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This paper studies the benefits of central clearing and the design of a central counterparty (CCP) with an 

optimal contracting approach. Investors sign contracts to hedge an underlying exposure. There is counterparty 

risk because investors can default on the contract due to idiosyncratic shocks and moral hazard. Mutualization 

of losses can thus hedge against counterparty risk but demands collateral for preventing moral hazard. The 

optimal contract involves loss mutualization, which requires central clearing, only when the cost of collateral is 

intermediate. Furthermore, as loss mutualization dilutes investors’ incentives to monitor their counterparties, a 

third-party CCP can emerge as a centralized monitor and is given a first-loss, equity tranche as incentive 

compensation. Our results endogenize key features of the default resolution process, known as “default 

waterfall”, in a CCP. Finally, we show that larger user base of a contract favors central clearing (over bilateral 

trading) and clearing with third-party CCP (over member owned CCP).
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1 Introduction

Since the 2007–2008 global financial crisis, there has been a substantial rise in the share of

financial contracts cleared by Central Counterparties (CCPs).1 Post-crisis regulations have

been an important driver behind these trends as central clearing became mandatory for

many Over-The-Counter instruments.2 Regulators view CCPs as a financial market infras-

tructure to mitigate counterparty risks. By standing between every transacting party, or its

members, a CCP reduces the impact of any member’s default by mutualizing the associated

losses between members and absorbing some of the losses itself. Some commentators and

academics stressed, however, that central clearing is costly because members are required to

post high-quality collateral, in part, as guarantees for the default fund.3 Furthermore, there

is widespread concern that faulty design of CCP resolution and incentive structure could

undermine rather than foster financial stability (see Yellen 2013).4

In this paper, we propose a general contracting framework to conduct a cost-and-benefit

analysis of central clearing and study the optimal design of a CCP. Our primitives are that

insurance provision can be limited by counterparty risk, limited pledgeability and insuffi-

cient monitoring of counterparties. Collateral can help mitigate these frictions but it is

1From 15% in 2009, the fraction of interest rate derivatives cleared by CCPs steadily rose to 60% in 2018
(FSB 2018). In Euro interbank repurchase agreements (repos) market, central clearing has become the norm.
Mancini, Ranaldo, and Wrampelmeyer (2015) show that from 2009 to 2013, the market share of CCP-based
repos increased from 42% to 71%, whereas the share of bilateral repos declined from 50% to 19%. The share
of triparty repos remained relatively constant at around 10%.

2In the US, Section 723 of the Dodd-Frank Act mandates central clearing of interest rate swaps and credit
default swaps. In the EU, the EMIR regulation introduced similar requirements.

3Singh (2010) argues that central clearing will significantly increase the need for costly collateral.
Ghamami and Glasserman (2017) provide a detailed cost comparison between centrally cleared trading
and purely bilateral trading, showing that collateral costs are a key driver.

4CPSS-IOSCO (2012) suggests that a CCP should have enough prefunded resources to sustain the default
of two largest members. On incentives, Coeuré (2015) notes that a CCP’s own contribution to the loss-
mutualization process should be seen as its “skin-in-the-game” to induce proper risk management, rather
than to significantly cover its loss exposure.
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costly. With these basic ingredients we achieve three main results. First, we show that loss

mutualization in central clearing is desirable when the cost of collateral is intermediate and

market size is large. Second, we characterize the optimal loss mutualization scheme and

endogenize many important features of centrally cleared contracts such as initial margins

and default fund contributions. Third, CCPs with different structure arise endogenously to

implement the optimal contract. A third-party, for-profit CCP with a junior equity tranche

emerges as an efficient solution of the contracting frictions when the market is large enough.5

In the model, a finite number of investors are interested in sharing risks across aggregate

states. For instance, some traders wish to buy oil futures to hedge against the risk of elevated

oil prices while others are willing to sell the futures. Investors are matched bilaterally and

sign a contract. Conditional on the realisation of the aggregate states, one investor has to

pay her counterparty out of the cash flows of an asset she owns. This asset may fail to pay

off which leads the payer to default on the contract. We aim to capture the counterparty

risk futures buyers face when sellers are unable to honour the contract after a substantial

hike of oil prices. Due to idiosyncratic counterparty risks, investors as a whole can benefit in

ex-ante signing a multilateral contract under which, an investor with a defaulted payer ex-

post mutualizes the losses with other non-defaulting payers. As we will argue, a multilateral

contract amounts to novating and clearing a bilateral contract with a CCP.

Besides counterparty risk, insurance provision and risk-sharing are subject to two funda-

mental frictions. First, investors cannot promise to pay all the cash flows of their asset to

their counterparties or, via loss mutualization, to other investors. This limited pledgeabil-

ity problem, as in Biais, Heider, and Hoerova (2016), stems from a moral hazard friction:

Investors would shirk for private benefits and default if their expected liability is too large.

5While third-party CCPs became more prevalent in the past decade, substantial heterogeneity remains
in the ownership structure of CCPs around the world (see Section 8 of CPSS 2010).
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The shirking and private benefits metaphor are meant to capture investors’ concerns in prac-

tice that their counterparties could privately take actions that expose them to “wrong-way

risk”.6 The futures sellers in our example could further take large short position in oil prices

and default in states of high oil prices, leaving the futures buyers unprotected. Second, an

investor can monitor her counterparty to mitigate this moral hazard problem but monitoring

effort is costly and unobservable. This monitoring effort corresponds to the investors’ and

CCPs’ due diligence processes to ascertain the financial soundness of their counterparties and

members. The rigour and incentive structure behind such processes are first-order issues to

the regulators and the CCPs (see Coeuré 2015 and ESMA 2020).

Investors can also specify collateral requirement in the contract. Despite having a lower

expected return than the asset, cash collateral plays important roles in overcoming the

contracting frictions. First, it expands the amount of insurance investors can credibly provide

because, unlike the asset, it is fully pledgeable. That is, it has an incentive value. Second, it

has a safety value in providing insurance to investors over and beyond what can be achieved

with loss mutualization. Third, as collateral supports more insurance, the counterparty

creditworthiness is less relevant if investors use a lot of collateral. Hence, it also reduces the

need for monitoring.

We start the analysis with only the limited pledgeability friction, that is, monitoring

efforts are observable. We call the solution to this partial problem the optimal contract. The

analysis of the optimal contract shows when central clearing, which allows loss mutualization,

dominates bilateral trading. Its implementation also rationalizes the crucial features of a

central clearing contract such as the default waterfall and members’ contribution to the

6In Basel III, wrong-way risk is defined as follows: a bank is exposed to “specific wrong-way risk” if future
exposure to a specific counterparty is highly correlated with the counterparty’s probability of default. See
BCBS (2019).
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default fund. Then, we bring back the friction of unobservable monitoring efforts. The

solution to the full problem is called the incentive-compatible (IC) contract. The IC contract

shows when a CCP can serve as a centralized monitor and sheds lights on the design of a

CCP’s organisation and capital structure.

Our first main result from the analysis of the optimal contract is that loss mutualization

is essential only when the cost of collateral is intermediate. If the cost of collateral is lower

than its safety value, the optimal contract is fully collateralized, which leaves no loss to

be mutualized. If instead the cost of collateral is higher than the combined value from

its safety and incentive functions, using collateral to support any insurance including loss

mutualization is too expensive. Finally, when the cost of collateral is intermediate, the

optimal contract features complete loss mutualization, under which investors are paid in full

unless all contract payers default. The optimal collateral requirement ensures that surviving

payers can credibly take on all liability of the defaulting payers. A simple observation from

our analysis is that investors use more collateral for insurance when it is cheap, which reduces

the need for monitoring counterparties. In the rest of the analysis, we focus on the case in

which complete loss mutualization and monitoring are optimal.

There are several implications from the analysis of the optimal contract. First, mandat-

ing central clearing is only optimal when the cost of collateral is intermediate. When the

collateral cost is too low or too high, the optimal contract can be implemented bilaterally

because it features no loss mutualization. Also, central clearing is more desirable in larger

markets, that is, for more actively traded contracts. The intuition is that loss mutualization

becomes relatively more efficient than full collateralization in mitigating counterparty risk

when losses can be shared among more members.

Second, central clearing does not always require more collateral than bilateral trading.
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If investors only partially collateralize bilateral contracts, central clearing does require more

collateral to support loss mutualization. However, if counterparty risk is high and collateral

cost is intermediate, the optimal bilateral contract is fully collateralized while the optimal

multilateral contract is only partially collateralized. Intuitively, central clearing can provide

cheaper counterparty risk insurance via loss mutualization while investors can only resort to

collateral in bilateral contracts.

Third, the optimal contract rationalizes some important features of the loss mutualiza-

tion scheme of CCPs such as default waterfall. Under an implementation of the optimal

contract, the collateral posted by the defaulters is first used to cover the losses before other

members contribute. Collateral in our model captures both Initial Margins and Default Fund

Contributions in practice, which are indeed the first line of defence in the waterfall. The

remaining shortfall is covered by other CCP members. Such default fund contributions by

surviving members require collateral to be posted ex-ante. In practice, CCPs indeed require

their members to pre-fund such contributions. However, our description of the default wa-

terfall so far misses an important feature, namely, the CCP’s own contribution to the default

waterfall. We fill this gap in the analysis of the incentive compatible contract.

In the second part of the paper, we focus on the case in which central clearing is essen-

tial and we now assume that monitoring efforts are unobservable. We first show that the

optimal loss mutualization scheme may not be implementable due to the classic “insurance

vs incentive” conflict of Holmström (1979). If an investor knows that she will get paid from

other payers when her own payer defaults, she finds counterparty monitoring wasteful. To

avoid such free-riding on the loss mutualization scheme, investors must be sufficiently ex-

posed to their counterparty risk. Hence, while the optimal contract prescribes complete loss

mutualization, incentive compatible loss mutualization can only be incomplete. The required
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distortion is more severe in larger markets because, as we have argued above, the insurance

in the optimal contract improves as the market grows larger.

An alternative scheme to overcome the “insurance vs incentive” conflict is to centralize

and delegate all the monitoring efforts to a third-party agent. We interpret this agent as

a third-party, for-profit CCP who has no endowment so that he cannot provide insurance

and has the same monitoring cost as individual investors. By giving a high-power incentive

contract to the CCP to induce monitoring efforts, centralized monitoring can be more efficient

than bilateral monitoring by individual investors.7 Yet, centralized monitoring is costly for

the following reasons. First, the CCP enjoys agency rent, receiving compensation over

and above the effort cost, because monitoring efforts are unobservable. Second, the CCP’s

compensation increases the liability of investors, which requires more collateral.

We show that centralized monitoring dominates bilateral monitoring when the market

is large enough. A larger market favours centralized monitoring for two reasons. Agency

rents in the CCP’s compensation decrease with the number of investors to be monitored8

and, as explained, the loss mutualization distortion under bilateral monitoring is worse in

larger markets. We therefore rationalize the CCP’s active role of monitoring its members. In

practice, CCPs carefully vet members with internal credit rating criteria and examine their

books regularly.9

The comparison between bilateral and centralized monitoring and the solution for the

optimal compensation of CCPs shed light on the optimal design of CCPs. A third-party

CCP emerges endogenously as an efficient solution of the incentive frictions when the traded

7It can be shown that the optimal incentive contract pays only when no investors default and the asso-
ciated agency rent decreases in market size. This is a standard result in contracting commonly known as
“cross-pledging”. For a textbook treatment, see Tirole (2010).

8The reduction of agency rent is similar to the (endogenous) economies of scale effect in Diamond (1984)
9See, for example, the clearing rules of ICE at https://www.theice.com/publicdocs/clear_credit/

ICE_Clear_Credit_Rules.pdf.
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contract has a large enough user base, which could be the case for more standardized con-

tracts. In that case, the CCP is given a high-power incentive contract similar to a junior

equity tranche. This junior tranche is essentially the CCP’s contribution to the default fund

which, when some members default, is wiped out before surviving members’ default fund

contribution. This result is in line with the “skin-in-the-game” interpretation of CCP capital

(see e.g Coeuré 2015) and completes our picture of the default waterfall (see Duffie 2015). For

less traded contracts, loss mutualization is also beneficial but it is best implemented without

a third-party CCP. We interpret this arrangement as a member owned CCP because in this

case, all the transfers are ultimately made and received by its members.

Literature Review

Our paper contributes to the burgeoning literature on central clearing. Menkveld and Vuille-

mey (forthcoming) provide an excellent survey on various aspects about central clearing we

discuss below (and many more).

Our paper’s primary focus, namely, the tension between mutualizing losses among traders

and preserving their incentives to identify creditworthy counterparties, is also shared by Bi-

ais, Heider, and Hoerova (2012) and Antinolfi, Carapella, and Carli (2018).10 Biais, Heider,

and Hoerova (2012) also study the optimal clearing contract in the presence of moral hazard.

They emphasize that when there is aggregate risk, loss mutualization has to be incomplete in

order to preserve traders’ incentive. Antinolfi, Carapella, and Carli (2018) argue that, with-

out borrowers’ information acquisition, a CCP cannot know the creditworthiness of lenders

and thus cannot efficiently tailor collateral requirements. While the analysis of a member

owned CCP in our paper contains a similar trade-off, we also consider the possibility of del-

10See Koeppl (2013) and Palazzo (2016) for works analyzing other incentive problems associated with
central clearing.
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egating monitoring efforts to a third-party CCP. This innovation allows us to deliver several

new results. We highlight the cost and benefit of having a third-party CCP, characterize the

conditions under which a third-party CCP dominates a member owned CCP, and derive the

optimal capital and default waterfall structure of a third-party CCP.

Some recent papers also study CCPs’ capital and default waterfall. Huang (2019) argues

that because of limited liability and exogenously costly capital, a for-profit CCP tends to

have insufficient capital for loss absorption and thus capital requirements may be warranted.

We instead emphasize the incentive role of CCP equity, as suggested by Coeuré (2015),

and take the optimal contracting approach to endogenize the cost of CCP equity. Wang,

Capponi, and Zhang (2019) do not study CCP capital but differentiate initial margin from

default fund contribution, by focusing on members’ risk-taking incentives. We do not make

that distinction but we rationalize CCP equity, a crucial element of the default waterfall.

To the best of our knowledge, our result on the optimal ownership structure of CCPs is

new in the literature. A third-party agent can improve upon a member owned CCP thanks

to the delegation of risk-mitigation efforts, for reasons similar to the diversification benefits

in Diamond (1984). McPartland and Lewis (2017) argue that the ownership structure of

CCPs is a central feature when discussing the economic role of CCP capital and the default

waterfall. More generally, our analysis is related to discussions about the ownership structure

of exchanges (see for instance Hart and Moore 1996).

The literature on CCPs has also discussed various specific aspects of central clearing.

Duffie and Zhu (2011) compare the netting efficiency under central and bilateral clearing.

Acharya and Bisin (2014) argue that central clearing increases position transparency and

reduces counterparty risk externality in OTC markets.11 Koeppl, Monnet, and Temzelides

11See also Zawadowski (2013). Relatedly, Leitner (2011) shows that an intermediary like a CCP can even
induce voluntary report of trades by clearing members thanks to a position limit
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(2012) show that a CCP can reduce trading costs by deferring settlement and providing credit

to their clearing members. We focus on the incentive problem inherent in loss mutualiza-

tion, and complement the literature by simultaneously characterizing the optimal collateral

requirements, the ownership, and the capital structure of a CCP.

The rest of the paper is organised as follows. Section 2 presents the model. Section

3 studies the costs and benefits of central clearing by deriving the optimal contract when

monitoring is observable. In Section 4 we derive the incentive compatible contract, comparing

bilateral monitoring to centralized monitoring. The practical implications of our model for

CCPs are collected in Section 5. Section 6 concludes. All proofs are collected in Appendix

A.

2 Model

2.1 The framework

There are two dates t = {0, 1} with no time discounting. At date 1, there are two equiprob-

able aggregate states of the world S ∈ {A,B}. All agents consume the same good –“cash”.

The economy is populated by two groups of investors, also indexed by S ∈ {A,B}, and each

group has N homogeneous investors. An S-investor has the following utility function:

US(cS, cS′) =
1

2
E[cS′ ] +

1

2
E [cS + (v − 1) min{cS, ĉ}] (1)

where cS is the consumption in state S, v > 1, and ĉ > 0. An S-investor’s marginal utility

of consumption in state S ′ is one whereas each unit of consumption in state S yields utility

v > 1 until it reaches ĉ. These preferences are meant to capture in a simple way insurance
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needs against an aggregate state, with ĉ the demand for insurance.

Each S-investor is endowed with one unit of a divisible asset which pays 2R per unit

with probability q ∈ (0, 1) in state S ′ and fails to pay anything otherwise. The success or

failure of the asset is independent across S-investors, conditional on the realisation of state

S ′. Because S-investors (resp. S ′-investors) have an asset that pays in state S ′ (resp. S),

they can provide insurance to S ′-investors (resp. S-investors) who value consumption more

in this state. The per-unit gains from trade are given by the difference in marginal utility,

equal to (v− 1). The riskiness in asset payoff implies trading is subject to counterparty risk.

Besides counterparty risk, insurance provision is hindered by the fact that the asset’s

cash flow is not fully pledgeable, due to a moral hazard problem as in Holmström and Tirole

(1997). At date 0, an investor can decide to shirk after observing the non-pecuniary private

benefit (per-unit) from shirking B̃ ∈ {B, b}. Shirking is not observable and causes the asset

to fail with probability 1. Following Holmström and Tirole (1997), we define the pledgeable

income of the asset as the maximum cash flow an investor can promise to pay without

shirking. For an investor with private benefit B̃, the pledgeable income is given by12

β̃ ≡ 2R− 2
B̃

q
< 2R.

We assume that B = qR and b ∈ (q(R − 1
2
), qR), and thus, the pledgeable income of the

asset is either 0 or β ≡ 2R − 2 b
q
∈ (0, 1). An investor with asset pledgeability β (resp. 0) is

called a regular (resp. rogue) investor.

Limited pledgeability and counterparty risk give a role for collateral. At date 0, the

asset can be liquidated for $1 cash per unit. Cash is fully pledgeable as collateral, and

12To see this, consider an investor’s incentive to shirk if she has promised to pay β̂. She will not shirk if

and only if 1
2q(2R− β̂) ≥ B̃, or, β̂ ≤ 2R− 2 B̃q .
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because it is more pledgeable than the asset (1 > β), it increases investors’ total pledgeable

income. Second, it serves as self-insurance and protects an investor against counterparty

default because it is safe. We assume, however, that cash collateral is costly because the

expected payoff of the asset qR is higher than 1. The comparison of the (endogenous) values

and the costs of cash collateral will determine the optimal risk sharing arrangement and

collateral requirement. We make the following assumption to ensure that cash collateral is

both necessary and sufficient to satisfy investors’ insurance needs.

Assumption 1 (Collateral needs). 2 > ĉ > β.

Consider a pair with a S-investor and a S ′-investor. The ex-post insurance need to be

satisfied is ĉ. If each investor posts ĉ
2
< 1 units of cash collateral, the insurance need can be

met with collateral only. Alternatively, without any cash collateral, even a regular investor

can only credibly promise to pay up to β when his asset succeeds. This is less than the

insurance need under Assumption 1.

The limited pledgeability problem can be mitigated by monitoring. At date 0, each

S-investor is bilaterally matched with a S ′-investor. An investor can privately decide to

monitor her counterparty for a non-pecuniary cost ψ > 0. If she monitors, her counterparty

is a regular investor with asset pledgeability β. Without monitoring, her counterparty is a

regular investor with probability α ∈ [0, 1) and a rogue investor otherwise. In what follows,

for simplicity, we restrict attention to pure-strategy symmetric monitoring decisions. Hence,

a profile of investors’ monitoring decisions can be summarized by m = {0, 1}, where m = 0

stands for no monitoring and m = 1 for every investor monitors.

The following bound on the monitoring cost ensures that monitoring can be optimal.

Assumption 2 (Monitoring cost). ψ ≤ ψmax ≡ βq(1−q)(1−α)(v−1)
v(2−βαq)(1−αq)

(
1− ĉ

2

)
.
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The upper bound on the cost will ensure that there is a region of collateral cost for

which monitoring is optimal. The characterization of this bound is deferred to Section 4.

Intuitively, ψmax is proportional to the increase in the probability that a counterparty is

regular if monitored (1 − α)q, the pledgeable income of a regular investor β and the gains

from trade v − 1.

2.2 Multilateral contract

After each S-investor is matched with a S ′-investor, investors collectively sign a multilateral

contract that specifies state-contingent transfers.13 For simplicity, we only consider pooling

contracts rather than menus of contracts designed to induce investors to report their private

type, rogue or regular.14 The environment is symmetric and thus, S-investors pay in state S ′

to S ′-investors what they themselves receive in state S from these investors. Henceforth, we

drop the reference to the aggregate state and refer to investors by their ex-post role: payers

or receivers. The relevant state variables to index transfer are the number d ∈ {0, 1, ..., N} of

defaulting payers, and, for each pair of matched investors, the outcome of the payer’s asset

o ∈ {s, f}, success (s) or failure (f). We define a multilateral contract as follows.

Definition 1. A contract C = {x, po(d), ro(d)} specifies an amount of collateral x ∈ [0, 1]

posted by an investor at date 0, a set of transfers po(d) to be made by a payer and a

set of transfers ro(d) to be received by the payer’s counterparty at date 1. The variable

d = {0, 1, ..., N} denotes the total number of defaulting payers and o ∈ {s, f} denotes the

outcome for the payer’s asset, success (s) or failure (f).

13In practice, investors first join a CCP which specifies rules for trading. Then, when they trade with
another CCP member, a contract is signed and cleared by the CCP. With only one round of trading, we can
collapse these two stages into one. We discuss the implementation of our contract in Section 3.3 and 5.

14This issue is moot when investors are monitored since their type is regular with probability 1. Without
monitoring, however, the type is the private information of investors.
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In the state with a total of d payers in default, ps(d) (resp. pf (d)) specifies a payer’s

transfer to a common pool when its asset succeeds (resp. fails). The transfer to a receiver

is rs(d) (resp. rf (d)) when its matched payer’s asset succeeds (resp. fails). Observe that

transfers ps and rs (pf and rf ) are not defined when N (0) payers default.

A feasible contract must satisfy the resource constraints of payers, given by

ps(d) ≤ x+ (1− x)2R, (2)

pf (d) ≤ x, (3)

when the payer succeeds or fails, respectively. To simplify the analysis, we will consider

parametrizations of the model in which the resource constraint never binds for a succesful

payer, that is (2) is slack. This can be ensured by setting R large enough. A feasible contract

must also satisfy the budget constraint state by state,

(N − d)rs(d) + drf (d) = Nx+ (N − d)ps(d) + dpf (d), ∀ d ∈ {0, 1, ..., N}. (4)

Equation (4) says that the total transfer to be received must be equal the total resources

available, which consist of the sum of the collateral pledged by the receivers and the con-

tractual transfers made by payers.

2.3 Investors’ problem and loss mutualization

After defining the contract, we are now ready to state the investors’ problem and the relevant

constraints faced by investors. First, we state a useful property of a contract and derive the

investor’s utility in the following lemma.
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Lemma 1. Under a contract C = {x, po(d), ro(d)},

E[ro(d)] = E[po(d)] + x. (5)

An investor’s utility is given by

U = qR +
v − 1

2
E[min{ro(d), ĉ}]− x(qR− 1), (6)

where E[·] is the expectation operator taken over o and d, for a given monitoring choice.15

Equation (5) follows from the budget constraint (4) and says that the contract is actuar-

ially fair in cashflow terms: The amount an investor expects to receive from the contract is

the amount she expects to pay plus the cash collateral she posts. Equation (6) highlights the

cost and benefit of contracts to an investor. Upon signing a contract, relative to the utility

level under autarky qR, an investor benefits from the insurance, measured by the expected

gains from trade v−1
2
E[min{ro(d), ĉ}], but needs to pledge collateral which costs x(qR− 1).

Next, we turn to the constraints imposed by the frictions of the model. The limited

pledgeability problem of the asset implies that investors shirk if the increase in expected

payment given the success of the asset exceeds the asset’s pledgeable income. A rogue

investor always weakly prefers to shirk because his asset is not pledgeable. To avoid shirking

by regular investors, however, the payments po(d) must satisfy

Es[po(d)]− Ef [po(d)] ≤ (1− x)β. (7)

15The outcome variable o has a Bernoulli distribution, with parameter q(m) equal to the probability of
success, where m ∈ {0, 1} is the monitoring choice. As will become clear, under an incentive-compatible
contract, q(0) = αq < q = q(1). The variable d has a binomial distribution with parameter q(m) and N .
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where Eo′ [.] is the expectation conditional on outcome o′ ∈ {s, f} for a payer. For a regular

investor, the right-hand side of (7) is the pledgeable income from the remaining fraction

1− x of the asset which is not liquidated for cash collateral.

If counterparty monitoring is to be elicited, the contract must ensure that the investor

is better off when monitoring her counterparty because monitoring efforts are unobservable.

This bilateral monitoring constraint is given by

ψ

q(1− α)
≤ 1

2

(
Es[ro(d)]− Ef [ro(d)]

)
+
v − 1

2

(
Es[min{ro(d), ĉ}]− Ef [min{ro(d), ĉ}]

)
(8)

The left-hand side of (8) is equal to the cost of monitoring effort ψ divided by the increase in

the probability that the counterparty succeeds if monitored, q(1 − α). The right-hand side

is the utility loss for a receiver from a default of his counterparty. Monitoring is incentive

compatible for investors if and only if equation (8) holds.

We can now formally define the investor’s problem.

Definition 2 (Investor’s problem). Investors design a multilateral contract C with monitor-

ing decision m = {0, 1} to maximize their utility (6), subject to the resource constraint (3),

the budget constraint (4), the limited pledgeability constraint (7), and, if monitoring is to be

induced, the monitoring incentive constraint (8).

2.4 Preliminary Analysis

We establish a preliminary result to simplify the investors’ contracting problem and highlight

the key difference between multilateral contracts and bilateral contracts.

Lemma 2. It is weakly, and sometimes strictly, optimal to set rs(d) = rs, rf (d) = rf ≤ rs

for any d 6= N , and pf (d) = x for all d. Then, by the budget constraint, rf (N) = 2x and
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ps(d) = rs + d
N−drf + N+d

N−dx.

Lemma 2 says that it is without loss to consider a simplified contract with three scalars:

x as the amount of collateral; rs and rf respectively as the transfers received when the

counterparty does not fail, and when the counterparty fails but at least one payer does not

default. The receiver transfer when all payers default rf (N) is pinned down by the amount of

collateral since no other resource is available in this state of the world. When he fails, a payer

transfers the collateral posted, which is his only resource, that is, pf (d) = x. Finally, the

payer transfer ps(d) when his asset succeeds is determined residually from budget constraint

(4) to support receivers’ transfers.

The intuition behind Lemma 2 is as follows. First, increasing the transfer pf (d) from a

defaulting payer relaxes the limited pledgeability constraint and allows investor to support

more insurance, as shown by equation (5). It is thus optimal to saturate the resource

constraint (3) and set pf (d) = x. Second, since investors are risk averse, it is desirable to

minimize the variation of their transfers received. By assumption, the resource constraint

binds only when all payers fail, and, hence, it is always feasible to set constant rs(d) = rs

and rf (d) = rf for any d 6= N . Yet, variations in received transfers can arise for two reasons.

Even if one single successful payer can satisfy the insurance needs of all receivers, receivers

are still exposed to the risk that all payers default. In this state of the world, they can

only consume rf (N) = 2x, which may contractually differ from the amount rf . Finally,

while receivers could be hedged against counterparty risk, a quick analysis of constraint (8)

suggests that bilateral monitoring may not be sustainable at rs = rf . Then, setting rs > rf

may be necessary.

Lemma 2 highlights a key difference between a multilateral contract and a purely bilateral

contract: the scope for loss mutualization. In a purely bilateral contract, when her own payer
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fails, the receiver may only get 2x, which is the total amount of collateral posted by the pair.

In a multilateral contract, this is true only if all other payers fail. Otherwise, other surviving

payers can transfer resources to the receiver with a defaulting counterparty. We refer to

transfers from other payers when one’s own payer defaults as loss mutualization, for which

we provide a formal definition below.

Definition 3 (Loss mutualization). A contract features loss mutualization if

rf > rf (N) = 2x. (9)

A contract without loss mutualization, such as a bilateral contract, is with rf = 2x. Loss

mutualization is said complete if rs = rf .

The definition above is straightforward. When her counterparty defaults and if there are

no other payers to mutualize the losses, either because the contract is bilateral or because all

other payers fail, a receiver consumes 2x – the sum of her own collateral and the collateral

posted by her counterparty. Loss mutualization reduces the receiver’s consumption loss

(rs− rf ) caused by her counterparty’s default. A complete loss mutualization means that as

long as there is at least one successful payer, the receiver is not affected.

While loss mutualization provides receivers better insurance against the default of their

counterparties, receivers still suffer losses when all payers default. The only contract pro-

viding full insurance, that is, realising all the gains from trades in all states of the world, is

defined below.

Definition 4 (Full insurance). A full insurance contract is one with x = ĉ
2

and ro = ĉ

The full insurance contract is one with a fully collateralized promised payment of ĉ
2
.

Therefore, even when the counterparty defaults, the receiver can fully meet her insurance
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needs of ĉ. This contract will prove a useful benchmark for our analysis. A full insurance

contract can be implemented bilaterally because there are no losses (to be mutualized) and

counterparty monitoring is useless because a rogue investor faces the same cost for posting

collateral. Intuitively, however, this contract will be dominated when collateral is costly.

Observe that any contract with more collateral than the full insurance contract is suboptimal

because all gains from trade are realised. Hence, in what follows, we set x ≤ ĉ
2

without loss.

In sum, the investors’ problem is to find the most cost-effective use of collateral (and

monitoring) to support insurance. Our focus in the rest of the paper is to find out when

loss mutualization is part of the optimal contract and how it can be implemented. Since,

in our model, loss mutualization is the raison d’être of central clearing, we use these terms

intechangeably in what follows.

3 Optimal Clearing

Our model of multilateral contracting has two main frictions: the asset’s limited pledge-

ability and the unobservability of counterparty monitoring effort. In order to isolate the

effects of the two frictions, in this section, we focus on the limited pledgeability problem and

assume counterparty monitoring is observable. We characterize the optimal contract under

observable monitoring, which we call “optimal loss mutualization”, in Section 3.1. In Sec-

tion 3.2, we compare central clearing to bilateral trading. Finally, in Section 3.3, we discuss

the implementation of the optimal loss mutualization scheme and relate it to the design of

central clearing arrangement in practice.
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3.1 Optimal loss mutualization

The investor’s contracting problem is as stated in Definition 2 with one difference: Monitoring

is observable and thus the bilateral monitoring constraint (8) is ignored. The solution,

which we call the optimal loss mutualization, highlights the fundamental trade-off between

insurance and the cost of collateral as well as the role played by counterparty monitoring.

It is useful to first build intuition about the trade-off between the insurance benefit

and the cost of collateral. The cost of collateral is the foregone return from the superior

investment option qR − 1. The benefits of cash collateral are twofold. First, because it is

safe, collateral provides insurance against the extreme event that all payers default. In this

state, receivers get rf (N) = 2x which is the amount of collateral posted by each investor

pair. Collateral also relaxes the limited pledgeability constraint and helps expand insurance

provision. To see this, rewrite constraint (7) using the results from Lemma 2. A regular

investor cannot promise to pay more than

Es[po(d)] ≤ x+ (1− x)β (7b)

where the right-hand side is the total pledgeable income. Under Assumption 1, posting more

collateral relaxes the constraint because β < 1, which helps support larger transfers rs and rf

to receivers, as shown by equation (5). This is valuable when investors demand for insurance

is not satiated. The formal analysis of this trade-off leads to the following results.

Proposition 1 (Optimal loss mutualization). Suppose that counterparty monitoring is ob-

servable. There exist three thresholds of collateral cost kN ≥ 0, km ∈ [kN , k̄), and k̄ such

that the optimal monitoring decision is mopt = 1[k≥km] and the optimal contract is

1. a full insurance contract if k ≤ kN . In this case, there is no loss to be mutualized;
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2. a complete loss mutualization contract with ropts = roptf = ĉ and

x = xopt(mopt) ≡
[
1− (1− q(mopt))N

]
ĉ− βq(mopt)

2 [1− (1− q(mopt))N ]− βq(mopt)
∈
(

0,
ĉ

2

)
, (10)

if k ∈ (kN , k̄), where q(m) = α1−mq;

3. an uncollateralized contract with rs = β, rf = x = 0 if k ≥ k̄. In this case, there is no

loss mutualization.

Proposition 1 is the first main result of the paper and there are three takeaways. The

first one is that the optimal level of insurance decreases with the cost of collateral. When the

collateral cost is low enough (k ≤ kN), it is optimal to completely collateralize the contract

and fully insure investors in all states. As the collateral cost increases, insurance against the

unlikely event that all payers default becomes too costly. In this intermediate case, it is still

optimal to use enough collateral to increase the pledgeable income for receivers to consume

ĉ in all other states. Loss mutualization is complete. Finally when the collateral cost is high

(k ≥ k̄), any kind of insurance support is too costly: An uncollateralized bilateral contract

is optimal. We show in the proof that the higher threshold of collateral cost is given by

k̄ =
1

2
(v − 1)(2− qβ). (11)

This is the value of collateral when receivers consume less than ĉ. An extra unit of collateral

increases consumption by 1 unit, as self-insurance, and by 1−qβ units as net insurance from

payers, since qβ is the expected pledgeable income of a regular investor’s asset.16

16In the proof of Proposition 1, we show that

kN = min

{
(v − 1)(1− αq)N , (v − 1)(1− q)N +

2ψ

βq(2− ĉ)

(
2
[
1− (1− q)N

]
− βq

)}
.
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The second takeaway is that loss mutualization is only valuable when the collateral cost

is intermediate. When the collateral cost is low full insurance is optimal and there is no

loss to be mutualized. When the collateral cost is too high, loss mutualization is too costly

and investors choose to be fully exposed to counterparty risk. In both cases, the optimal

contract can be implemented bilaterally. For intermediate values of the collateral cost, unless

all payers default, loss mutualization bridges the gap between the resources of a pair when

the payer defaults, equal to 2xopt(mopt) < ĉ and the optimal insurance amount ĉ. Hence,

counterparty risk now only affects investors when the aggregate risk that all other payers

default materializes.

The third takeaway is that counterparty monitoring allows investors to economize col-

lateral when it is expensive (k ≥ km). We recall that monitoring prevents an investor from

becoming rogue, effectively decreasing her default probability from 1−αq to 1−q. Therefore,

similar to collateral, it increases an investor’s capacity of insurance provision. Monitoring is

thus used as a substitute to collateral when collateral is too expensive. Conversely, when the

collateral cost drops below km, it is more cost-efficient to forgo the monitoring and to use

more collateral. The collateral requirement then jumps from xopt(1) to either xopt(0) under

the complete loss mutualization contract or x = ĉ
2

under the full insurance contract.

To sum up, the analysis of the optimal loss mutualization scheme shows that when the

collateral cost is intermediate, central clearing is superior to bilateral trading because it

improves insurance among investors by mutualizing losses caused by counterparty defaults.

Below kN , the optimal contract is full insurance without monitoring. Above kN , the optimal contract features
complete loss mutualization, either without monitoring or with monitoring. The first case corresponds to
the first argument of the min above. The threshold is then equal to the insurance value of collateral against
the state where all payers default. Note that the probability of default without monitoring is 1 − αq. The
second case corresponds to the second argument of the min. Then, for complete loss mutualization to be
optimal, it is not enough that the collateral cost equals the insurance value against the joint default state,
given by (v − 1)(1− q)N , because monitoring is costly.
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Our optimal contracting approach ensures that the benefits of central clearing identified here

are not due to some ad-hoc restrictions on the contracts or exogenously imposed costs.

3.2 Central Clearing vs. Bilateral Trading

We use our results to compare central clearing with bilateral trading. The optimal multilat-

eral contract can be implemented bilaterally when k ≤ kN or k ≥ k̄. Hence, we first provide

comparative statics for the region [kN , k̄] in which central clearing is essential.

Corollary 1. The range of collateral cost [kN , k̄] for which central clearing is essential is

expanding with market size N .

This result shows that central clearing is more beneficial in large markets. To build some

intuition, observe first that the upper bound of the region, k̄, is independent from N . As we

explained, k̄ is the marginal insurance value of collateral starting from the uncollateralized

(bilateral) contract. Investors could realise this extra insurance even in a bilateral contract,

which is why k̄ does not depend on N . The lower bound of the central clearing region,

kN is decreasing with N . This threshold kN is the marginal insurance value of collateral

starting from the complete loss mutualization contract of Proposition 1. By definition, extra

insurance is only valuable in the state where all payers default. Because a joint default is

less likely as N increases, investors are only willing to pay for this extra insurance for lower

values of collateral cost. Our result thus suggests that clearing of contract is more beneficial

in large markets. A critical mass of traders is needed for loss mutualization to be valuable

with respect to full insurance.

We now compare the optimal multilateral contract to the optimal bilateral contract. The

optimal bilateral contract solves the investors problem under the additional constraint that
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loss mutualization is not possible, that is, rf = 2x must hold. Proposition 1 shows that

bilateral contracts are only restrictive in the region [kN , k̄] for collateral cost so we focus on

this region for our analysis. Motivated by claims that central clearing increases the need for

collateral, we compare the amount of collateral in each case.

Corollary 2. For N ≥ 2, the optimal bilateral contract requires strictly more (less) collateral

than the optimal multilateral contract if k ∈ [kN , k1) (k ∈ (k1, k̄]).

The result follows from Corollary 1. We showed that the upper bound kN for the full

insurance region is decreasing with N . Hence, when k ∈ [kN , k1), only the bilateral contract

features full insurance and thus requires strictly more collateral. Intuitively, since counter-

party risk insurance is not available via loss mutualization in bilateral contracts, investors

use collateral instead. In the region (k1, k̄], Proposition 1 and Corollary 1 characterize the

optimal loss mutualization for any N , including the bilateral case N = 1 as a degenerate

case. Since the collateral requirement xopt is increasing with N , as shown by equation (10),

the second part of the result follows. Intuitively, with more members, there is a greater

potential to mutualize losses but more collateral is needed to support the larger expected

transfers induced by loss mutualization because of the limited pledgeability constraint.

To summarize, central clearing reduces the need for collateral to protect against counter-

party risk because CCPs act as risk-poolers by mutualizing losses (Coeuré (2015)). However,

the very mutualization of losses requires collateral because CCPs need to make sure investors

will deliver when called to cover other members’ losses. By stressing these two roles of collat-

eral, our result reconciles views that CCPs provide collateral efficiency gains (see Menkveld

and Vuillemey (forthcoming)) with claims that central clearing increases the need for collat-

eral (see e.g. Domanski, Gambacorta, and Picillo 2015).
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3.3 Central Clearing Implementation

We argue that optimal contract identified in the previous section can be implemented by

novating a bilateral contract to a CCP, an arrangement commonly carried out in practice.

Consider the following implementation of the complete loss mutualization contract: at t = 0,

each pair of investors bilaterally signs a contract with a promised payment of τ = ĉ − xopt

and novates the contract to a CCP, which requires all its members to post collateral xopt.

At t = 1, all receivers collect their posted collateral. If her counterparty succeeds, a receiver

gets the promised payment and, thus, rs = xopt + τ = ĉ. When her counterparty default,

the receiver is given the priority to seize the counterparty’s collateral xopt. Then, the loss

given default τ − xopt is mutualized among all successful payers, and, thus she receives

rf = 2xopt + τ −xopt = ĉ. In the state in which all payers default, receivers are only left with

the collateral rf (N) = 2xopt.

It is useful to also discuss these transfers from the perspective of payers. To do so,

consider a state with a total of d ∈ (0, N) payers defaulting. For the defaulted payers,

any collateral posted is immediately seized, that is, pf (d) = xopt. Collateral in our model

corresponds both to the Initial Margin (IM) and to the ex-ante contribution to the Default

Fund Guarantee (DFG) by members of a CCP, in pratice.17 In practice, both these pre-

committed resources are seized from defaulting payers before any other member contributes,

as in our model. Since these resources do not cover the contractual payment to the receivers,

the total loss given default d(ĉ − 2xopt) must be shared among N − d investor pairs with

a successful payer. Because surviving members contribute to the default fund, they must

post collateral to secure this liability to the CCP. Most CCP guidelines indeed emphasize

17Traders also post Variation Margin (VM) reflecting daily or lower frequency variations in the price of
the asset underlying the contract. VM could be rationalized in our framework, for instance if there is an
additional moral hazard problem at date 1 when uncertainty is realised.
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the importance of pre-funded DFG contributions (see e.g. Arnsdorf (2012)).

Our model replicates some important features of the CCP Default Waterfall, the loss allo-

cation process when a member defaults. Most importantly, CCPs use a defaulter-pay model

based on collateral and allocate losses to surviving members when the defaulter resources

are insufficient. A standard feature of the default waterfall our model cannot yet speak to is

the CCP’s own contribution. This is not surprising: Under the optimal loss mutualization

scheme, a CCP is merely a nexus of contracts. It transfers resources between members but

plays not active role. In the next section, we show that a CCP can act as a central monitor

when monitoring is unobservable. Endogenizing the CCP incentive pay for monitoring helps

fill the gap between our model and default waterfalls observed in practice.

4 Incentive Compatible Clearing

We now derive the optimal allocation when monitoring efforts need to be incentivized as

they are not observable. The goal of this analysis is twofold: to show how the incentive

problem in monitoring distorts the optimal loss mutualization and to characterize the op-

timal monitoring arrangement. To ensure such investigations are meaningful, we focus our

analysis on the region of collateral cost k ∈ [km, k̄] in which monitoring is desirable and

loss mutualization is essential in the optimal loss mutualization scheme. The need to incen-

tivize monitoring effectively makes it more costly and hence the parameter region in which

it should be induced will shrink, as we confirm in Section 4.3.

If an investor does not monitor her counterparty, the counterparty is a regular investor

with probability α and a rogue investor with probability 1 − α. A rogue investor’s asset is

not pledgeable, and thus, she can only honour payments that are collateralized. As a rogue
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investor behaves the same as a defaulted regular investor, the lack of monitoring effectively

increases the counterparty risk from 1− q to 1− αq.

We first show that the optimal loss mutualization scheme characterized in Proposition

1 cannot be incentive compatible in large markets. To see this, evaluate the monitoring

constraint (8) at the optimal contract derived in Proposition 1. We obtain

ψ

q(1− α)
≤ v

2
(1− q)N−1

(
ĉ− 2xopt

)
(12)

Constraint (12) becomes tighter when N increases as the left-hand side converges exponen-

tially to 0. There are two related reasons for this result. First, with complete loss mutu-

alization, investors receive the full insurance payment ĉ unless all payers default. Hence,

a counterparty default only matters if all other payers default, an event with probability

(1− q)N−1. In addition, the amount of collateral xopt, increases with N , as shown by equa-

tion (10). The lower “loss given (joint) default” ĉ−2xopt as N increases also reduces investors’

exposure to counterparty risk and thus weakens their incentives to monitor.

In the rest of the section, we focus on the case in which the optimal contract is not

incentive compatible. We define N∗ as the largest value of N such that (12) holds.

Assumption 3 (Monitoring problem). The number of investor pairs satisfies N > N∗ .

Hence, optimal loss mutualization is not incentive compatible for collateral cost k ∈ [km, k̄].

We then derive the optimal incentive-compatible contract, which, to distinguish from the

optimal contract, we call the incentive-compatible (IC) contract/loss mutualization.
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4.1 Incentive-compatible loss mutualization

We start with rewriting the monitoring constraint (8) under a generic, simplified contract

ψ

1− α
≤ 1

2

[
rs − rf + (1− q)N−1 (rf − 2x)

]
+
v − 1

2

[
min{rs, ĉ} −

( [
1− (1− q)N−1

]
min{rf , ĉ}+ (1− qN−1)2x

)]
(8b)

We can see that the monitoring constraint can be relaxed by increasing rs and/or decreasing

rf , which are the receiver transfers when her counterparty succeeds and defaults respectively.

Intuitively, an investor has stronger incentives to monitor her counterparty when there is less

loss mutualization, that is, when rs − rf is bigger. Increasing rs or reducing rf to ensure

loss mutualization is incentive-compatible induces different types of costs. Increasing rs is

costly because it increases the liability of payers, and, hence, requires more costly collateral

to expand the payers’ pledgeable income. Since the additional collateral provides insurance

in the state in which all payers default, this IC contract features over-insurance as there are

more gains from trades realised in this solution than in the optimal allocation. Meanwhile,

reducing rf implies that some gains from trade are foregone when the counterparty defaults,

and, hence, we call it under-insurance. In the following proposition, we characterize the IC

loss mutualization scheme. We denote the equilibrium variables with the superscript ∗.

Proposition 2 (IC loss mutualization with monitoring). For a given k ∈ [km, k̄], the IC

loss mutualization with monitoring is incomplete. There exists a threshold k̂ < k̄ such that

the IC contract features
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1. over-insurance if k < k̂ with

r∗,ois > ĉ, r∗,oif = ĉ, x∗,oi =

(
1− (1− q)N−1 [qv + (1− q)]

)
ĉ− βq + 2ψ

1−α

2− 2(1− q)N−1 [qv + (1− q)]− βq
> xopt;

(13)

2. under-insurance if k > k̂ with

r∗,uis = ĉ, r∗,uif < ĉ, and x∗,ui =
ĉ− qβ − 2ψ(1−q)

vq(1−α)

2− qβ
< xopt. (14)

Proposition 2 characterizes the IC contract when the optimal loss mutualization scheme

is not incentive compatible. As we argued above, both over- and under-insurance contracts

share a common feature: Loss mutualization is incomplete to preserve an investor’s incentives

to monitor her counterparty. Furthermore, over-insurance (under-insurance) is the preferred

distortion when the collateral cost is low (high). To see why, it is instructive to derive the

utility loss from these distortions. Over-insurance distorts the optimal contract and makes

loss mutualization incomplete by increasing the transfers received by investors when their

counterparties do not default, that is, r∗,ois > ropts = ĉ. This increases the payers’ liability

and thus requires additional collateral x∗,oi−xopt. Given that r∗,oif = roptf = ĉ, the additional

collateral supports insurance only when all payers default. The utility loss is

U opt − U∗,oi =
[
k − (v − 1)(1− q)N

]
(x∗,oi − xopt), (15)

where the term between brackets is the collateral cost net of the expected value of the

additional insurance in the state in which all payers default. Hence, over-insurance is less

costly when the cost of collateral is low.
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In contrast, under-insurance makes loss mutualization incomplete by reducing the trans-

fers received by investors when their counterparties default r∗,uif < roptf = ĉ. Investors thus

forgo valuable insurance while saving xopt − x∗,ui units of collateral as the payers’ liability

decreases. Overall, the utility loss is given by

U opt − U∗,ui =
[
k̄ − k

]
(xopt − x∗,ui), (16)

with the term between brackets equal to the value of collateral if the investors’ insurance

needs are not satisfied when their counterparties defaults net of the cost of collateral. Since

under-insurance allows investors to economize on the use of collateral, it is preferred when

the cost of collateral is high.

To sum up, as loss mutualization improves insurance and in turn weakens investors’

incentive to monitor their counterparties, the incentive-compatible contract has to limit the

scope of loss mutualization. In the next section, we show that an alternative monitoring

arrangement, namely, centralized monitoring, can sustain complete loss mutualization while

incurring a different type of distortion.

4.2 Centralized Monitoring

In this section, we consider a different scheme where the monitoring efforts of all investors are

centralized and delegated to a single external agent. This third-party agent is risk-neutral,

has neither endowment nor asset, and is protected by limited liability. His monitoring effort

is as costly as the investors and is also unobservable. By design, he is unable to provide

insurance, has no insurance need nor a superior monitoring technology. We call this agent a

CCP since his role as a monitor resembles that of an actual CCP, as discussed in Section 5.
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To induce the CCP to monitor, the contract must also specify an explicit compensation

scheme which is contingent on the outcomes of the payers. As the payers are homogeneous,

it is without loss to consider a per-payer compensation scheme that depends on the number

of defaulted counterparties π(d). The CCP prefers monitoring all investors to none if

E[(N − d)π(d)|m = 1]− 2Nψ ≥ E[(N − d)π(d)|m = 0] (17)

The left-hand side of (17) is the expected compensation of the CCP given monitoring and

the right-hand side is the one without. In the state with d defaulting payers, each of the

remaining (N−d) payers transfers π(d) to the CCP as compensation. Monitoring all investors

costs 2Nψ to the CCP. We call the above inequality the centralized monitoring constraint.18

Under centralized monitoring, there are two changes to the investor’s problem: the ad-

dition of the design of the CCP’s compensation π(d) per payer and the replacement of the

bilateral monitoring constraint by the centralized monitoring constraint. Importantly, con-

tracting under centralized monitoring disentangles two key aspects of the investors’ problem:

the insurance needs and the monitoring incentives. As long as the CCP is properly incen-

tivized, the investors can completely mutualize losses. In other words, we are left to solve

the optimal design of the CCP’s compensation.

The CCP’s compensation contracting problem is the standard principal-agent problem

with multiple efforts. Because of limited liability and the effort unobservability, the CCP

earns an agency rent, that is, receiving a compensation strictly more than the effort costs. To

minimize the agency rent, if there are enough resources, the CCP should only be rewarded

in the state that is most indicative of all efforts being exerted. This is the state in which

18The CCP can also shirk on any number of efforts but the CCP achieves higher utility by shirking on all
efforts than by shirking on some. Thus, the relevant incentive constraint is given by equation (18).
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no payers default because monitoring efforts reduce counterparty risks. The centralized

monitoring constraint then becomes

qNNπ(0)− 2Nψ ≥ (αq)NNπ(0) (18)

As the payers are responsible for the compensation to the CCP at date 1, the resource

constraint (2) when no payer defaults (d = 0) now reads as

π(0) + ps(0) ≤ x+ (1− x)2R, (19)

It is optimal for the investors to minimize the CCP’s compensation and thus to bind the

centralized monitoring constraint.

Lemma 3. The optimal compensation scheme for the CCP is

π∗cm(d) =


2ψ

qN (1−αN )
if d = 0

0 if d > 0

(20)

if the resources constraint (19) holds for π∗cm(0).

Constraint (19) could be violated by the compensation contract of Lemma 3 when N

is too large. In this case, the optimal compensation contract would also specify a positive

payment in the state d = 1, which is the second most indicative of monitoring efforts.

Because the results are qualitatively similar, we will focus on the case in which equation

(19) holds for π∗cm(d) for simplicity. In Section 5, we come back to this assumption when

we discuss the relationship between the CCP’s compensation in the model and the first-loss

equity tranche of central counterparties in practice.
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As we mentioned, the advantage of centralized monitoring is that it does not require

distortion in loss mutualization. However, the need to compensate the CCP increases the

payers’ liability and thus demands more collateral to support the scheme. Indeed, the in-

vestor’s pledgeability constraint (7b) now reads

Es[po(d)] + qN−1π∗cm(0) ≤ x+ (1− x)β, (21)

where the second term on the left-hand side is the expected contribution to the compensation

of the CCP given that the investor is a successful payer. We now present the IC contract

with centralized monitoring.

Proposition 3 (IC loss mutualization with centralized monitoring). Given that Assumption

1-3 hold, the IC contract under centralized monitoring involves the CCP’s compensation

contract π∗cm(d) given by (20) and the multilateral contract with r∗s,cm = r∗f,cm = ĉ and

x∗cm = xopt +
2ψ

(1− αN)(2
[
1− (1− q)N

]
− βq)

(22)

Proposition 3 shows that with centralized monitoring, loss mutualization remains com-

plete. The distortions required to make loss mutualization incentive compatible come in

the form of additional collateral, which is used to support the CCP’s compensation paid

by the payers. This extra collateral requirement is proportional to the per-payer expected

compensation of the CCP

E[π∗cm(d)] =
2ψ

1− αN
. (23)

The cost of centralized monitoring can be represented by the investor’s utility loss relative
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to the optimum. In the proof of Proposition 3, we show

U opt − U∗cm =
[
k − (v − 1)(1− q)N

]
(x∗cm − xopt) +

αN

1− αN
ψ (24)

The first component is equal to net cost of collateral multiplied by extra amount of collateral

x∗cm − xopt needed to implement the allocation. Similar to the case of over-insurance in

bilateral monitoring, the additional collateral is costly on net because it only supports more

gains from trade in the state when all payers default. The second term is the agency rent

1
2
E[π∗cm(d)]− ψ per investor paid to the CCP due to the unobservability of efforts.

We note that when α > 0, the agency rent component of centralized monitoring decreases

in the market size N . These endogenous economies of scale in incentivizing efforts are similar

to the diversification benefits in Diamond (1984).19 In particular, when N is large, the agency

rent tends to zero, as if the CCP’s centralized monitoring efforts are observable.

4.3 Optimal monitoring arrangement

Having characterized the incentive-compatible allocation under bilateral and centralized

monitoring, we can now answer the questions: Which monitoring arrangement is optimal?

And when is monitoring optimal?

We show below that when the moral hazard problem is not degenerate (α > 0), larger

market and lower cost of collateral favor centralized monitoring over bilateral monitoring.

We recall that bilateral monitoring could feature over- or under-insurance. The result stated

above follows from comparing centralized monitoring first to bilateral monitoring with over-

insurance and then to bilateral monitoring with under-insurance.

19It is also known as the cross-pledging benefits of contracting with multiple projects. See Tirole (2010)
for a textbook treatment on the topic.
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Relative to the optimal loss mutualization, the distortions in centralized monitoring and

in bilateral monitoring with over-insurance are similar. Both feature the use of additional

collateral, which is used to support the incentive payment to the CCP in centralized mon-

itoring and the additional counterparty risk exposure, a form of incentive payment, to the

investors in bilateral monitoring. Centralized monitoring is thus preferred when the required

incentive cost to the CCP is smaller than the implicit incentive cost to the investors in bi-

lateral monitoring. These costs, which can be seen in the respective monitoring constraints

(18) and (8), are proportional to ψ
1−αN under centralized monitoring and ψ

1−α under bilateral

monitoring. Hence, under centralized monitoring, the incentive cost is lower than that under

bilateral monitoring and decreases in the market size. This is the consequence of the endoge-

nous economies of scale from centralized monitoring mentioned above. Therefore, when the

market is larger, the agency rent reduction benefits are more significant, making centralized

monitoring more desirable (relative to bilateral monitoring).

Next, vis-à-vis bilateral monitoring with under-insurance, centralized monitoring provides

more insurance at the cost of larger collateral requirement. As a result, for centralized mon-

itoring to dominate, the collateral cost cannot be too high. Putting the arguments together,

we reach the conclusion that larger market and lower cost of collateral favor centralized

monitoring.

We can only claim that centralized monitoring is optimal, however, if monitoring itself

is optimal. The intuition for the optimal monitoring choice here is similar to the case of

observable monitoring. As monitoring is costly, it is desirable only when the collateral is

expensive enough. When monitoring is unobservable, it becomes effectively costlier because

it has to be incentivized by distorting the allocation. Hence, as shown below, the new

condition on the collateral cost for optimal monitoring is tighter than the condition k ≥ km
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derived in Proposition 1.

In the next proposition, we characterize the precise conditions for centralized monitoring

to be optimal when the market becomes infinitely large. In the Appendix, we provide

analytical conditions for finite N . The limit case N → ∞ is useful for two reasons. First,

we obtain simple analytical expressions highlighting the role of the model parameters. More

importantly, as we show in the Appendix, the terms that depend on N in the general

condition decay exponentially with N . Hence, the limit analysis is in fact instructive for

small values of N , as also shown by our numerical example below.

Proposition 4 (Optimal monitoring arrangement). At the limit N → ∞, when α > 0,

centralized monitoring is optimal for k ∈ [k′m, kcm], with

k′m ≡
2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2
> km, kcm ≡

(1− q)k̄
1− q + vq(1− α)

< k̄, (25)

and k′m < kcm is implied by Assumption 2.

We illustrate these results with a numerical exercise in Figure 1. Both panels show the

range of collateral cost and market size in which centralized monitoring is optimal. The right

panel corresponds to a higher value of α. We first observe that the characterization of the

centralized monitoring region as an intermediate range of collateral costs, also applies for

finite values of N . In fact, this range does not change substantially as N increases. As we

argued, the conditions for the limit case N →∞ in Proposition 4 are a good approximation

even for small values of N . Next, when comparing the two panels, we see that increasing

α has an ambiguous effect on the region in which centralized monitoring is optimal: Cen-

tralized monitoring dominates bilateral monitoring for larger values of k but simultaneously

monitoring itself is dominated for a larger range of values of k. This numerical result is
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confirmed analytically in the limit case of Proposition 4: k′m and kcm both increase with

α. Increasing α favors centralized monitoring relative to bilateral monitoring due to the

agency-cost-reduction benefits of centralized monitoring. Meanwhile, as α increases, the

benefits from monitoring decrease since the default probability of an unmonitored investor

1− αq is lower.

Figure 1. Incentive-compatible monitoring. Parameter values: ĉ = 0.8, β = 0.4, v = 2, q = 0.7,
ψ = 5.6× 10−3.

5 Implications for CCP design

In this section, we explain how our results relate to the design of a central counterparty

in practice. Section 3.2 and 3.3 already discussed the implementation of our multilateral

contract as a novated contract and some features of the CCP default waterfall, respectively.

Hence, we focus on the novel implications derived in Section 4. We first derive implications
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for the CCP ownership structure. Then, we show that the optimal compensation schedule

of the agent under centralized monitoring relates to the loss absorption capacity of a CCP.

CCP Ownership Structure In our analysis of the incentive-compatible contracts, we

compared two different schemes. Under centralized monitoring, monitoring efforts are ex-

pended by a single third-party agent rather than by individual clearing members. The

monitoring effort can be interpreted as the costly process of vetting members and ensuring

that risk management practice is adequate. This third-party agent, who is only responsible

for members’ creditworthiness, but neither receives nor provides insurance, can be described

as a third-party CCP. When bilateral monitoring is optimal, there is no need to involve a

third-party. In this case, we interpret the optimal arrangement as a member owned CCP.

Our results suggest that a third-party CCP is preferable to a member owned CCP when

the number of clearing members is large. We showed that free-riding benefits from lack of

monitoring are higher in large CCPs where losses are more efficiently shared among members.

Hence, discipline is better maintained via centralization of monitoring efforts. Monitoring

is indeed one of the key roles of CCPs and can take many forms. Among other due dili-

gence exercises, ESMA (2020) reports that CCPs must use an internal credit classification,

send mandatory due diligence questionaires and perform onsite visits of their members. Fi-

nally, by highlighting the role of factors such as market size or the cost of collateral for the

ownership structure, our model also informs the policy debate about the optimal ownership

structure (see e.g. Board (2010)).

CCP Equity Tranche Default by a seller in our model is a sign that the third-party

CCP did not exert due diligence when vetting clearing members. Under the optimal com-

pensation contract, the third-party CCP only receives a payment when no seller defaults.
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By concentrating the CCP’s payoff in this state of the world, his incentives are preserved at

the minimal cost. With this first-loss exposure, the CCP contract resembles a junior equity

tranche, which is a typical feature of default waterfalls in practice (see e.g. Duffie (2015)).

As in our model, the description of the default waterfall of the Japan Securities Clearing

Corporation (JSCC) explicitly refers to the CCP incentives.20

JSCC should compensate losses before Survivors’ Pay, in order to keep incen-

tive for appropriate risk management

We observed in Section 3.3 that a very high-powered incentive contract for the CCP may

not be feasible because it requires a very large payment to the CCP when all payers sur-

vive. Optimal contracting predicts that the CCP would also be compensated in the next

most informative states, that is, when all but one member survives. Following our line of

interpretation, the CCP equity tranche would not be wiped out if only one member defaults.

Our optimal incentive compatible contract also implies that surviving members should

be exposed to the default risk of other members, even if they are not directly responsible.

Hence, in the words of Coeuré (2015), CCPs are risk poolers, not insurance providers. In

fact, we show that the optimal CCP may be owned by its members, in which case, surviving

members are directly exposed after the resources of a defaulting member are exhausted

(McPartland and Lewis (2017) make this point informally).

6 Conclusion

This paper characterizes the optimal loss mutualization scheme in a Central Clearing Coun-

terparty. Loss mutualization hedges insurance buyers against the counterparty risk of in-

20See https://www.jpx.co.jp/jscc/en/risk/default.html
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surance providers but it also lowers market discipline since buyers have less incentives to

search for creditworthy counterparties. We show that a third-party CCP can mitigate these

inefficiencies by acting as centralized monitor. We predict that third-party CCPs are more

likely to arise for contracts with a large user base because of (endogenous) economies of scale.

Less traded contracts are more efficiently cleared with a member owned CCP. Our paper is

one of the first to consider the ownership structure of a CCP and to endogenize the junior

equity tranche of third-party CCPs.

Our aim is to understand the basic determinants of the default waterfall of CCPs but

our framework could be extended to discuss more complex aspects of the capital structure

of CCPs. Additionally, while in our paper a CCP is efficiently run by design, there has been

a growing concern that some of these market players became “too-big-to-fail” and that they

impose externalities on financial markets. Related to this issue, the trade-off discussed in

banking between competition and stability seems to apply to CCPs as well. We leave these

interesting venues for future research.

We end with a discussion of some limitations of our analysis. In particular, our model

does not consider netting efficiency, an important benefit of having a CCP. There are two

types of netting that can be performed via a CCP. First, when a member has two opposite

positions on the same contract with two different members, a CCP can net out the gross

positions and impose collateral requirement on the net exposure. Second, if members trade

different risks or contracts with different members, a CCP who clears all these contracts can

compute the total risk exposure and charge the margin at a portfolio level. Diversification of

risks would thus net out some of the risk exposure and margin requirement. These netting

benefits are not captured in our model because each investor only takes one position and

there is only a single source of risk. We choose not to consider netting benefits in order to

40



focus on the loss mutualization benefits and the associated design aspects of the CCP. As a

result, the benefit of central clearing identified in this paper should be considered as a lower

bound. For a comprehensive survey on various benefits and costs of central clearing, see

Menkveld and Vuillemey (forthcoming).
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Appendix

A Proofs

A.1 Proof of Lemma 1

With a slight abuse of notation, denote q(m) the probability the asset of an investor succeeds
in the relevant aggregate state, with m ∈ {0, 1} the monitoring decision. By definition,
q(0) = αq and q(1) = q. For a given monitoring choice m, the number of defaulting payers
among k is a random variable with a binomial distribution B(k, q(m)). Taking expectation
over budget constraints (4), we thus obtain

Es[po(d)] =

N−1∑
d=0

(1− q(m))dq(m)N−1−d
(
N − 1
d

)[
rs(d) +

d

N − d
(rf (d)− pf (d))− N

N − d
x

]

= Es[ro(d)] +

N−1∑
d=1

(1− q(m))dq(m)N−1−d
(
N − 1
d− 1

)
(rf (d)− pf (d))− x

N−1∑
d=0

(1− q(m))dq(m)N−1−d
(
N
d

)

= Es[ro(d)] +
1− q(m)

q(m)

N−1∑
l=0

(1− q(m))lq(m)N−1−l
(
N − 1
l

)
(rf (l + 1)− pf (l + 1))− (1− q(m))N

q(m)
x

− x
N−1∑
d=0

(1− q(m))dq(m)N−1−d
(
N
d

)
= Es[ro(d)] +

1− q(m)

q(m)
(Ef [ro(d)]− Ef [po(d)])− x

q(m)

The last line is equivalent to equation (5).
An investor utility with contract C and monitoring choice m ∈ {0, 1} is given by

U =
1

2

(
q(1− x)2R+ x− E[po(d)]

)
+

1

2

(
E[ro(d)] + (v − 1)E

[
min{ro(d), ĉ}

])
Substituting E[po(d)] thanks to equation (5), we obtain

U = qR+
1

2
x− qRx+

1

2
x+

v − 1

2
E
[

min{ro(d), ĉ}
]

which is equivalent to equation (6).

A.2 Proof of Lemma 2

In the proof, we use the remark following Definition 4 that x ≤ ĉ
2

without loss.
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Proof that resource constraint (3) binds
From equation (4), increasing pf (d) for d < N allows investors to increase rs(d) in this

state. Such a change may only relax limited pledgeability constraint (7). Since investors’
utility (6) is weakly increasing with rs(d), it is optimal to saturate resource constraint (3).
Hence, pf (d) = x for all d < N .

For state d = N , suppose (3) is slack and consider increasing pf (N) by ∆pf (N) ∈ (0, x−
pf (N)]. Denote ∆Ef [po(d)] the corresponding increase in Ef [po(d)]. Let us also increase
Es[po(d)] by ∆Es[po(d)] = ∆Ef [po(d)] in order to ensure limited plegeability constraint (7)
still holds. Consider then a joint increase in rf (N) and ∆Es[ro(d)] such that

∆rf (N) ≤ ∆pf (N), ∆Es[ro(d)] ≥ vEf [ro(d)], ∆Es[r0(d)] ≤ ∆Es[po(d)]

The first constraint ensures that resource constraint (3) is still satisfied following the per-
turbation. The second constraint ensures that bilateral monitoring constraint (8) is satisfied
after the perturbation if needed. The last constraint ensures that budget constraint (4) is
still satisfied. Since ∆pf (N) > 0 and Es[r0(d)] > 0, by construction, such a perturbation
exists. Since

cf (N) ≤ pf (N) + x < 2x < ĉ,

where the inequalities follow from our assumptions, this perturbation strictly increases in-
vestors’ utility (6).

Proof that rs(d) = rs for all d < N
Let two states (d, d′) such that rs(d) > rs(d

′). We argue that the following perturbation
weakly increases investors’ utility: decrease rs(d) and ps(d) and increase rs(d

′) and ps(d
′)

such that Es[ro(d)] and Es[po(d)] are unchanged. This perturbation is feasible because it
does not affect constraint (7) and it weakly relaxes bilateral monitoring constraint (8). It is
(weakly) profitable because the objective function (6) is concave in rs(d) and rs(d

′) and it is
strictly profitable if rs(d) > ĉ > rs′(d

′).
Proof that rf (d) = rf for all d < N
Let two states (d, d′) such that rf (d) > rf (d

′). The argument used above also applies
here if rf (d) > rf (d

′) ≥ ĉ or if rf (d
′) < rf (d) ≤ ĉ. Hence, we are left to analyze the case in

which rf (d
′) < ĉ < rf (d). For ε > 0 small enough, consider the following perturbation

(∆rf (d
′),∆rf (d)) =

(
ε,−f(d′)

f(d)
vε

)
with f(d) the probability that d payers default among N − 1. The perturbation is designed
such that the right-hand side of incentive constraint (8) is unchanged. To satisfy budget
constraint (4) in state d and d′, set ∆ps(d) = 1−q

q
∆rf (d) and ∆ps(d

′) = 1−q
q

∆rf (d
′). The

limited pledgeability constraint (7) still holds after the perturbation because the expected
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payment Es[po(d)] increases by

∆Es[po(d)] = −1− q
q

(v − 1)f(d′)ε

The perturbation strictly increases the objective function (6) which is concave in rf .

A.3 Proof of Proposition 1

In the proof, we first derive the optimal contract for a given monitoring choice m ∈ {0, 1}
(Step 1) and then derive the optimal monitoring decision (Step 2). We use the notation
introduced in the proof of Lemma 2 and let q(m) be the probability a payer succeeds given
monitoring decision m.

Step 1. Optimal contract
We first derive a simplified version of the investor problem in Definition 2 thanks to the

results from Lemma 2. We have

Ef [po(d)] = x

q(m)
(
Es[po(d)]− Ef [po(d)]

)
= Es[ro(d)] +

1− q(m)

q(m)
(Ef [ro(d)]− Ef [po(d)])− x

q(m)

= q(m)rs + (1− q(m))
[
1− (1− q(m))N−1

]
rf −

[
1− (1− q(m))N

]
2x

Given m ∈ {0, 1}, a contract C is optimal if x, rs, rf solve the following problem

max
x,rs,rf

v − 1

2

[
q(m) min{rs, ĉ}+ (1− q(m))

([
1− (1− q(m))N−1

]
min{rf , ĉ}+ (1− q(m))N−12x

)]
− x(qR− 1)

subject to q(m)rs + (1− q(m))
[
1− (1− q(m))N−1

]
rf ≤ q(m)β +

(
2− q(m)β − 2(1− q(m))N

])
x

(A.1)

where (A.1) is the limited pledgeability constraint (7) expressed as a function of rs, rf and
x only, using the equations above.

The objective function is strictly increasing with rs and rf for all rs ≤ ĉ and rf ≤ ĉ and
constant otherwise. It is thus weakly optimal to set rs ≤ ĉ and rf ≤ ĉ. Two cases are then
possible. Either rs = rf = ĉ or constraint (A.1) binds. In the first case, the derivative of the
objective function with respect to the collateral x is given by

∂U

∂x
= (v − 1)(1− q(m))N − (qR− 1) = k̂1(m)− (qR− 1)

If qR − 1 ≤ k̂1(m), then x should be increased until rf (N) = 2x reaches ĉ. This implies
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x = ĉ
2
. Otherwise, x should be decreased until constraint (A.1) binds. We are thus left to

consider the case in which (A.1) binds. Then, plugging (A.1) into the objective function,
the maximization problem is equivalent to:

max
x

[
v − 1

2
(2− q(m)β)− (qR− 1)

]
x =

[
k̂2(m)− (qR− 1)

]
x

subject to 0 ≤ x ≤ x(m) ≡
[
1− (1− q(m))N

]
ĉ− βq(m)

2 [1− (1− q(m))N ]− βq(m)

where the upper bound on x is obtained by setting rs = rf = ĉ in (A.1). If qR− 1 ≤ k̂2(m),

then x = (m). Otherwise, if, qR − 1 ≥ k̂2(m), then x = 0 is optimal. In this case, any
contract such that

rs +
1− q(m)

q(m)

[
1− (1− q(m))N−1

]
rf = β

is optimal. Observe also that k̂2(m) > k̂1(m).
We thus fully characterized the optimal contract for a given monitoring decision m.

If qR − 1 ≤ k̂1(m), the full insurance contract is optimal. If qR − 1 ∈ [k̂1(m), k̂2(m)],
the complete loss mutualization contract with rs = rf = ĉ is optimal. In this case, we
showed the collateral amount is given by (10) for a given monitoring choice m. Finally, if
qR − 1 ≥ k̂2(m), the optimal amount of collateral is given by x(m) = 0 and the optimal
contract can be implemented bilaterally with rs = β and rf = 0 is optimal.

Step 2. Optimal monitoring decision
An allocation is characterized by a type of contract and a monitoring decision. For any

m ∈ {0, 1}, denote C∗,m the optimal contract with C∗,m ∈ {FIm, CMm, NCm}. FI stands for
Full Insurance, CM for Complete (Loss) Mutualization and NC for No Collateral. Observe
that since q(0) < q(1), we have k̂i(1) < k̂i(0) for i = 1, 2 by definition of these thresholds.

We first show that the benefit of monitoring is increasing with the collateral cost qR− 1.
S If qR−1 ≤ k̂1(1), the full insurance contract is optimal for any m ∈ {0, 1}. Hence, the net
benefit from monitoring is strictly negative and independent of the collateral cost. Suppose
now qR − 1 ∈ [k̂1(1), k̂2(1)] so that C∗,1 = CM1 and C∗,0 ∈ {FI0, CM1}. If C∗,0 = FI0, the
net benefit of monitoring is given by

U(C∗,1)− U(C∗,0) =
1

2

[
qR− 1− (v − 1)(1− q)N

]
(ĉ− 2x(1))− ψ

with x(1) the collateral in the CM1 contract. The benefit is strictly increasing with qR− 1
since 2x(1) < ĉ. If instead C∗,0 = LM , we have

U(C∗,1)− U(C∗,0) =
1

2

[
qR− 1− (v − 1)(1− q)N

]
(ĉ− 2x(1))− 1

2

[
qR− 1− (v − 1)(1− αq)N

]
(ĉ− 2x(0))− ψ
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The collateral x(m) in the CMm contract is independent of qR − 1. Hence, the expression
above is increasing in qR− 1 because x(0) > x(1).

We are left to consider the case qR−1 ≥ k̂2(1). Then, C∗,1 = NC1 and C∗,0 ∈ {FI, CM0, NC0}.
If C∗,0 = NC0, no collateral is used for any m ∈ {0, 1} which implies that the benefit from
monitoring is constant as a function of the collateral cost. Suppose then that C∗,0 = CM0.
Then, the net benefit of monitoring is equal to

U(C∗,1)− U(C∗,0) = U(NC1)− U(CM1) +
[
U(CM1)− U(CM0)

]
We already showed that the second term between brackets is increasing with qR − 1. The
first term is also increasing in qR− 1 because the NC1 contract requires no collateral while
the LM1 contract collateral requirement is positive independent of qR − 1. If C∗,0 = FI,
we can conclude with a similar argument. We thus proved that the value of monitoring is
increasing with qR− 1.

Denote km the threshold, if any, above which monitoring is optimal. Since the benefit of
monitoring is increasing in qR − 1, this threshold is unique if it exists. Our analysis above
already shows that km > k̂1(1). We now want to show that km ≤ k̂2(1). Monitoring is
optimal for qR− 1 = k̂2(1) if and only if

0 ≤ U(C∗,1)|qR−1=k̂2(1) − U(C∗,0)|qR−1=k̂2(1)

0 ≤ v − 1

2
qβ − ψ −

[
v − 1− k̄

] ĉ
2
− 1

2
max

{
0, α

k̂2(1)− (v − 1)(1− αq)N

2 [1− (1− αq)N ]− βαq

}
βq(2− ĉ)

ψ ≤ v − 1

2
qβ

(
1− ĉ

2

)
− αβqv − 1

2

(
1− ĉ

2

)
max

{
0,

2− qβ − 2(1− αq)N

2 [1− (1− αq)N ]− βαq

}
To derive the second line, we used C∗,1 = NC1 and C∗,0 ∈ {FC0, LM0} for qR − 1 = k̂2(1).
In the last equation, observe that the argument of the max is increasing in N . Hence, the
inequality above holds if it holds in the limit N →∞. We have

lim
N→∞

2− qβ − 2(1− αq)N

2 [1− (1− αq)N ]− βαq
=

2− βq
2− βαq

Hence, the last inequality holds for all N if

ψ ≤ βq(1− α)(v − 1)

2− βαq

(
1− ĉ

2

)
It is straightforward to verify that the right-hand side is lower than ψmax and thus that this
condition holds under Assumption 2. This implies that km ≤ k̂2(1).

To conclude we need to define the thresholds kN and k̄ and show that the monitoring
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threshold km lies in [kN , k̄]. Define

k̄ ≡ k̂2(1) =
v − 1

2
(2− qβ)

This implies km ≤ k̄ since we showed that monitoring is optimal for k = k̄ and the benefit
from monitoring is increasing with the collateral cost. To define kN , let us first derive the
threshold k̂m such that the CM1 contract delivers the same utility as the FI0 contract. Our
analysis above shows this threshold exists and it is defined implicitly by

0 = U(CM1)k̂m − U(FI0)k̂m =
1

2

[
k̂m − (v − 1)(1− q)N

]
(ĉ− 2xopt(1))− ψ

=
k̂m − (v − 1)(1− q)N

2
[
1− (1− q)N

]
− βq

βq

(
1− ĉ

2

)
− ψ (A.2)

where we used equation (10) to substitute for xopt(1). Hence, we obtain

k̂m = (v − 1)(1− q)N +
2ψ

βq(2− ĉ)

(
2
[
1− (1− q)N

]
− βq

)
We ca now define kN as

kN = min
{

(v − 1)(1− αq)N , k̂m
}

If kN = k̂m, then by definition km = kN . If kN = (v−1)(1−αq)N , this implies that contract
CM1 is dominated by contract FI for k = kN and hence that the monitoring threshold
satisfies km ≥ kN . This concludes the proof.

A.4 Proof of Corollary 1

Equation (11) shows that k̄ does not depend on N . To prove the result for kN , consider

equation (A.2) in the proof of Proposition 1. Let g : y 7→ k̄+(v−1)y
2+2y−βq . We have

g′(y) =
(v − 1)(2− βq)− 2kN

[2 + 2y − βq]2
=

2(k̄ − kN)

[2 + 2y − βq]2
≥ 0

where the last inequality follows from Proposition 1. Sincee y = −(1− q)N is increasing with
N , the term on the right-hand side of (A.2) is increasing with N . Since this term is also
increasing with kN , by the Implicit Function Theorem, kN is decreasing with N .
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A.5 Proof of Corollary 2

By Corollary 1, k1 > k̄N . Hence, by Proposition 1, the optimal bilateral contract uses strictly
more collateral than the optimal multilateral contract for k ∈ [kN , k1]. For k ∈ [k1, k̄], the
collateral requirement in the optimal bilateral contract is given by xopt|N=1 = 1−β

2−β independently

of the optimal monitoring decision mopt for N = 1. Hence, since xopt(m) is strictly increasing
withN form ∈ {0, 1}, it follows that the collateral requirement is strictly lower in the optimal
bilateral contract.

A.6 Proof of Proposition 2

The bilateral monitoring constraint (8) must bind. Otherwise the second-best allocation can
be implemented which is a contradiction with Assumption 3. The pledgeability constraint
(7) must also bind. If not, it is optimal to decrease x until (7) binds. To see this, compute
the marginal effect of a decrease in x

∆U

∆x
= −(v − 1)(1− q)N + qR− 1 = −k + qR− 1 ≥ 0

where the first term captures the effect of decreasing x on the payment rf (N) = 2x. The
inequality above follows from Assumption 3.

Hence, the IC contract maximizes the investors’ utility (6) under the binding pledgeability
constraint (7b) and the binding monitoring constraint (8b). Since rf ≤ ĉ is optimal without
constraint (8b) by Proposition 1 and increasing rf tightens constraint (8b), it follows that
rf ≤ ĉ. The opposite argument implies that rs ≥ ĉ. Using these results, we can solve for rs
and rf as a function of the collateral cost x only. From (7b) and (8b), we have

qrs + (1− q)
[
rf − (1− q)N−1(rf − 2x)

]
= (2− qβ)x+ qβ

rs − v
[
rf − (1− q)N−1(rf − 2x)

]
=

2ψ

1− α
− (v − 1)ĉ

Hence, we obtain

(1− q)
[
rf − (1− q)N−1(rf − 2x)

]
=

(1− q)
[
(2− qβ)x+ qβ

]
− q(1− q)

[
2ψ

1−α − (v − 1)ĉ
]

qv + (1− q)

Since the investors utility (6) is independent of rs when rs ≥ ĉ, the effect of marginal increase
in x is given by

∂U

∂x
=
v − 1

2

(1− q)(2− qβ)

qv + 1− q
− k
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Let k̂ denote the threshold for the collateral cost equal to the first term on the right-hand
side. Two cases are possible. First if k > k̂, the IC contract is such that rs = ĉ. Using the
binding constraints (7b) and (8b), the values of x and rf in equation (14) obtain.

If k < k̂, collateral should be increased until rf = ĉ. Using once again the binding
constraints (7b) and (8b), we obtain the remaining contract variables rs and x as in (13).

Finally, since (1− q) < qv + 1− q, k̂ < k̄ = v−1
2

(2− qβ) as stated in Proposition 2.

A.7 Proof of Proposition 3

We first prove Proposition 3 and then provide the derivations leading to equation (24).
By construction, the compensation contract given in (20) is the cheapest incentive-

compatible contract for the agent. Since monitoring is not done bilaterally by investors,
the results in Proposition 1 for mopt = 1 apply here. Investors optimally consume ĉ unless
all payers default, that is r∗s,cm = r∗f,cm = ĉ. Given the characterization of contracts in Lemma
2, we are thus left to derive the collateral requirement x∗cm

Using the binding budget constraint (5) and the limited pledgeability constraint (7) as
well as the compensation schedule given by (20), we obtain

ĉ− (1− q)N(ĉ− 2x∗cm) = q

(
x∗cm + (1− x∗cm)β − 2ψ

q(1− αN)

)
+ (1− q)x∗cm + x∗cm

We thus find

x∗cm =

[
1− (1− q)N

]
ĉ− βq + 2ψ

1−αN

2 [1− (1− q)N ]− βq
which can be rewritten as (22).

We now provide the derivations for equation (24). Note that the in the expression for the
investor utility the monitoring cost ψ is replaced by his expected contribution to the agent
compensation, equal to 1

2
π̄∗cm. Hence, we obtain

U∗cm = qR +
v − 1

2

(
ĉ− (1− q)N(ĉ− 2x∗cm)

)
− 1

2
π̄ − x∗cm(qR− 1) (A.3)

Subtituting π̄∗cm = 2c
1−αN and subtracting (A.3) to the utility with the optimal contract, we

get (24).

A.8 Proof of Proposition 4

We first compare centralized monitoring to no monitoring. For large N , the optimal contract
without monitoring features complete loss mutualization, as shown in Proposition 1. To
express the condition that centralized monitoring dominates no monitoring, we derive for
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each allocation the utility gain with respect to the full collateral allocation. We have

Udm = qR +
[
v − 1− k

] ĉ
2

+
[
k − (v − 1)(1− q)N

]( ĉ
2
− x∗cm

)
− ψ

1− αN

U opt
∅m = qR +

[
v − 1− k

] ĉ
2

+
[
k − (v − 1)(1− αq)N

]( ĉ
2
− xopt∅m

)
where the subscript ∅m is used to denote no monitoring. From Proposition 1 and 3, we have

ĉ

2
− x∗dm =

βq
(
1− ĉ

2

)
− 2ψ

1−αN

2
[
1− (1− q)N

]
− βq

ĉ

2
− xopt∅m =

βαq

2
[
1− (1− αq)N

]
− βαq

(
1− ĉ

2

)
Hence, delegated monitoring dominates no monitoring, that is, Udm ≥ U opt

∅m if and only if

qR− 1− (v − 1)(1− q)N

2
[
1− (1− q)N

]
− βq

[
βq

(
1− ĉ

2

)
− 2ψ

1− αN

]
− ψ

1− αN
≥ qR− 1− (v − 1)(1− αq)N

2
[
1− (1− αq)N

]
− βαq

βαq

(
1− ĉ

2

)
Taking the limit when N →∞, we obtain

k

2− βq

[
βq

(
1− ĉ

2

)
− 2ψ

]
− ψ ≥ k

2− βαq
βαq

(
1− ĉ

2

)
Since, under Assumption 2,

ψ ≤ βq(1− α)

2− βαq

(
1− ĉ

2

)
the condition can be expressed as a lower bound k′m on k with

k′m =
2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2

We now turn to the comparison between centralized monitoring and bilateral monitoring.
Using equations (15) and (24), delegated monitoring dominates bilateral monitoring with
over-insurance if and only if(

k − (v − 1)(1− q)N
)(
x∗cm − xopt

)
+

αN

1− αN
c ≤

(
k − (v − 1)(1− q)N

)(
x∗,oi − xopt

)
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Rewriting equation (13), we obtain

x∗,oi − xopt =
2ψ[

1− α
][

2(1− (1− q)N )− βq
] − vq(1− q)N−1

2(1− (1− q)N )− βq
(ĉ− 2x∗,oi)

=
2ψ[

1− α
][

2(1− (1− q)N )− βq
] − vq(1− q)N−1

2(1− (1− q)N )− βq
βq(2− ĉ)− 4ψ

1−α
2
[
1− (1− q)N−1(vq + 1− q)

]
− βq

We thus obtain the following condition

αN

1− αN
ψ ≤

[
k − (v − 1)(1− q)N

]
(x∗,oi − x∗dm) (A.4)

αN

1− αN
ψ ≤ k − (v − 1)(1− q)N

2(1− (1− q)N )− βq

[
2ψ

1− α
− 2ψ

1− αN
− vq(1− q)N−1

βq(2− ĉ)− 4ψ
1−α

2
[
1− (1− q)N−1(vq + 1− q)

]
− βq

]

which we refer to as FOI ≥ 0 for simplicity. Taking the limit N → ∞, the left-hand side
converges to 0, while the right hand side converges to a strictly positive number if and only
if α > 0. If α = 0, the right-hand side converges to 0.

Finally, centralized monitoring dominates bilateral monitoring with under-insurance if
and only if(

k − (v − 1)(1− q)N
)(
x∗cm − xopt

)
+

αN

1− αN
ψ ≤

[
v − 1

2
(2− qβ)− k

] (
xopt − x∗,ui

)
Rewriting equation (14), we obtain

xopt − x∗,ui =
2ψ(1− q)

vq(1− α)(2− qβ)
− βq(2− ĉ)(1− q)N[

2− qβ]
[
2(1− (1− q)N )− βq

]
Hence, we can rewrite the condition as follows

v−1
2 (2− qβ)− k

2− qβ

[
2ψ(1− q)
vq(1− α)

− βq(2− ĉ)(1− q)N

2(1− (1− q)N )− βq

]
≥ k − (v − 1)(1− q)N

2(1− (1− q)N )− βq
2ψ

1− αN
+

αN

1− αN
ψ

which we refer to as FUI ≥ 0. Taking the limit N →∞, we obtain

v−1
2

(2− qβ)− k
2− qβ

2ψ(1− q)
vq(1− α)

≥ k

2− βq
2ψ

This condition holds if and only if k ≤ kom with

kom ≡
1− q

1− q + vq(1− α)
k̄ < k̄
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Finally, we are left to derive the maximum value of the monitoring cost ψ such that the
interval [k′m, kom] is non-empty. Observe that kom is independent of ψ while k′m is strictly
increasing with ψ. Solving for k′m(ψ) = kom, we get

0 =
1− q

1− q + vq(1− α)

v − 1

2
(2− qβ)− 2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2

0 = (1− q)(v − 1)
βq(1− α)

2− βαq
− (1− q)(v − 1)ψ − ψ

[
1− q + vq(1− α)

]
ψ =

βq(1− q)(1− α)(v − 1)

v(2− βαq)(1− αq)

(
1− ĉ

2

)
This is the expression for the upper bound on ψ in Assumption 2.
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