In terms of the baseline model, the Pareto distribution therefore delivers

ηa = α and ηb = β, and we get the same form of the global production

function: compare (12) and (28).

4.2. Houthakker (1955–1956)

The notion that Pareto distributions, appropriately “kicked,” can deliver a

Cobb-Douglas production function is a classic result by Houthakker (1955–

1956). Houthakker considers a world of production units (e.g. firms)

that produce with Leontief technologies where the Leontief coefficients are

distributed across firms according to a Pareto distribution. Importantly,

each firm has limited capacity, so that the only way to expand output is to

use additional firms. Houthakker then shows that the aggregate production

function across these units is Cobb-Douglas.

The result here obviously builds directly on Houthakker’s insight that

Pareto distributions can generate Cobb-Douglas production functions. The

result differs from Houthakker’s in several ways, however. First, Houthakker’s

result is an aggregation result. Here, in contrast, the result applies at the

level of a single production unit (be it a firm, industry, or country). Second,
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the Leontief restriction in Houthakker’s paper is important for the result;

it allows the aggregation to be a function only of the Pareto distributions.

Here, in contrast, the result is really about the shape of the global produc-

tion function, looking across techniques. The local shape of the production

function does not really matter. This was apparent in the simple baseline

model given earlier, and it will be confirmed numerically in Section 6.

Finally, Houthakker’s result relies on the presence of capacity constraints.

If one wants to expand output, one has to add additional production units,

essentially of lower “quality.” Because of these capacity constraints, his

aggregate production function is characterized by decreasing returns to

scale. In the context of an idea model, such constraints are undesirable:

one would like to allow the firm to take its best idea and use it for every unit

of production. That is, one would like the setup to respect the nonrivalry

of ideas and the replication argument for constant returns, as is true in the

formulation here.16

4.3. Evidence for Pareto Distributions?

The next main comment is that Pareto distributions are crucial to the

result. Is there any evidence that ideas follow a Pareto distribution?

Recall that the defining property of the Pareto distribution is that the

conditional probability Prob [X ≥ τx | X ≥ x] for τ > 1 is independent

of x. The canonical example of a Pareto distribution is the upper tail of

the income distribution. Indeed, it was this observation that led Pareto to

formulate the distribution that bears his name. Given that we observe an

income larger than x, the probability that it is greater than 1.1x turns out

16Lagos (2004) embeds the Houthakker formulation in a Mortenson-Pissarides search
model to provide a theory of total factor productivity differences. In his setup, firms (capital)
match with labor and have a match quality that is drawn from a Pareto distribution. Capital
is the quasi-fixed factor so that the setup generates constant returns to scale in capital and
labor. Nevertheless, because each unit of capital gets its own Pareto draw, a firm cannot
expand production by increasing its size at its best match quality.
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to be invariant to the level of x, at least above a certain point. For example,

Saez (2001) documents this invariance for the United States in 1992 and

1993 for incomes between $100,000 and $30 million.

Evidence of Pareto distributions has also been found for patent values,

profitability, citations, firm size, and stock returns. First, it is worth noting

that many of the tests in this literature are about whether or not the relevant

variable obeys a Pareto distribution. That is, Pareto serves as a benchmark.

In terms of findings, this literature either supports the Pareto distribution or

finds that it is difficult to distinguish between the Pareto and the lognormal

distributions. For example, Harhoff, Scherer and Vopel (1997) examine

the distribution of the value of patents in Germany and the United States.

For patents worth more than $500,000 or more than 100,000 Deutsche

Marks, a Pareto distribution accurately describes patent values, although

for the entire range of patent values a lognormal seems to fit better. Bertran

(2003) finds evidence of a Pareto distribution for ideas by using patent

citation data to value patents. Grabowski (2002) produces a graph of the

present discounted value of profits for new chemical entities by decile in

the pharmaceutical industry for 1990–1994 that supports a highly-skewed

distribution.

Lotka (1926), a classic reference on scientific productivity, shows that

the distribution of scientific publications per author is Pareto. This result

appears to have stood the test of time across a range of disciplines, even

in economics, as shown by Cox and Chung (1991). It also applies to

citations to scientific publications (Redner 1998). Huber (1998) looks for

this result among inventors and finds some evidence that the distribution

of patents per inventor is also Pareto, although the sample is small. Other

evidence of Pareto distributions is found by Axtell (2001) for the size of

firms in the United States, and by Gabaix, Gopikrishnan, Plerou and Stanley

(2003) for the upper tail of stock returns. Finally, somewhat further afield,



22 CHARLES I. JONES

Pareto distributions are documented by Sornette and Zajdenweber (1999)

for world movie revenues, and by Chevalier and Goolsbee (2004) for book

sales. While by no means dispositive, this evidence of Pareto distributions

for a wide range of economic variables that are certainly related to ideas is

suggestive.

In addition to the direct evidence, there are also conceptual reasons to

be open to the possibility that ideas are drawn from Pareto distributions.

First, consider Kortum (1997). Kortum formulates a growth model where

productivity levels (ideas) are draws from a distribution. He shows that this

model generates steady-state growth only if the distribution has a Pareto

upper tail. That is, what the model requires is that the probability of find-

ing an idea that is 5 percent better than the current best idea is invariant

to the level of productivity embodied in the current best idea. Of course,

this is almost the very definition of a steady state: the probability of im-

proving economy-wide productivity by 5 percent can’t depend on the level

of productivity. This requirement is satisfied only if the upper tail of the

distribution is a power function, i.e. only if the upper tail is Pareto.

Additional insight into this issue emerges from Gabaix (1999). Whereas

Kortum shows that Pareto distributions lead to steady-state growth, Gabaix

essentially shows the reverse in his explanation of Zipf’s Law for the size

of cities. He assumes that city sizes grow at a common exponential rate

plus an idiosynchratic shock. He then shows that this exponential growth

generates a Pareto distribution for city sizes.17

17An important additional requirement in the Gabaix paper is that there be some positive
lower bound to city sizes that functions as a reflecting barrier. Otherwise, for example,
normally distributed random shocks results in a log-normal distribution of city cizes. Al-
ternatively, if the length of time that has passed since each city was created is a random
variable with an exponential distribution, then no lower bound is needed and one recovers
the Pareto result. See Mitzenmacher (2003) for a direct discussion of these alternatives, as
well as Cordoba (2003) and Rossi-Hansberg and Wright (2004).
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The papers by Kortum and Gabaix suggest that Pareto distributions and

exponential growth are really just two sides of the same coin. The result

in the present paper draws out this connection further and highlights the

additional implication for the shape of production functions. Not only are

Pareto distributions necessary for exponential growth, but they also imply

that the global production function takes a Cobb-Douglas form.

5. THE DIRECTION OF TECHNICAL CHANGE

The second main result of the paper is related to the direction of technical

change. It turns out that this same setup, when embedded in a standard

neoclassical growth model, delivers the result that technological change is

purely labor augmenting in the long run. That is, even though the largest

value of bi associated with any idea goes to infinity, this Pareto-based growth

model delivers the result that a(t) grows on average while b(t) is stationary.

To see this result, we first embed our existing setup in a standard neo-

classical growth model. The production side of the model is exactly as

specified in Section 3. Capital accumulates in the usual way, and we as-

sume the investment rate s is a constant:

Kt+1 = (1 − δ)Kt + sYt, δ, s ∈ (0, 1). (30)

Finally, we assume the cumulative stock of ideas, Nt, grows exogenously

at rate g > 0:

Nt = N0e
gt. (31)

As in Jones (1995) and Kortum (1997), one natural interpretation of this as-

sumption is that ideas are produced by researchers, so that g is proportional

to population growth.18

18For example, one could have ∆Nt+1 = Rλ
t Nφ

t , where Rt represents the number of
researchers working in period t. In this case, if the number of researchers grows at a constant
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For this model, we have already shown that the global production function

is (either for N large or for finite N using the Poisson approach in the

appendix):

Yt =
(

γNtK
β
t Lα

t

)
1

α+β εt. (32)

It is then straightforward to show that the average growth rate of output per

worker y in the model in a stationary steady state is19

E[log
yt+1

yt
] ≈ g/α. (34)

The growth rate of output per worker is proportional to the rate of growth

of research effort. The factor of proportionality depends only on the search

parameter of the Pareto distribution for the labor-augmenting ideas. In

particular, the easier it is to find higher ai, the faster is the average rate of

economic growth.

The fact that this growth rate depends on α but not on β is the first

clue that there is something further to explore here: if it is easier to find

better labor-augmenting ideas, the average growth rate is higher, but if it

is easier to find better capital-augmenting ideas, the average growth rate is

unaffected.

To understand this fact, it is helpful to look back at the local production

function. Even though the global production function is Cobb-Douglas,

production at some date t always occurs with some technique i(t):

Yt = F̃ (bi(t)Kt, ai(t)Lt). (35)

exponential rate, then the growth rate of N converges to a constant that is proportional to
this population growth rate.

19Rewriting the production function in per worker terms, one has

log
yt+1

yt

=
1

α + β
log

Nt+1

Nt

+
β

α + β
log

kt+1

kt

+ log
εt+1

εt

. (33)

Taking expectations of this equation and equating the growth rates of y and k yields the
desired result.
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Now recall the Steady-State Growth Theorem discussed earlier: If a neo-

classical growth model exhibits steady-state growth with a nonzero capital

share, then either the production function is Cobb-Douglas or technical

change is labor augmenting. In this case, the (local) production function

is not Cobb-Douglas and we do have a (stationary) steady state. Exactly

the same proof that we gave earlier for the baseline model in Section 2.2

applies. The implication is that technical change must be labor-augmenting

in the long run. That is, despite the fact that maxi bi → ∞ as t → ∞, the

time path for bi(t) — i.e. the time path of the bi’s associated with the ideas

that are actually used — must have an average growth rate equal to zero in

the limit. The intuition is also the same as in the simple baseline model: to

keep the factor shares constant, growth must be balanced in the sense that

bK and aL must grow at the same rate, and the only way this can happen

is if b is stable.20

6. SIMULATION RESULTS

We now turn to a full simulation based on the Pareto model. In addition to

providing an illustration of the results, we take this opportunity to relax the

Leontief assumption on the local production function. Instead, we assume

the local production function takes the CES form:

Yt = F̃ (biKt, aiLt) = (λ(biKt)
ρ + (1 − λ)(aiLt)

ρ)1/ρ , (36)

20This result leads to an important observation related to extending the model. Recall that
with the Pareto assumption, γb is the smallest value of b that can be drawn, and similarly
γa is the smallest value of a that can be drawn. Now consider allowing these distributions
to shift. There seems to be no obstacle to allowing for exponential shifts in γa over time.
However, increases in γb turn out to lower the capital share in the model. If γb were to rise
exponentially, the capital share would be driven toward zero, on average. This does not, of
course, mean that γb has never shifted historically; only that it should not have exhibited
large shifts during the recent history when we have observed relatively stable factor shares.
An alternative way in which the distributions may shift out over time is if the curvature
parameters α and β shift. As long as the ratio α/β doesn’t change, it may be possible to
allow the mass of the distributions to shift out while keeping the capital share stable.
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where ρ < 0 so that the elasticity of substitution is σ ≡ 1
1−ρ < 1. We

also allow production units to use two production techniques at a time in

order to convexify the production set, analogous to the picture given at the

beginning of the paper in Figure 1.

The remainder of the model is as specified before. Apart from the change

to the CES function, the production setup is the same as that given in

Section 3 and the rest of the model follows the constant saving setup of

Section 5.

We begin by showing that the CES setup still delivers a Cobb-Douglas

global production function, at least on average. For this result, we repeat

the following set of steps to obtain 1000 capital-output pairs: We first set

N = 500 so that there are 500 ideas in each iteration. We compute the

convex hull of the CES functions associated with these ideas to get a global

production function.21 Next, we choose a level of capital per worker k

randomly from a uniform distribution between the smallest value of ki and

the largest value of ki for the iteration. Finally, we record the output of the

global production function associated with this input.

Following this procedure yields a graph like that shown in Figure 3. The

key parameter values in this simulation are α = 5 and β = 2.5, so that

the theory suggests we should expect a Cobb-Douglas production function

with a capital exponent of β/α+β = 1/3. As the figure shows, the relation

between log y and log k is linear, with a slope that is very close to this value.

We next consider a simulation run for the full dynamic time path of the

Pareto model. Continuing with the parameter choices already made, we

additionally assume g = .10, which implies an annual growth rate of 2

21Computing the convex hull of the overlapping CES production functions is a compu-
tationally intensive problem, especially when the number of ideas gets large. To simplify,
we first compute the convex hull of the (ki, yi) points. Then, we compute the convex hull
of the CES functions associated with this limited set of points. To approximate the CES
curve, we divide the capital interval into 100 equally-spaced points.
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FIGURE 3. The Cobb-Douglas Result
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Note: The figure shows 1000 capital-output combinations from the global pro-
duction function. The parameter values used in the simulation are N = 500,
α = 5, β = 2.5, γa = 1, γb = 0.2, and ρ = −1.

percent for output per worker in the steady state. We simulate this model

for 100 years and plot the results in several figures.22 Figure 4 shows a

subset of the more than 1 million techniques that are discovered over these

100 periods. In particular, we plot only the 300 points with the highest

values of y (these are shown with circles “o”). Without this truncation, the

lower triangle in the figure that is currently blank but for the “x” markers

is filled in as solid black. In addition, the capital-output combinations

that are actually used in each period are plotted with an “x”. When a single

technique is used for a large number of periods, the points trace out the local

CES production function. Alternatively, if the economy is convexifying by

using two techniques, the points trace out a line. Finally, when the economy

switches to a new technique, the capital-output combinations jump upward.

22Additional parameter values used in the simulation are listed in the notes to Figure 4.
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FIGURE 4. Production in the Simulated Economy
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Note: Circles indicate ideas, the “x” markers indicate capital-output combinations
that are actually used. The model is simulated for 100 periods with N0 = 50,
α = 5, β = 2.5, g = .10, γa = 1, γb = 0.2, k0 = 2.5, s = 0.2, δ = .05, and
ρ = −1.

Figure 5 shows output per worker over time, plotted on a log scale. The

average growth rate of output per worker in this particular simulation is

1.63 percent, as compared to the theoretical value of 2 percent implied by

the parameter values, given by g/α.23

A feature of the model readily apparent in Figure 5 is that the econ-

omy switches from one production technique to another rather infrequently.

These switches are shown in the graph as the jumps that occur roughly every

15 years or so. Moreover, when the jumps occur, they are typically quite

large.

What explains these patterns? Recall that matching a Cobb-Douglas

exponent on capital of 1/3 pins down the ratio of α/β, but it does not tell

23We compute the average growth rate by dropping the first 20 observations (to minimize
the effect of initial conditions) and then regressing the log of output per worker on a constant
and a time trend.
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FIGURE 5. Output per Worker over Time
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Note: See notes to Figure 4.

us the basic scale of these parameters. The studies cited earlier related

to patent values, scientific productivity, and firm size typically find Pareto

parameters that are in the range of 0.5 to 1.5. We have chosen higher values

of α = 5 and β = 2.5. The following exercise is helpful in thinking

about this: What is the median value of a productivity draw, conditional

on that draw being larger than some value, x? If α is the Pareto parameter,

then the answer to this question turns out to be 21/αx ≈ (1 + 0.7/α)x.

For example, if α = 1, then the median value, conditional on a draw being

higher than x, is 2x. This says that the average idea that exceeds the frontier

exceeds it by 100 percent! This implies very large jumps, which might be

plausible at the micro level but seem too large at the macro level. A value

of α = 5 instead gives an average jump of about 14 percent, which is still

somewhat large, and which explains the large jumps in Figure 5. We could

have chosen an even larger Pareto parameter to yield smaller and more
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FIGURE 6. The Capital Share over Time
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frequent jumps, but this would have placed the value further from the range

suggested by empirical studies. If the goal were to produce a simulation that

could match the small, frequent jumps in the aggregate data with plausible

Pareto coefficients, I suspect one would need a richer model that includes

multiple sectors and firms. The jumps at the micro level would be large and

infrequent, while aggregation would smooth things out at the macro level.

This is an interesting direction for further research.24

Figure 6 plots the capital share FKK/Y over time. Even though the

economy grows at a stable average rate, the capital share exhibits fairly large

movements. When the economy is using a single production technique, the

accumulation of capital leads the capital share to decline. Alternatively,

24Gabaix (2004) is related to this point. That paper shows that with a Pareto distribution
of firm sizes and a Pareto parameter less than two, idiosynchratic shocks are smoothed out
at a substantially slower rate than the standard central limit theorem suggests.
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when the economy is using two techniques to convexify the production

set, the marginal product of capital is constant, so the capital share rises

smoothly.

It is interesting to compare the behavior of the capital share in the Pareto

model with the behavior that occurs in the simple baseline model. In the

simple model, the economy equates the capital share to a function of the

elasticity of the technology menu. If this elasticity is constant, then the

capital share would be constant over time. Here, the technology menu

exhibits a constant elasticity on average, but the menu is not a smooth,

continuous function. Quite the opposite: the extreme value nature of this

problem means the frontier is sparse, as the example back in Figure 1

suggests. This means the capital share will be stationary, but that it can

move around, both as the economy accumulates capital and as it switches

techniques.

Figure 7 shows the technology choices that occur in this simulation. As

in Figure 4, the 300 ideas with the highest level of yi = ai are plotted. This

time, however, the (ai, bi) pair corresponding to each idea is plotted. The

graph therefore shows the stochastic version of the technology menu. In

addition, the figure plots with a “+” the idea combinations that are actually

used as the economy grows over time. Corresponding to the theoretical

finding earlier, one sees that the level of b∗i appears stationary, while the level

ofa∗i trends upward. On average, technological change is labor augmenting.

7. CONCLUSION

This paper provides microfoundations for the standard production func-

tion that serves as a building block for many economic models. An idea

is a set of instructions that tells how to produce with a given collection of

inputs. It can be used with a different mix of inputs, but it is not especially

effective with the different mix; the elasticity of substitution in production
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FIGURE 7. Technology Choices
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Note: From more than 1 million ideas generated, the 300 with the highest
level of a are plotted as circles. The figure also plots with a “+” the (ai, bi)
combinations that are used at each date and links them with a line. When
two ideas are used simultaneously, the idea with the higher level of output
is plotted. See also notes to Figure 4.
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is low for a given production technique. Instead, producing with a different

input mix typically leads the production unit to switch to a new technique.

This suggests that the shape of the global production function hinges on the

distribution of available techniques.

Kortum (1997) examined a model in which productivity levels are draws

from a distribution and showed that only distributions in which the upper

tail is a power function are consistent with exponential growth. If one wants

a model in which steady-state growth occurs, then one needs to build in a

Pareto distribution for ideas. We show here that this assumption delivers two

additional results. Pareto distributions lead the global production function

to take a Cobb-Douglas form and produce a setup where technological

change in the local production function is entirely labor augmenting in the

long run.

There are several additional directions for research suggested by this ap-

proach. First, our standard ways of introducing skilled and unskilled labor

into production involve production functions with an elasticity of substitu-

tion bigger than one, consistent with the observation that unskilled labor’s

share of income seems to be falling.25 How can this view be reconciled

with the reasoning here?

Second, the large declines in the prices of durable investment goods are

often interpreted as investment-specific technological change. That is, they

are thought of as increases in b rather than increases in a.26 This is the case

in Greenwood, Hercowitz and Krusell (1997) and Whelan (2003), and it

is also implicitly the way the hedonic pricing of computers works in the

National Income and Product Accounts: better computers are interpreted

25See Katz and Murphy (1992) and Krusell, Ohanian, Rios-Rull and Violante (2000), for
example.

26This is loose. In fact, they are thought of as increases in a term that multiplies investment
in the capital accumulation equation. Of course, for many purposes this is like an increase
in b.
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as more computers. The model in this paper suggests instead that b might

be stationary, so there is a tension with this other work. Of course, it is

not at all obvious that better computers are equivalent to more computers.

Perhaps a better computer is like having two people working with a single

computer (as in extreme programming). In this case, better computers might

be thought of as increases in a instead. This remains an open question.

Alternatively, it might be desirable to have microfoundations for a Cobb-

Douglas production function that permits capital-augmenting technological

change to occur in the steady state.

Finally, one might ask how the model relates to recent discussions about

the behavior of capital shares. The literature is in something of a flux.

For a long time, of course, the stylized fact has been that capital’s share

is relatively stable. This turns out to be true at the aggregate level for

the United States and Great Britain, but it is not true at the disaggregated

level in the U.S. or in the aggregate for many other countries. Rather,

the more accurate version of the fact appears to be that capital’s share can

exhibit large medium term movements and even trends over periods longer

than 20 years in some countries and industries.27 This paper is somewhat

agnostic about factor shares. As shown in Figure 6, the Pareto model

predicts the capital share may vary over time, while of course the baseline

model implied a constant capital share. However, there are many other

determinants of capital shares left out of this model, including aggregation

issues and wedges between marginal products and prices, so care should

be taken in interpreting the model along this particular dimension.

27The recent papers by Blanchard (1997), Bentolila and Saint-Paul (2003), and Harrison
(2003) discuss in detail the facts about capital and labor shares and how they vary. Gollin
(2002) is also related; that paper argues that in the cross-section of countries, labor shares
are more similar than rough data on employee compensation as a share of GDP suggests
because of the very high levels of self-employment in many poor countries.
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APPENDIX: AN ALTERNATIVE DERIVATION OF THE
COBB-DOUGLAS RESULT

Here we show how to derive the Cobb-Douglas result for a finite number

of ideas. The key to this stronger result is an assumption common in the

growth literature: the assumption that the discovery of ideas follows a

Poisson process.26

We now make the research process explicit. New ideas for production are

discovered through research. A single research endeavor yields a number

of ideas drawn from a Poisson distribution with a parameter normalized

to one. In expectation, then, each research endeavor yields one idea. Let

N denote the cumulative number of research endeavors that have been

undertaken. Then the number of ideas, n, that have been discovered as

a result of these N attempts is a random variable drawn from a Poisson

distribution with parameter N . This additional layer is the only change to

the model in Section 3.

For a given number of production techniques, the global production func-

tion F (K, L; n) is

F (K, L; n) ≡ max
i∈{0,...,n−1}

F̃ (biK, aiL). (A.1)

As before, let Yi denote production using technique i with a given amount

of capital and labor. Then

Prob [Yi > ỹ] = Prob [biK > ỹ, aiL > ỹ]

= G(ỹ/K, ỹ/L). (A.2)

The output level associated with the global production function is then

distributed as

Prob [max
i

{Yi} ≤ ỹ] = (1 − G(ỹ/K, ỹ/L))n (A.3)

26For example, see Aghion and Howitt (1992).
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At this point, we can use the nice properties of the Poisson distribution

to make further progress. Recall that n ∼ Poisson(N), so as a function

of the total number of research attempts, N , we have

Prob [max{ Yi } ≤ ỹ]

=
∞
∑

n=0

e−NNn

n!
(1 − G(ỹ/K, ỹ/L))n

= e−N
∞
∑

n=0

(N(1 − G(ỹ/K, ỹ/L)))n

n!

= e−N · eN(1−G(·))

= e−NG(ỹ/K,ỹ/L). (A.4)

For a general joint distribution function G, this last equation describes the

distribution of the global production function when cumulative research

effort is N .27

Now assume, as in the main text, the ideas are drawn from a joint Pareto

distribution, so that

Prob [Yi > ỹ] = G(ỹ/K, ỹ/L) = γKβLαỹ−(α+β) (A.5)

Combining this result with equation (A.4), it is straightforward to show

that the distribution of the output that can be produced with the global

production function, given inputs of K and L, is

Prob [max{Yi} ≤ ỹ] = e−γNKβLαỹ−(α+β)
, (A.6)

which is the Fréchet distribution.

Finally, taking expectations over this distribution, one sees that expected

output, given N cumulative research draws and inputs K and L, is given

27See Proposition 2.1 in Kortum (1997) for this style of reasoning, i.e. for an approach
that uses a Poisson process to get an exact extreme value distribution that is easy to work
with rather than an asymptotic result. See also Johnson, Kotz and Balakrishnan (1994),
pages 11 and 91–92.
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by

E[Y ] ≡ E[max Yi] = µ
(

γNKβLα
)

1
α+β (A.7)

where µ ≡ Γ(1−1/(α+β)) is a constant that depends on Euler’s factorial

function.28

One can also use the distribution in equation (A.6) to write the level of

output as a random variable:

Y =
(

γNKβLα
)

1
α+β ε (A.8)

where ε is a random variable drawn from a Fréchet distribution with param-

eter α + β. That is, we get the same result as in equation (28), but exactly

for finite N rather than as an asymptotic approximation.

28Surprisingly few of the reference books on extreme value theory actually report the mean
of the Fréchet distribution. For a distribution function F (x) = exp(−((x − λ)/δ)−β),
Castillo (1988) reports that the mean is λ + δΓ(1 − 1/β) for β > 1.
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