Granular Banking Flows and Exchange-Rate Dynamics

HKIMR, AMRO, ECB, ESM and BOFIT Workshop on

'Recent Developments and Future Prospects for the International Monetary System'

Balduin Bippus¹ Simon Lloyd² Daniel Ostry²

¹University of Cambridge

²Bank of England and Centre for Macroeconomics

August 2023

The views expressed here do not necessarily reflect the position of the Bank of England.

This Paper: Motivation and Questions

- FX Puzzles: 'disconnect' between exchange rates and macro fundamentals
- > Causality: long-standing challenge identifying exogenous variation in cross-border flows

This Paper: Motivation and Questions

- **FX Puzzles**: 'disconnect' between exchange rates and macro fundamentals
- **Causality**: long-standing challenge identifying exogenous variation in cross-border flows
- > Approach: confidential bank-level data on external assets/liabilities of UK-resident banks
- Identification: extract exogenous idiosyncratic cross-border banking flows through novel Granular Instrumental Variables (GIVs)

This Paper: Motivation and Questions

- FX Puzzles: 'disconnect' between exchange rates and macro fundamentals
- **Causality**: long-standing challenge identifying exogenous variation in cross-border flows
- > Approach: confidential bank-level data on external assets/liabilities of UK-resident banks
- Identification: extract exogenous idiosyncratic cross-border banking flows through novel Granular Instrumental Variables (GIVs)

Our Questions

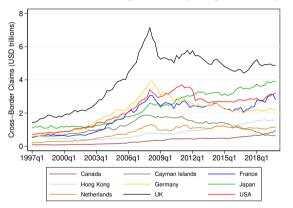
- What is the causal effect of cross-border capital flows on USD exchange rate?
- How inelastic is the relationship between FX and the supply and demand for USDs?
- What role do banks' constraints play?

This Paper: Contributions

- Document **novel facts** on banks' cross-border positions in UK, world's largest IFC
 - UK-resident banks account for $\sim 18\%$ of all cross-border banking claims (1997Q1-2019Q3)
 - Pareto principle: $\sim 20\%$ of banks explain $\sim 80\%$ of USD-denominated positions
- ⇒ **Granularity** in banks' cross-border currency positions

This Paper: Contributions

- Document novel facts on banks' cross-border positions in UK, world's largest IFC
 - UK-resident banks account for $\sim 18\%$ of all cross-border banking claims (1997Q1-2019Q3)
 - Pareto principle: $\sim 20\%$ of banks explain $\sim 80\%$ of USD-denominated positions
- ⇒ **Granularity** in banks' cross-border currency positions
- > Present **new model** of international flows with financial frictions and heterogeneous banks
 - Heterogeneous risk-taking capacity across global banks
 - Bank-specific and time-varying beliefs about returns to different assets
- ⇒ Large banks play **bigger role** in exchange-rate determination

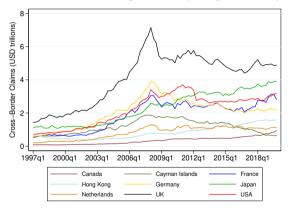

This Paper: Contributions

- Document **novel facts** on banks' cross-border positions in UK, world's largest IFC
 - UK-resident banks account for $\sim 18\%$ of all cross-border banking claims (1997Q1-2019Q3)
 - Pareto principle: $\sim 20\%$ of banks explain $\sim 80\%$ of USD-denominated positions
- ⇒ **Granularity** in banks' cross-border currency positions
- Present new model of international flows with financial frictions and heterogeneous banks
 - Heterogeneous risk-taking capacity across global banks
 - Bank-specific and time-varying beliefs about returns to different assets
- ⇒ Large banks play **bigger role** in exchange-rate determination
- Use model-consistent GIV as exogenous variation to provide new empirical insights
 - 1% \uparrow external *net* USD-debt \Rightarrow persistent \sim 2% USD/GBP appreciation
 - State dependence: effects twice as large when banks' capital ratios are 1 s.d. below average
- \Rightarrow UK-resident banks' USD-demand **inelastic**, in part linked to their risk-bearing capacity

Our Data

Documenting Granularity

UK an International Financial Centre (IFC)



Cross-border banking claims by origin country

- World's biggest IFC: UK claims $\sim 18\%$ of all cross-border banking claims, $\sim 5\%$ of all intnl. asset positions
- UK-based banks' foreign claims ~ 2.5 times UK GDP and $\sim 60\%$ larger than US banks

Source: BIS Locational Banking Statistics

UK an International Financial Centre (IFC)

Cross-border banking claims by origin country

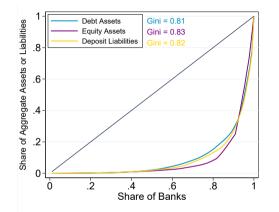
Source: BIS Locational Banking Statistics

- World's biggest IFC: UK claims $\sim 18\%$ of all cross-border banking claims, $\sim 5\%$ of all intnl. asset positions
- ▶ UK-based banks' foreign claims ~ 2.5 times UK GDP and $\sim 60\%$ larger than US banks

Our Bank-Level Data on UK-Resident Banks:

- Quarterly 1997Q1-2019Q3
- Disaggregated cross-border positions:
 - USD (44%), EUR (38%), GBP, JPY and CHF
 - Assets: Debt (80%), Equity (20%)
 - Liabilities: Deposits

Our Paper and Data vs. Literature


Aldasoro, Beltrán, Grinberg and Mancini-Griffoli (2023)

- + We capture granularity at *bank level*, using data for *biggest* intermediary country in Aldasoro et al. (2023) dataset
- \Rightarrow We require exogeneity at bank level, not country level

Camanho, Hau and Rey (2022)

- + We study all flows (debt & equity), not just equity rebalancing flows
- + We focus on \$7 trillion market (2008Q1), 7-times larger than Camanho et al. (2022)
- + Data allows us to focus on role for policy-relevant constraints (e.g., bank capital)
- \Rightarrow More representative sample, with links to practical regulations

Banking Flows from UK are Granular

Notes: Lorenz curves and Gini coefficients for UK banks' average debt, equity and deposits.

- Gini coefficients for UK-resident banks' cross-border positions highlight considerable heterogeneity
- Zipf's law in cross-border positions

Log-Rank/Log-Size

⇒ Pareto principle: $\sim 20\%$ of banks explain $\sim 80\%$ of cross-border asset (debt and equity) and liability positions

A Heterogeneous-Bank Model

Identifying the Role of Large Banks in FX Determination to Build the GIV

A Granular Gamma Model

Building on Gabaix and Maggiori (2015), UK-resident bank *i* for each asset class *j* solves:

$$\begin{split} V_{i,t}^{j} &= \max_{Q_{i,t}^{j}>0} \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right] Q_{i,t}^{j} \\ \text{s.t.} \quad V_{i,t}^{j} &\geq \Gamma_{i}^{j} Q_{i,t}^{j} \cdot Q_{i,t}^{j} \end{split}$$
(Incentive Compatibility)

A Granular Gamma Model

Building on Gabaix and Maggiori (2015), UK-resident bank i for each asset class j solves:

$$\begin{split} V_{i,t}^{j} &= \max_{Q_{i,t}^{j} > 0} \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right] Q_{i,t}^{j} \\ \text{s.t.} \quad V_{i,t}^{j} &\geq \Gamma_{i}^{j} Q_{i,t}^{j} \cdot Q_{i,t}^{j} \end{split}$$
(Incentive Compatibility)

Three Novel Features:

- 1. Bank-specific divertable fraction $\Gamma_i^j = \Gamma^j (\overline{Q}_i^j / \sum_{i=1}^n \overline{Q}_i^j)^{-1} \Rightarrow$ heterogeneity in bank size
- 2. Bank-specific time-varying belief $b_{i,t}^j \Rightarrow$ biggest banks' have largest effect on eqlbrm. (1+2)
- 3. Global demand system with multiple assets $j \Rightarrow FX$ determined with sup./dem. for assets

A Granular Gamma Model

Building on Gabaix and Maggiori (2015), UK-resident bank i for each asset class j solves:

$$\begin{split} V_{i,t}^{j} &= \max_{Q_{i,t}^{j} > 0} \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right] Q_{i,t}^{j} \\ \text{s.t.} \quad V_{i,t}^{j} &\geq \Gamma_{i}^{j} Q_{i,t}^{j} \cdot Q_{i,t}^{j} \end{split}$$
(Incentive Compatibility)

Three Novel Features:

- 1. Bank-specific divertable fraction $\Gamma_i^j = \Gamma^j (\overline{Q}_i^j / \sum_{i=1}^n \overline{Q}_i^j)^{-1} \Rightarrow$ heterogeneity in bank size
- 2. Bank-specific time-varying belief $b_{i,t}^j \Rightarrow$ biggest banks' have largest effect on eqlbrm. (1 + 2)
- 3. Global demand system with multiple assets $j \Rightarrow FX$ determined with sup./dem. for assets

Optimality: first-order approximation and first-difference imply following USD 'demand'

$$\Delta q_{i,t}^j = \phi^j \cdot \left(\Delta b_{i,t}^j + \Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right)$$

Equilibrium in Granular Gamma Model: Towards the GIV

Global Equilibrium: RoW has symmetric 'supply' expression with ϕ_R^j and $\Delta b_{R,t}^j$, so equilibrium is:

$$\Delta e_t = \frac{1}{m} \sum_{j=1}^m \left(\Delta \mathbb{E}_t[r_{t+1}^j] + \frac{\phi^j}{\phi^j + \phi_R^j} \Delta b_{S,t}^j + \frac{\phi_R^j}{\phi^j + \phi_R^j} \Delta b_{R,t}^j \right) - \Delta r_t - \Delta \mathbb{E}_t[e_{t+1}]$$

where $b_{S,t}^j := \sum_{i=1}^n S_{i,t-1}^j b_{i,t}^j$ with $S_{i,t-1}^j := Q_{i,t-1}^j / \sum_{i=1}^n Q_{i,t-1}^j$

 \Rightarrow Large banks play **bigger role** in exchange-rate determination

Equilibrium in Granular Gamma Model: Towards the GIV

Global Equilibrium: RoW has symmetric 'supply' expression with ϕ_R^j and $\Delta b_{R,t}^j$, so equilibrium is:

$$\Delta e_t = \frac{1}{m} \sum_{j=1}^m \left(\Delta \mathbb{E}_t[r_{t+1}^j] + \frac{\phi^j}{\phi^j + \phi_R^j} \Delta b_{S,t}^j + \frac{\phi_R^j}{\phi^j + \phi_R^j} \Delta b_{R,t}^j \right) - \Delta r_t - \Delta \mathbb{E}_t[e_{t+1}]$$

where $b_{S,t}^j := \sum_{i=1}^n S_{i,t-1}^j b_{i,t}^j$ with $S_{i,t-1}^j := Q_{i,t-1}^j / \sum_{i=1}^n Q_{i,t-1}^j$

 \Rightarrow Large banks play **bigger role** in exchange-rate determination

Beliefs: $\Delta b_{i,t}^j = u_{i,t}^j + \lambda_i^j \eta_t^j + control s_{i,t-1}^j$

- $\blacktriangleright \eta_t^j$ are vectors of unobserved common factors with bank-level loadings λ_i^j
- $u_{i,t}^j$ are unobserved i.i.d. shocks with $\mathbb{E}[u_{i,t}^j(\eta_t^j, \Delta b_{R,t}^j)] = 0$

GIV Identification from Granular Gamma Model

Following Gabaix and Koijen (2022, 2020), we build the GIV:

$$z_t^j := \Delta q_{S,t}^j - \Delta q_{E,t}^j = \Delta b_{S,t}^j - \Delta b_{E,t}^j$$

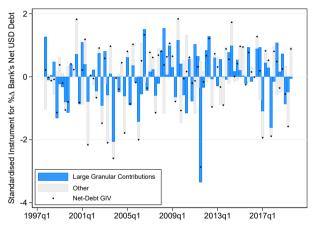
where $q_{E,t}^j = \sum_{i=1}^n E_i^j q_{i,t}^j$ with $E_i^j := 1/n$

- ▶ **Relevance**: Idiosyncratic flows by large granular banks can affect aggregate flows
- **Exogeneity**: Requires common factors to be uncorrelated with size $\lambda_S^j \lambda_E^j = 0$

GIV Identification from Granular Gamma Model

Following Gabaix and Koijen (2022, 2020), we build the GIV:

$$z_t^j := \Delta q_{S,t}^j - \Delta q_{E,t}^j = \Delta b_{S,t}^j - \Delta b_{E,t}^j$$


where $q_{E,t}^j = \sum_{i=1}^n E_i^j q_{i,t}^j$ with $E_i^j := 1/n$

- ▶ **Relevance**: Idiosyncratic flows by large granular banks can affect aggregate flows
- **Exogeneity**: Requires common factors to be uncorrelated with size $\lambda_S^j \lambda_E^j = 0$

Accounting for Threats to Identification:

- GIV corrects for mechanical 'exchange-rate valuation effects'
- Include bank and macro controls (incl. balance-sheet info., asset returns, exp. FX moves...)
- Control for unobserved common factors using principal-component analysis
- Conduct narrative checks into drivers of GIV...

Narrative Checks into Main Drivers of GIV

- Observe banks that explain large share of GIV changes (here: > 20% of a s.d.)
- Small number (~ 10) of large banks
- Use (confidential) bank-level info to conduct check using FT archives
- What news is associated with the banks that explain largest moves in GIV in given quarter?

Notes: Decomposition of GIV for net USD-debt positions

Narrative Checks into Main Drivers of GIV

Notes: Main themes from narrative checks

- Observe banks that explain large share of GIV changes (here: > 20% of a s.d.)
- Small number (~ 10) of large banks
- Use (confidential) bank-level info to conduct check using FT archives
- What news is associated with the banks that explain largest moves in GIV in given quarter?
- Findings reveal many events that are unlikely to be systematically related to macro outlook or possible confounders

Empirical Results

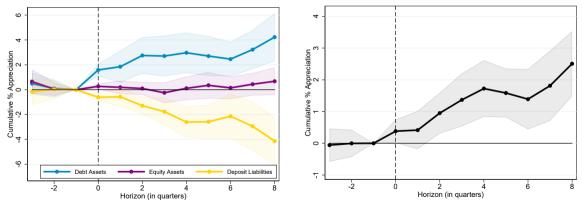
Estimating the Causal Links and Structural Parameters

Multipliers Linking Cross-Border Positions and USD/GBP

 $\Delta e_t = \sum_{j=1}^m M^j z_t^j / m + \beta controls_t + u_t$

	DEP. VAR.: % change nominal USD/GDP, Δe_t				
PANEL A: Multipliers for Spe	cific Assets and Lia	bilities			Per UK GDP
z_t^j/m : Debt (Assets)	2.000***	1.231***	1.190***	1.585***	2.64
	(0.358)	(0.198)	(0.208)	(0.253)	
z_t^j/m : Equity (Assets)	0.423***	0.251*	0.277**	0.265**	2.21
	(0.142)	(0.139)	(0.136)	(0.112)	
z_t^j/m : Liabilities	-1.135***	-0.485***	-0.443**	-0.610***	1.00
	(0.346)	(0.168)	(0.175)	(0.167)	
PANEL B: Multipliers for Net	USD-Debt Position	S			
z_t^{net} : Net-Debt	0.818***	0.378**	0.367**	0.381**	
(Debt — Deposits)	(0.275)	(0.159)	(0.169)	(0.189)	
Macro Controls	No	Yes	Yes	Yes	Yes
Bank Controls	No	No	Yes	Yes	Yes
Components	No	No	No	5	5

Notes: ***, ** denote 1, 5 and 10% significance, using Newey and West (1987) standard errors with 12 lags.

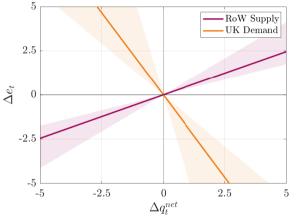

Bippus, Lloyd and Ostry (BoE)

Dynamic Effects of Flows on USD/GBP

$$e_{t+h} - e_{t-1} = \sum_{j=1}^{m} M_h^j \frac{z_t^j}{m} + \beta_h controls_t + u_{t+h}$$

Notes: 95% confidence bands from Newey and West (1987) s.e. with 12 lags

Bippus, Lloyd and Ostry (BoE)


Supply and Demand Elasticities with 2SLS

2nd Stage				
Δe_t	0.821***	1.793**	1.804**	2.037**
	(0.294)	(0.719)	(0.767)	(0.824)
1st-Stage <i>F</i> -stat.	8.85	34.22	30.94	32.66
USD DEMAND FROM UK-RESID	dent Banks: $\Delta q_{E,t}^{net} = -\phi^{i}$	$^{net}\Delta e_t + \beta_{\phi}^{net}contended$	$rols_t + u_t$	
2nd Stage		Ť		
Δe_t	-0.402***	-0.854**	-0.888**	-0.538*
	(0.138)	(0.377)	(0.368)	(0.321)
1st-Stage F-stat.	8.85	34.22	27.81	33.71
Macro Controls	No	Yes	Yes	Yes
Bank Controls	No	No	Yes	Yes
Components	No	No	No	5

Notes: 95% confidence bands from Newey and West (1987) s.e. with 12 lags

Inelasticity in the Gamma Model

Estimated Supply and Demand Curves for USD

Notes: Shaded areas denote Newey and West (1987) standard-deviation error bands (12 lags).

(Granular) Gamma Model

- Point estimates indicate that USD demand (orange) is price-inelastic
- At odds with micro-foundations underpinning the Gamma model
- In world with arbitrageurs, would expect demand to be elastic with respect to price

We Propose

• Alternative constraint $V_{i,t}^j \ge (\Gamma_i^j Q_{i,t}^j)^{\gamma_i^j} \cdot Q_{i,t}^j$, where γ_i^j mediates degree of moral hazard

Drivers of Inelastic Demand: The Role of Banks' Constraints

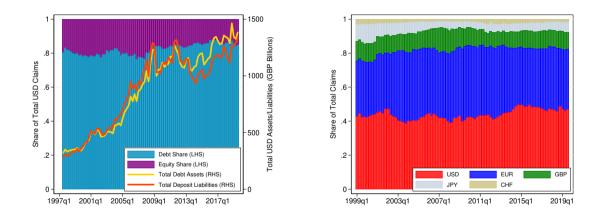
$$\Delta e_t = M z_t^{net} + \delta \left(z_t^{net} \times Cap_{S,t-1} \right) + \vartheta Cap_{S,t-1} + \beta_M^j C_t^j + u_t$$

	(1)	(2)	(3)	(4)			
	DEP. VAR.: % change nominal USD/GBP, Δe_t						
z_t^{net}	0.760***	0.350**	0.337**	0.363**			
	(0.219)	(0.144)	(0.145)	(0.167)			
$z_t^{net} \times Cap_{S,t-1}$	-0.598*	-0.480**	-0.488**	-0.413**			
	(0.319)	(0.207)	(0.212)	(0.188)			
$Cap_{S,t-1}$	-0.001	-0.000	-0.005	-0.004			
	(0.004)	(0.003)	(0.005)	(0.004)			
Macro Controls	No	Yes	Yes	Yes			
Bank Controls	No	No	Yes	Yes			
Components	No	No	No	5			

Notes: 95% confidence bands from Newey and West (1987) s.e. with 12 lags

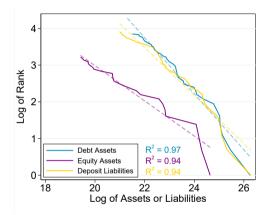
Conclusion

Use bank-level data to construct new GIVs for intnl. banking flows from world's largest IFC


- * Document granularity in banks' cross-border currency positions
- $\star\,$ Reflect this in new model, where large banks play biggest role in FX determination
- * Use model to derive **novel GIVs** capturing exogenous idiosyncratic shocks to intnl. flows
- $\star\,$ GIVs reveal that (net) flows have significant and persistent causal effects on exchange rates
 - 1% \uparrow UK-resident banks' net external USD-debt position $\Rightarrow \sim 2$ % USD appreciation
- * UK-resident banks' USD-demand is **inelastic**...
 - At odds with view that arbitrage results in elastic markets
- * ...in part linked to banks' risk-bearing capacity
 - Effects of (net) flows twice as large when banks' capital ratios are 1 s.d. below average

References

- ALDASORO, I., P. BELTRÁN, F. GRINBERG, AND T. MANCINI-GRIFFOLI (2023): "The macro-financial effects of international bank lending on emerging markets," *Journal of International Economics*, 142, 103733.
- Саманно, N., H. Hau, and H. Rey (2022): "Global Portfolio Rebalancing and Exchange Rates," *The Review of Financial Studies*, 35, 5228–5274.
- GABAIX, X. AND R. S. J. KOIJEN (2020): "Granular Instrumental Variables," NBER Working Papers 28204, National Bureau of Economic Research, Inc.
- ---- (2022): "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis," Working paper.
- GABAIX, X. AND M. MAGGIORI (2015): "International Liquidity and Exchange Rate Dynamics," *The Quarterly Journal of Economics*, 130, 1369–1420.
- NEWEY, W. AND K. WEST (1987): "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," *Econometrica*, 55, 703–08.


Appendix

Decomposing UK-Based Banks' Cross-Border Claims and Liabilities

Notes: Total USD-denominated cross-border claims by asset Notes: UK-resident banks' total cross-border claims by class (debt and equity) and total liabilities.

Banking Flows from UK are Granular: Further Evidence

Notes: log-rank vs log-size with linear best fit lines and the associated R^2 , for average debt, equity and deposits.

- Compare log-rank of banks' size to log of banks' size
- ► Fact that straight lines fit this relationship, with such high R², provides evidence of:
 - Granularity
 - Relationship consistent with Zipf's law

Back