Capital Flows and Exchange Rates

A Quantitative Assessment of the Dilemma Hypothesis*

Ambrogio Cesa-Bianchi

Bank of England

Andrea Ferrero

University of Oxford

Shangshang Li

University of Oxford University of Liverpool

HKIMR-AMRO-ECB-ESM-BOFIT Joint Workshop

Hong Kong, 24 August 2023

*The views expressed in this paper do not necessarily represent those of the Bank of England.

Question and Motivation

- Monetary policy tightening cycle in advanced economies
 - Renewed interest on cross-country transmission of monetary policy (shocks)

Question and Motivation

- Monetary policy tightening cycle in advanced economies
 - Renewed interest on cross-country transmission of monetary policy (shocks)
- **Global Financial Cycle** (Rey, 2013) → From Trilemma to Dilemma?
 - Does a flexible exchange rate regime provide enough insulation?
 - Are additional instruments necessary for domestic monetary policy independence?

Question and Motivation

- Monetary policy tightening cycle in advanced economies
 - ► Renewed interest on cross-country transmission of monetary policy (shocks)
- Global Financial Cycle (Rey, 2013) → From Trilemma to Dilemma?
 - Does a flexible exchange rate regime provide enough insulation?
 - Are additional instruments necessary for domestic monetary policy independence?
- ullet Our contribution o Revisit these questions in an estimated open economy DSGE model
 - Consistent with Global Financial Cycle evidence
 - Plus dominant currency paradigm in finance and trade

What We Do and What We Find

- 1. $\underline{\mathsf{Panel}\,\mathsf{VAR}} \to \mathsf{Response}$ of financial and macro variables to US monetary policy shock
 - ► Typical (small) open economy with flexible exchange rates
 - Demand/financial channel dominates over expenditure-switching effect

What We Do and What We Find

- 1. Panel VAR ightarrow Response of financial and macro variables to US monetary policy shock
 - ► Typical (small) open economy with flexible exchange rates
 - ► Demand/financial channel dominates over expenditure-switching effect
- 2. Two-country DSGE model \rightarrow Estimated to match VAR impulse responses
 - Frictions in international financial intermediation and pricing
 - Necessary to replicate empirical evidence

Introduction Panel VAR Two-Country DSGE Model Policy Analysis Appendix

What We Do and What We Find

- 1. Panel VAR ightarrow Response of financial and macro variables to US monetary policy shock
 - ► Typical (small) open economy with flexible exchange rates
 - ► Demand/financial channel dominates over expenditure-switching effect
- 2. Two-country DSGE model \rightarrow Estimated to match VAR impulse responses
 - Frictions in international financial intermediation and pricing
 - Necessary to replicate empirical evidence
- 3. Policy analysis \rightarrow Counterfactuals
 - Exchange rate targeting increases domestic macroeconomic volatility
 - Additional instruments (tax on capital flow / domestic credit) mitigate consequences of GFC
 - Taxes can limit volatility of economic activity under peg but with disinflationary side effect

Introduction Panel VAR Two-Country DSGE Model Policy Analysis Appendix

Related Literature

• Empirical studies of global financial cycle and its drivers

```
Rey (2013); Dedola, Rivolta and Stracca (2017); Cesa-Bianchi, Ferrero and Rebucci (2018); Cerutti, Claessens and Rose (2019); Corman and Lloyd (2019); Obstfeld, Ostry and Qureshi (2019); Miranda-Agrippino and Rey (2020); Degasperi, Hong and Ricco (2021); Ilzetzki and Jin (2021)
```

Financial frictions in open economy

```
Farhi and Werning (2014); Gabaix and Maggiori (2015); Aoki, Benigno and Kiyotaki (2020); Gourinchas (2020); Adrian et al. (2020); Casas et al. (2020); Corsetti, Dedola, and Leduc (2020); Itskhoki and Mukhin (2021); Akinci and Queralto (2022)
```

• LCP and dominant currency paradigm

Devereux and Engel (2003); Cook and Devereux (2006); Corsetti, Dedola and Leduc (2010); Engel (2011); Fujiwara and Wang (2017); Gopinath et al. (2020); Chen et al. (2021); Gopinath and Stein (2021)

1. Panel VAR

troduction Panel VAR Two-Country DSGE Model Policy Analysis Appendix

Data

- Panel of macro-financial variables for 15 countries with flexible exchange rate
 - Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
 - Robustness with a larger set of countries (24)

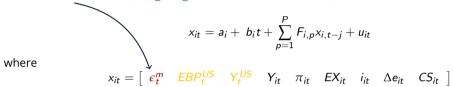
troduction **Panel YAR** Two-Country DSGE Model Policy Analysis Appendix

Data

- Panel of macro-financial variables for 15 countries with flexible exchange rate
 - Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
 - ► Robustness with a larger set of countries (24)
- Variables
 - US: Excess bond premium, Real GDP
 - Domestic: Real GDP, CPI inflation, exports (in real terms), nominal interest rate, nominal exchange rate depreciation (LC per USD), corporate bond spreads

troduction Panel VAR Two-Country DSGE Model Policy Analysis Appendix

Data


- Panel of macro-financial variables for 15 countries with flexible exchange rate
 - Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
 - ► Robustness with a larger set of countries (24)

Variables

- US: Excess bond premium, Real GDP
- Domestic: Real GDP, CPI inflation, exports (in real terms), nominal interest rate, nominal exchange rate depreciation (LC per USD), corporate bond spreads
- Monthly frequency \rightarrow 1997:M1–2019:M12 (subject to availability)
 - Corporate spreads constrain earlier starting date (robustness from 1985 without spreads)
 - ► Macro series interpolated from quarterly to monthly frequency (Miranda-Agrippino and Rey, 2020)

Panel VAR

• Internal instrument (Plagborg-Moeller and Wolf, 2021)

Panel VAR

• Internal instrument (Plagborg-Moeller and Wolf, 2021)

$$x_{it} = a_i + b_i t + \sum_{p=1}^{P} F_{i,p} x_{i,t-j} + u_{it}$$

where

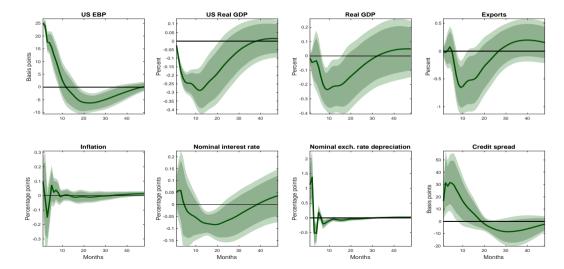
$$x_{it} = [\begin{array}{cccc} \epsilon_t^m & \textit{EBP}_t^{\textit{US}} & Y_t^{\textit{US}} & Y_{it} & \pi_{it} & \textit{EX}_{it} & i_{it} & \Delta e_{it} & \textit{CS}_{it} \end{array}]$$

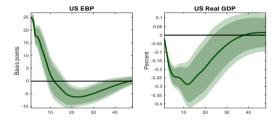
• Monetary policy surprises ϵ_t^m from Jarocinski and Karadi (2020)

Panel VAR

• Internal instrument (Plagborg-Moeller and Wolf, 2021)

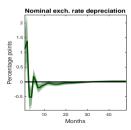
$$x_{it} = a_i + b_i t + \sum_{p=1}^{P} F_{i,p} x_{i,t-j} + u_{it}$$

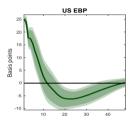

where

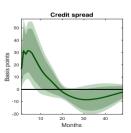

$$x_{it} = \begin{bmatrix} \epsilon_t^m & EBP_t^{US} & Y_t^{US} & Y_{it} & \pi_{it} & EX_{it} & i_{it} & \Delta e_{it} & CS_{it} \end{bmatrix}$$

- Monetary policy surprises ϵ_t^m from Jarocinski and Karadi (2020)
- Dynamic panel with heterogeneous slope coefficients
 - ightharpoonup Set P=3 based on BIC criterion (robustness with 6 lags)
 - ► Mean group estimator (Pesaran and Smith, 1995; Pesaran, 2006)
 - ★ Estimate country-by-country VARs with OLS
 - \star Take average IRFs across countries \to Response of typical country

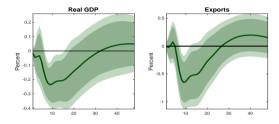
oduction Panel VAR Two-Country DSGE Model Policy Analysis Appendix


IRFs to a US Monetary Policy Tightening

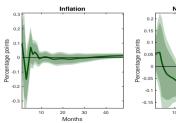


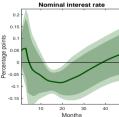

Standard US transmission

Standard Home FX depreciation



Spreads co-movement


troduction Panel VAR Two-Country DSGE Model Policy Analysis Appendix


IRFs to a US Monetary Policy Tightening

Expenditure-switching effect does not dominate

Monetary policy stabilizes inflation

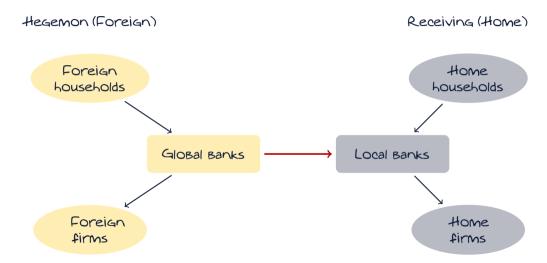
2. Two-Country DSGE Model

Overview

• Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (*H* small and *F* large)

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (*H* small and *F* large)
- Asymmetric international financial structure
 - Foreign banks raise funds domestically, lend both domestically and internationally
 - ► **Home banks** raise funds domestically and internationally, lend only domestically


roduction Panel VAR **Two-Country DSGE Model** Policy Analysis Appendix

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (*H* small and *F* large)
- Asymmetric international financial structure
 - ► Foreign banks raise funds domestically, lend both domestically and internationally
 - ► Home banks raise funds domestically and internationally, lend only domestically
- Multi-layer production (capital producers, importers, wholesale producers, retailers)
 - ► Home exporters price in Foreign currency (**LCP**)
 - ► Imperfect pass-through of Home imports

oduction Panel VAR **Two-Country DSGE Model** Policy Analysis Appendix

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (*H* small and *F* large)
- Asymmetric international financial structure
 - Foreign banks raise funds domestically, lend both domestically and internationally
 - ► Home banks raise funds domestically and internationally, lend only domestically
- Multi-layer production (capital producers, importers, wholesale producers, retailers)
 - Home exporters price in Foreign currency (LCP)
 - Imperfect pass-through of Home imports
- Dominant currency paradigm in international goods and financial markets

Financial Flows

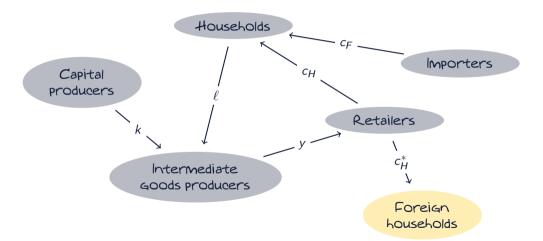
Financial Frictions

- ullet Foreign banks o Standard (Gertler and Karadi, 2011), balance sheet fully in USD
 - ▶ Issue deposits to F households, lend to F firms and H banks

Financial Frictions

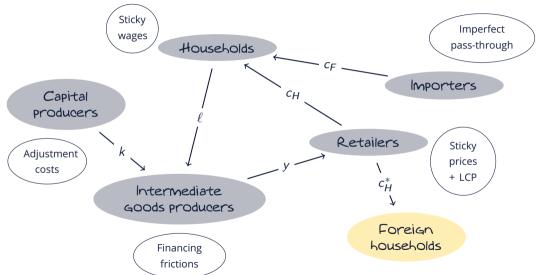
- Foreign banks → Standard (Gertler and Karadi, 2011), balance sheet fully in USD
 - ▶ Issue deposits to F households, lend to F firms and H banks
- **Home banks** → Balance sheet currency mis-match

$$\underbrace{q_t z_t}_{\text{Assets}} = \underbrace{d_t + s_t b_t^* + n_t}_{\text{Liabilities}}$$

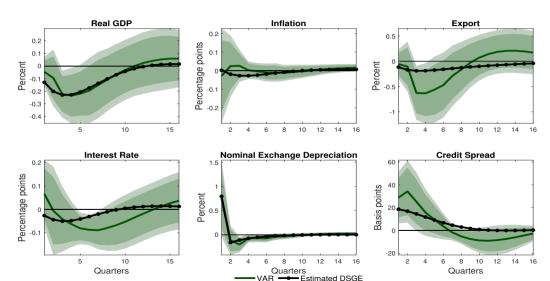

Can divert fraction of assets

$$\Theta(x_t) = \theta \left(1 + \frac{\gamma}{2} x_t^2 \right)$$

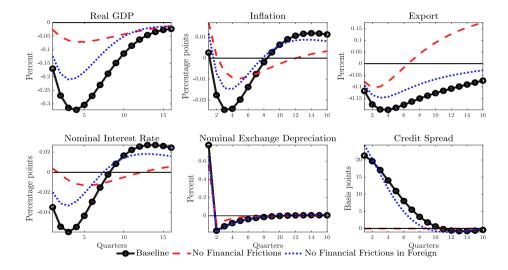
with $\gamma >$ 0, where $x_t = s_t b_t^*/(q_t z_t)$ (foreign funds harder to recover than domestic funds)


► Endogenous UIP wedge

Production Structure (Home)


tion Panel VAR **Two-Country DSGE Model** Policy Analysis Appendix

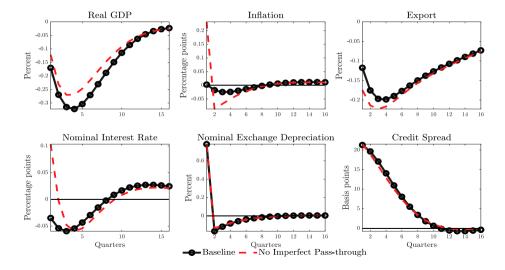
Production Structure (Home)


itroduction Panel VAR **Two-Country DSGE Model** Policy Analysis Appendix

Impulse Response Matching

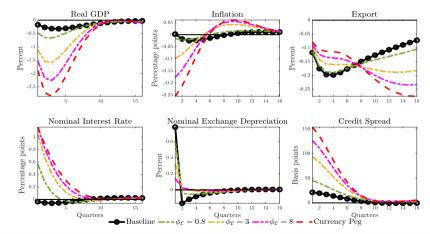


troduction Panel VAR **Two-Country DSGE Model** Policy Analysis Appendix


The Role of Financial Frictions

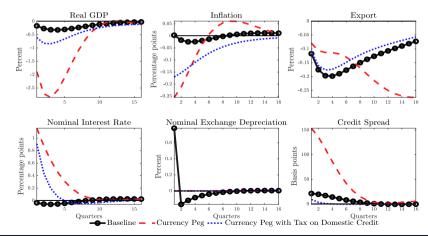
The Role of LCP

The Role of Imperfect Pass-Through



3. Policy Analysis

Exchange Rate Peg


Exchange rate regime not irrelevant

Macroeconomic volatility increasing with weight on exchange rate in monetary policy rule

Peg + Tax on Domestic Credit

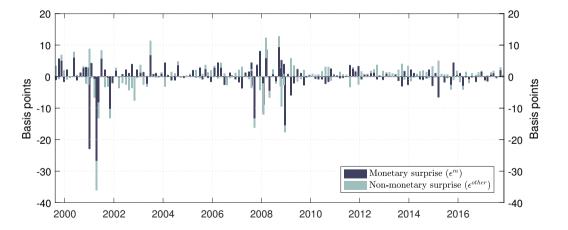
- Tax on domestic credit alleviates negative consequences of peg
 - ► Feedback rule that responds to credit spreads

roduction Panel VAR Two-Country DSGE Model **Policy Analysis** Appendix

Conclusions

- 1. Panel VAR \rightarrow Consistent with idea of Global Financial Cycle
 - Contractionary US monetary policy shock leads to a domestic recession
 - ► Despite domestic currency depreciation
- 2. Estimated two-country DSGE \rightarrow Can match empirical evidence
 - Key role of financial frictions in banking sector and pricing frictions in international trade
- 3. Policy analysis
 - ► Peg exacerbates macroeconomic volatility (exchange rate regime not irrelevant)
 - Tax on domestic credit (or foreign borrowing) limits negative effects of peg on GDP

A1: Panel VAR Details


Interest Rate Surprises

- ullet High frequency surprises s_t^i possibly contaminated by monetary policy "signalling" component
 - ► Potential bias in estimated effect of monetary policy shocks
- Decompose s_t^i into monetary (ϵ_t^m) and non-monetary (ϵ_t^{other}) shocks
 - ► Simple sign restriction approach (Jarocinski and Karadi, 2020)

	Monetary (ϵ_t^m)	Non-monetary (ϵ_t^{other})
Equity surprises (s_t^{eq})	_	+
Interest rate surprises (s_t^i)	+	+

Decomposition of Interest Rate Surprises

ullet Decomposition of s_t^i into monetary (ϵ_t^m) and non-monetary (ϵ_t^{other}) shocks

A2: DSGE Model Details

Home Banks

• Choose loans (z_t) , deposits (d_t) and interbank borrowing (b_t^*) to solve

$$V(n_t) = \max \mathbb{E}_t \{ \mathcal{M}_{t,t+1}[(1-\omega)n_{t+1} + \omega V(n_{t+1})] \}$$

subject to

$$q_t z_t = d_t + s_t b_t^* + n_t$$

$$V(n_t) \geq \Theta(x_t)q_tz_t$$

$$n_{t} = r_{Kt}q_{t-1}z_{t-1} - \frac{R_{t-1}}{\Pi_{t}}d_{t-1} - \frac{R_{Bt-1}^{*}}{\Pi_{t}^{*}}s_{t}b_{t-1}^{*}$$

where

$$\Theta(x_t) = \theta \left(1 + \frac{\gamma}{2} x_t^2 \right)$$

and
$$x_t = s_t b_t^* / (a_t z_t)$$

Solution of Local Banks' Problem

• All bankers choose same leverage and same ratio of foreign liabilities (binding ICC)

Solution of Local Banks' Problem

• All bankers choose same leverage and same ratio of foreign liabilities (binding ICC)

Optimal portfolio allocation

$$\frac{\mu_{Kt}}{\mu_{Bt}} = \frac{\Theta(x_t)}{\Theta'(x_t)} - x_t$$

- $\mu_{Kt} \rightarrow$ Discounted excess return of capital on deposits
- $\mu_{Bt} o$ Discounted excess return of deposits on interbank borrowing

Solution of Local Banks' Problem

- All bankers choose same leverage and same ratio of foreign liabilities (binding ICC)
- Optimal portfolio allocation

$$\frac{\mu_{Kt}}{\mu_{Bt}} = \frac{\Theta(x_t)}{\Theta'(x_t)} - x_t$$

- $\mu_{Kt} \rightarrow$ Discounted excess return of capital on deposits
- ullet $\mu_{Bt} o$ Discounted excess return of deposits on interbank borrowing
- Incentive compatibility constraint at equality

$$\phi_t = \frac{\mu_{Dt}}{\Theta(x_t) - (\mu_{Kt} + \mu_{Bt} x_t)}$$

• $\mu_{Dt} \rightarrow \text{Discounted return of deposits}$

UIP Wedge

• Without financial frictions, UIP would hold

$$1 = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{Bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

UIP Wedge

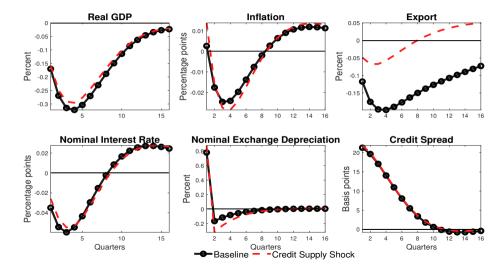
• Without financial frictions, UIP would hold

$$1 = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(rac{R_t}{\Pi_{t+1}} - rac{R_{Bt}^*}{\Pi_{t+1}^*} rac{s_{t+1}}{s_t}
ight)
ight]$$

• Financial frictions create **wedge** between domestic and foreign interest rate

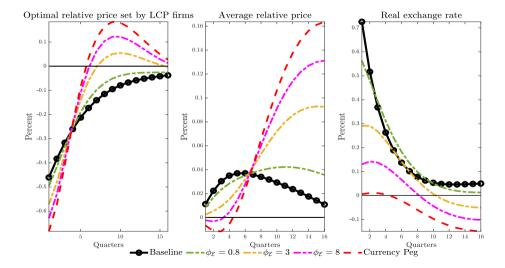
$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \mathcal{M}_{t,t+1} \Omega_{t+1} & \left(rac{R_t}{\Pi_{t+1}} - rac{R_{Bt}^*}{\Pi_{t+1}^*} rac{s_{t+1}}{s_t}
ight) \end{aligned} \end{aligned}$$

- Foreign funds harder to recover
- ► Domestic currency must pay a premium relative to foreign currency


Calibrated Parameters

Parameter		Home	Foreign
n	Relative size of country <i>H</i>	0.1	0.9
β	Individual discount factor	0.9926	0.9975
h	Habits in consumption	-	0.71
σ	Relative risk aversion	-	1.38
ζ	Inverse Frisch elasticity	1	1
Q	Elasticity of substitution among goods varieties	6	6
a	Home bias in consumption	0.91	0.99
ϵ	Elasticity of substitution between H and F goods	1.5	1.5
ν	Elasticity of substitution among labor varieties	6	6
ξ_w	Wage rigidity	0.66	0.66
ξ_{P}	Price rigidity	-	0.66
α	Capital share	0.33	0.33
δ	Depreciation rate	0.025	0.025
φ_i	Investment adjustment cost	-	5.74
ω	Bank survival rate	0.97	0.97
θ	Proportion of divertible funds	-	0.51
ξь	Bank transfer rate	-	0.002

Estimated Parameters


Parameter	Prior			Posterior		
	Distribution	Mean	Standard Deviation	Mode	5%	95%
h	Beta	0.650	0.1	0.659	0.504	0.816
σ	Normal	1	0.375	0.779	0.553	1.300
λ	Normal	5	1	4.887	3.419	6.462
X	Normal	0.300	1	0.158	0.043	0.244
φ_i	Normal	2.850	1.5	0.517	0.122	1.554
$\dot{\tilde{\xi}}_{P}$	Beta	0.660	0.1	0.909	0.791	0.960
ξim	Beta	0.660	0.1	0.705	0.540	0.854
$ ho_R$	Normal	0.750	0.1	0.691	0.565	0.860
ϕ_π	Normal	1.500	0.25	2.124	1.716	2.529
$\phi_{\mathcal{Y}}$	Normal	0.125	0.05	0.151	0.064	0.226
$ ho_R^*$	Normal	0.750	0.1	0.784	0.633	0.861
ϕ_π^*	Normal	1.500	0.25	2.120	1.717	2.511
ϕ_y^*	Normal	0.125	0.05	0.126	0.043	0.206

US Credit Supply Shock

troduction Panel VAR Two-Country DSGE Model Policy Analysis **Appendix**

Peg and Real Exchange Rate

Tax on Domestic Credit

• Reduces banks' return on lending in domestic currency

$$n_{t} = (1 - \tau_{t}^{k}) r_{kt} q_{t-1} z_{t-1} - \frac{R_{t-1} d_{t-1}}{\prod_{t}} - \frac{R_{bt-1}^{*}}{\prod_{t}^{*}} s_{t} b_{t-1}^{*}$$

Tax on Domestic Credit

• Reduces banks' return on lending in domestic currency

$$n_t = (1 - \tau_t^k) r_{kt} q_{t-1} z_{t-1} - \frac{R_{t-1} d_{t-1}}{\Pi_t} - \frac{R_{bt-1}^*}{\Pi_t^*} s_t b_{t-1}^*$$

Directly impacts credit spreads

$$\mu_{kt} = \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[(1 - \tau_{t+1}^k) r_{kt+1} - \frac{R_t}{\Pi_{t+1}} \right] \right\}$$

Tax on Domestic Credit

• Reduces banks' return on lending in domestic currency

$$n_t = (1 - \tau_t^k) r_{kt} q_{t-1} z_{t-1} - \frac{R_{t-1} d_{t-1}}{\Pi_t} - \frac{R_{bt-1}^*}{\Pi_t^*} s_t b_{t-1}^*$$

Directly impacts credit spreads

$$\mu_{kt} = \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[(1 - \tau_{t+1}^k) r_{kt+1} - \frac{R_t}{\Pi_{t+1}} \right] \right\}$$

Policy rule

$$au_t^k = \phi_k \mathbb{E}_t \left(\frac{r_{kt+1} - R_t / \Pi_{t+1}}{r_k - R} - 1 \right)$$

with $\phi_k < 0$