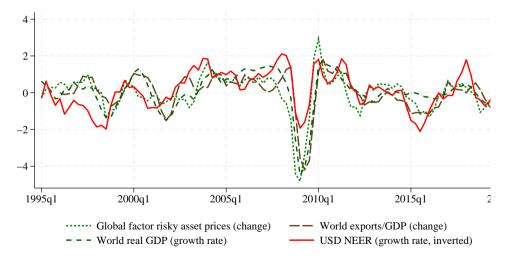
Dollar Trinity


Georgios Georgiadis (ECB) Gernot Müller (U Tübingen & CEPR) Ben Schumann (Humboldt University Berlin)

January 2025

The views stated herein are those of the authors and are not necessarily those of the ECB.

U.S. dollar central to world economy

Standardized year-on-year changes

The question

Global financial cycle, global business cycle, global trade cycle

- Highly correlated with each other
- Co-move strongly with U.S. dollar

Does the dollar-and, if so, how-synchronize global cycles?

- 1. New time-series evidence on effects of 'main dollar shock'
- 2. Structural interpretation based on VAR model
- 3. Two country model of the world economy: trinity model

Time-series evidence

VAR model of U.S. and global economy: identify 'main dollar shock' (MDS)

- Max share of dollar vola as in business-cycle anatomy (Angeletos et al 2020)
- Accounts for more than 60% of dollar fluctuations and cycle co-movement
- Dollar appreciation comes with simultaneous contraction of all three cycles

MDS linear combination of structural shocks

- Global risk and U.S. monetary policy shocks identified via high-frequency proxies
- Explain MDS very well, in shock space and impulse-response space
- Common pattern in global transmission of \$-appreciation, independent of source

Asymmetric two-country model of world economy: U.S. & Rest of World

Asymmetry due to 3 dimensions of dollar dominance: dollar trinity

- DCP: trade prices sticky in dollar
- DCD: international debt/credit intermediated in dollar
- DCA: U.S. assets particularly safe and liquid

Effects of global risk and U.S. monetary policy shocks

- Same pattern as in data, also unconditionally (Itskhoki Mukhin 2021 2024)
- Counterfactual w/o trinity misses all key aspects
- Interaction of DCD & DCA makes \$-appreciation induce global contraction

Related literature

Global financial cycle & dollar

- Global risk shocks appreciate dollar: Georgiadis et al 2024
- ▶ GFC as dollar cycle: Obstfeld Zhou 2023, Jiang et al 2024, Rey 2024

Dollar dominance (selection)

- DCD: Bocola Lorenzoni 2020, Chahrour Valchev 2022; Eren Malamud 2022
- DCA: He et al 2019, Coppola et al 2023, Bianchi et al 2021, Kekre Lenel 2024
- DCP: Devereux Shi 2013, Gopinath et al 2020, Mukhin 2022

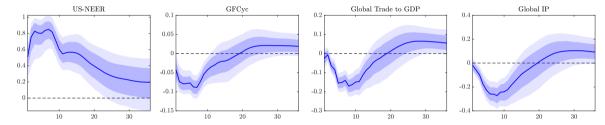
Failure of UIP (selection)

- Balance sheet of fin. intermediaries: Gabaix Maggiori 2015, Avdjiev et al 2019
- Convenience yield: Engel Wu 2023, Deveurex et al 2023
- Global financial accelerator: Akinci Queralto 2024

2. Time-series evidence

11 monthly time series (1990:2-2019:12)

- ▶ US: US IP, CPI, 1-Y Treasury-bill rate, EBP
- ▶ RoW: \$-NEER, RoW IP, RoW Policy rate, Macroeconomic uncertainty
- Global: indicators for trade and global financial cycle


Estimation

- Bayesian algorithm of Arias et al 2021
- Minnesota-type priors, optimal hyperpriors/prior tightness (Gianonne et al 2015)

Identification

- ▶ Identify MDS similar to 'main business cycle shock' of Angeletos et al 2020
- MDS explains maximum share of volatility of dollar at business-cycle frequency

Adjustment to main dollar shock (MDS)

Fraction of variance/covariance explained by MDS

Average over horizon 1-36; brackets span 68% credible sets

	US-NEER	Global BC	G-trade	GFC
US-NEER	0.61			
05-NEEK	[0.58, 0.70]			
Global BC	0.72	0.24		
Giobal DC	[0.64, 0.76]	[0.19, 0.25]		
G-trade	0.74	0.27	0.24	
G-trade	[0.70, 0.79]	[0.21, 0.29]	[0.19, 0.26]	
GFC	0.62	0.32	0.33	0.25
	[0.56, 0.80]	[0.29, 0.44]	[0.30, 0.45]	[0.22, 0.29]

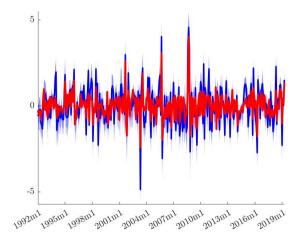
Structural interpretation

MDS linear combination of k identified structural shocks

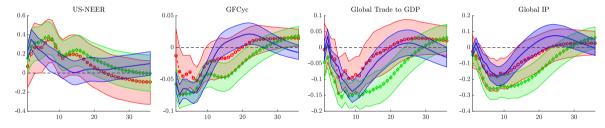
$$\widehat{ heta}^{MDS} = \sum_{i=1}^{k < N} lpha_i \widehat{ heta}^i + E$$

Sources of dollar fluctuations—UIP perspective

$$\mathsf{E}_t[\$_{t+1} - \$_t] = (i_t - i_t^{\star}) - \eta_t$$


Identify jointly shocks to U.S. monetary policy, price & quantity of risk

Proxy variables (Jarociniski Karadi 2020, Georgiadis et al 2024)


▶ FEVD restrictions on EBP and macroeconomic uncertainty (Francis et al 2014)

Correlation 0.82, contribution: 1/3 U.S. MP, 2/3 Risk shocks

Common pattern in global transmission of \$-appreciation Global risk aversion, global uncertainty, and U.S. monetary policy shock

3. Trinity model: \$-dominance along 3 dimensions

Two-country model of world economy: U.S. and Rest of World

- Households: symmetric
- Monetary policy: symmetric
- Firms / multi-layered production structure: different bc of DCP (\$-dominance I)

Financial intermediaries / banks: different

- DCD: international debt/credit intermediated in dollar (\$-dominance II)
- ► DCA: U.S. assets (treasuries) particularly safe and liquid (\$-dominance III)

Balance sheet reflects DCD (\$-dominance II)

$$Q_{R,t}K_{R,t} + RER_t$$
 Treas $_{R,t} = D_{R,t} + RER_t$ Credit $_{R,t} + N_{R,t}$

Value of bank and (regulatory) constraint reflect DCA (\$-dominance III)

$$V_{R,t} = \max \mathbb{E}_{t} \sum_{s=0}^{\infty} (1 - \theta_{B}) \Theta_{R,t,t+s} N_{R,t+1+s}$$

$$V_{R,t} \geq \delta_{R,t} (Q_{R,t} K_{R,t} + \Gamma_{R}^{Treas} RER_{t} Treas_{R,t})$$

$$\delta_{R,t} = \overline{\delta}_{R} \left[1 - \kappa_{1} \alpha_{R,t}^{Treas} + \kappa_{2} \left(\alpha_{R,t}^{Treas} - \ell_{R,t}^{\$Credit} \right)^{2} \right] + \epsilon_{t}$$

where ϵ_t global risk aversion shock

Financial intermediaries in U.S.

Balance sheet different: only domestic funding

$$Q_{U,t}K_{U,t} + \$Credit_{U,t} = D_{U,t} + N_{U,t},$$

Value of bank and (regulatory) constraint

$$V_{U,t} \geq \delta_{U,t} (Q_{U,t}K_{U,t} + \Gamma_{U,t}^{\$Credit} \$Credit_{U,t}), \text{ with } \delta_{U,t} = \overline{\delta}_U + \epsilon_t$$

$$\Gamma_{U,t}^{\$Credit} = \overline{\Gamma}_U^{\$Credit} + \Phi_{U,\phi} \frac{Q_{R,t}K_{R,t} + RER_t Treas_{R,t}}{N_{R,t}}$$

Risk weight on cross-border loans adjusts with leverage of RoW banks

Global financial accelerator

Convenience yield on treasuries drives wedge in UIP

Uncovered interest rate parity (assuming $\Gamma_R^{Treas} = 0$)

$$\underbrace{\mathsf{E}_{t}\left[\Omega_{R,t,t+1}\left(D\mathcal{E}_{t+1}R_{U,t}^{Treas}-R_{R,t}\right)\right]}_{\text{over a structure on } {}^{\mathsf{E}}_{\mathsf{c}} \circ 0 \text{ in steady state}} + CY_{R,t} = 0$$

excess return on ≤ 0 in steady state

Convenience yield

$$CY_{R,t} = \underbrace{-\frac{\partial \delta_{R,t} / \partial \alpha_{R,t}^{Treas}}{\delta_{R,t}}}_{\text{Freed up leverage} >> 0} \cdot \underbrace{(1 - \alpha_{R,t}^{Treas}) E_t \left[\Omega_{R,t,t+1} \left(R_{R,t+1}^{K} - R_{R,t}^{D}\right)\right]}_{\text{Returns from freed up leverage}}$$

4. Quantitative analysis

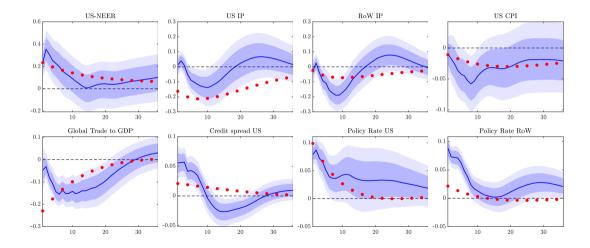
Calibration strategy

- Set most parameters in line with literature + BoP moments
- > Pin down trinity parameters by targeting key facts in steady state

Moment	Value	Source
US-RoW export DCP shares	0.97, 0.93	Boz et al 2022
Intra RoW exports DCP share	0.37	Boz et al 2022
Exorbitant privilege	1%	Bertaux et al 2024
Treasury convenience yield	1.5%	Jiang et al 2021
US Foreign-Liabilities/GDP	86%	sample average
RoW-Bank \$-Liabilities/Total Assets	25%	Aldasoro et al 2021
RoW-Bank \$-Assets/Total Assets	15%	Adrian Xie 2020

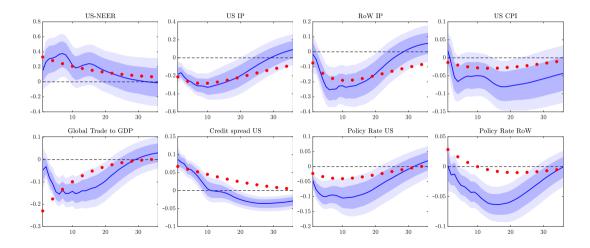
Model assessment I: exchange rate moments

Not targeted in calibration


	Trinity Model			W/o t	W/o trinity (all shocks)				
	Data	Risk	US MP	All shocks	No Trinity	DCP	DCD	DCA	
Exchange rate disconnect									
$ ho(\Delta \mathcal{E})$	pprox 0	-0.08	-0.10	-0.09	0.41	0.39	-0.08	-0.11	
$\sigma(\Delta \mathcal{E})/\sigma(\Delta Z_R)$	5.93	7.42	13.33	8.00	0.46	0.45	1.65	8.67	
Backus-Smith and forward premium									
$corr(\Delta RER, \Delta C_F - \Delta C_U)$	-0.1	-0.81	-0.55	-0.75	0.17	0.17	0.11	0.24	
Fama eta	< 0	-2.86	2.22	-1.16	1.00	1.00	0.97	0.62	
Fama R^2	0.00	0.05	0.06	0.01	0.46	0.45	0.07	0.05	
$\sigma(R_R-R_U)/\sigma(\Delta \mathcal{E})$	0.03	0.04	0.09	0.05	0.15	0.14	0.17	0.25	

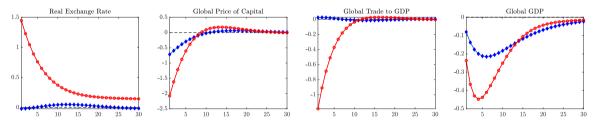
Model assessment II: the dollar and the cycles

Not targeted in calibration


		Trinity Model			W/o trinity (all shocks)			
	Data	Risk	US MP	All Shocks	No Trinity	DCP	DCD	DCA
Correlation of Global Cycles								
$corr(\Delta Z_G, \Delta GFCyc)$	0.71	0.49	0.60	0.50	0.42	0.39	0.27	0.47
$corr(\Delta Z_G, \Delta T_G^G/Z_G)$	0.80	0.60	0.62	0.60	-0.95	-0.39	0.02	-0.77
$corr(\Delta GFCyc, \Delta T_G^G/Z_G)$	0.62	0.99	1.00	0.98	-0.54	-0.93	-0.02	-0.51
Correlation of Global Cycles and Dollar								
$corr(\Delta \mathcal{E}, \Delta GFCyc)$	-0.47	-0.93	-0.95	-0.92	0.62	0.67	0.38	-0.78
$corr(\Delta \mathcal{E}, \Delta Z_G)$	-0.49	-0.76	-0.78	-0.76	-0.01	-0.05	0.03	-0.62
$corr(\Delta \mathcal{E}, \Delta T_G^G/Z_G)$	-0.49	-0.97	-0.96	-0.97	-0.16	-0.78	0.76	0.45

Effect of U.S. monetary policy shock: trinity v VAR Not targeted in calibration

Dollar Trinity 1. Introduction 2. Time-series evidence 3. Trinity model 4. Quantitative analysis 5. Understanding trinity 6. Conclusion Appendix 19

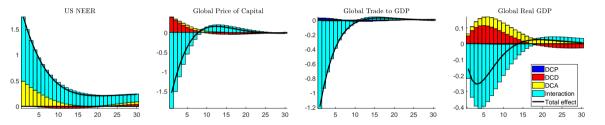

Effect of global aversion risk shock: trinity v VAR Not targeted in calibration

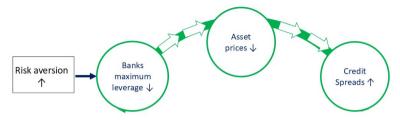
Dollar Trinity 1. Introduction 2. Time-series evidence 3. Trinity model 4. Quantitative analysis 5. Understanding trinity 6. Conclusion Appendix 20

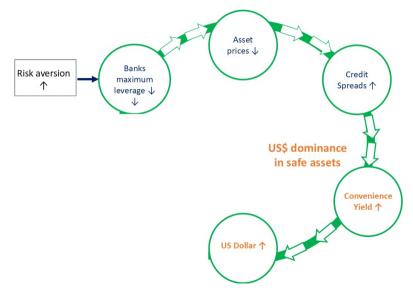
5. Understanding trinity

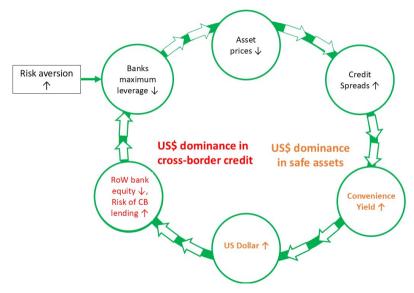
Responses to global risk aversion shock in trinity model and nested no-trinity counterfactual

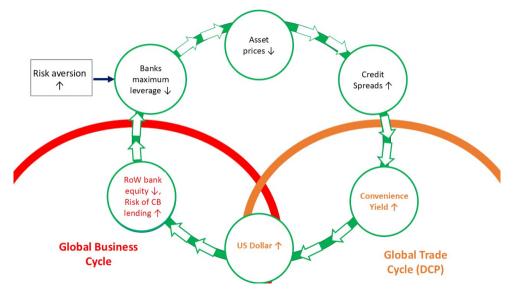
Overall effect of trinity and decomposition


Global risk aversion shock w/o trinity


- Dollar does not appreciate
- ▶ No contraction of trade cycle, contraction global and financial cycle much weaker


Decomposition

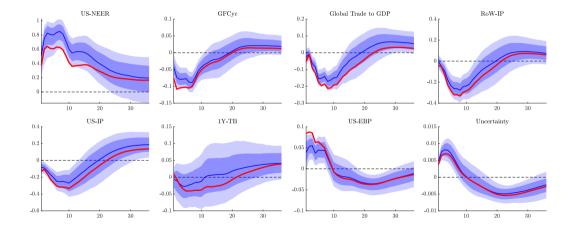



Decomposing effect of global risk aversion shock: interaction dominates

Dollar Trinity 1. Introduction 2. Time-series evidence 3. Trinity model 4. Quantitative analysis 5. Understanding trinity 6. Conclusion Appendix 24

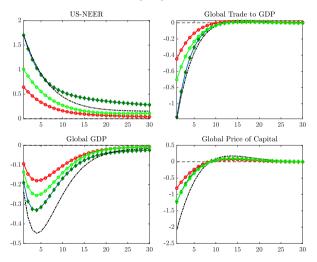
6. Conclusion

Dollar moves ...

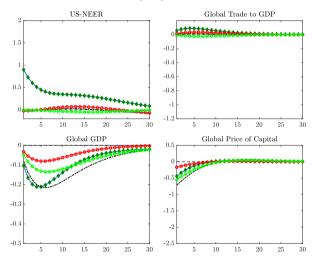

- Not only with global financial cycle
- Also w/ global business cycle and global trade cycle

Dollar (trinity) causal for co-movement

- Shapes transmission of global risk shocks and U.S. monetary policy
- More than sum of parts (DCD, DCA, DCP): interaction effect dominates
- ▶ \$-appreciation amplifies credit & trade contraction, and convenience yield


Additional material

Effect of MDS v fitted value (IRF space) $R^2 = 0.8$, contribution: 1/3 U.S. MP, 2/3 Risk shocks


Dollar Trinity 1. Introduction 2. Time-series evidence 3. Trinity model 4. Quantitative analysis 5. Understanding trinity 6. Conclusion Appendix 27

Common pattern in global transmission of \$-appreciation w/ trinity Global risk aversion, US MP and <u>local</u> RoW (US) risk aversion shock

Dollar Trinity 1. Introduction 2. Time-series evidence 3. Trinity model 4. Quantitative analysis 5. Understanding trinity 6. Conclusion Appendix 28

Common pattern in global transmission of \$-appreciation w/o trinity Global risk aversion, US MP and <u>local</u> RoW (US) risk aversion shock

